首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fully biodegradable and environment-friendly green composite specimens were made using ramie fibers and soy protein concentrate (SPC) resin. SPC was used as continuous phase resin in green composites. The SPC resin was plasticized with glycerin. Precuring and curing processes for the resin were optimized to obtain required mechanical properties. Unidirectional green composites were prepared by combining 65 % (on weight basis) ramie fibers and SPC resin. The tensile strength and Young’s modulus of these composites were significantly higher compared to those of pure SPC resin. Tensile and flexural properties of the composite in the longitudinal direction were moderate and found to be significantly higher than those of three common wood varieties. In the transverse direction, however, their properties were comparable with those of wood specimens. Scanning electron microscope (SEM) micrographs of the tensile fracture surfaces of the green composite indicated good interfacial bonding between ramie fibers and SPC resin. Theoretical values for tensile strength and Young’s modulus, calculated using simple rule of mixture were higher than the experimentally obtained values. The main reasons for this discrepancy are loss of fiber alignment, voids and fiber compression due to resin shrinking during curing.  相似文献   

2.
Composites were prepared with 13, 23 30 and 40 % fiber and evaluated the mechanical performance in tensile, flexural and impact. The mechanical properties of these composites were also evaluated function of time at 110 °C thermal exposure. Caroa fibers were characterized by techniques such as thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the best mechanical properties were achieved for composites containing 23 to 30 % fiber. The incorporation of 23 % fiber caroa increased both the modulus of elasticity in the tensile test as the flexural strength and impact, the composite with 30 % fiber caroa showed higher tensile strength. The results show that the tensile and flexural strength of the composite decreased with time of thermal exposure. The thermal aging at 110 °C caused a decrease in tensile properties of the composites.  相似文献   

3.
Carbon fibers and precursor polyacrylonitrile (PAN) fibres that contain either silica or hydroxyapatite particles, imbedded during the spinning process, were studied in this paper. The modified PAN fibers were thermally stabilized using a multi-stage process in the temperature range between 150 to 280 °C in an oxidative environment. Subsequent carbonization leading to obtain carbon fibers was carried on at 1000 °C in an argon atmosphere. The changes of properties of composite precursor fibers taking place during stabilization and carbonization processes were investigated by the combination of Differential Scanning Calorimetry, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy equipped with energy dispersive X-ray spectrometer and ultrasonic methods. Mechanical properties, such as tensile strength, static Young’s modulus, elongation at fracture were analyzed at each stage of thermal stabilization process. Additionally some traditional measurements like fiber diameter and mass were studied. Ceramic powders added to the spinning solution were present also in composites fibers after stabilization and carbonization process. Such modification allows to avoid the post-treatment operations, for example by coating or covering with films, which were usually necessary in order to obtain bioactive character of implants. Modification of carbon fibers using calcium phosphate or silica can lead to the development of a new materials for the manufacturing of implants which can establish direct chemical bonds with bone tissue after implantation.  相似文献   

4.
Natural fibers are largely divided into two categories depending on their origin: plant based and animal based. Plant based natural jute fiber reinforced polypropylene (PP) matrix composites (20 wt% fiber) were fabricated by compression molding. Bending strength (BS), bending modulus (BM), tensile strength (TS), Young’s modulus (YM), and impact strength (IS) of the composites were found 44.2 MPa, 2200 MPa, 41.3 MPa, 750 MPa and 12 kJ/m2, respectively. Animal based natural B. mori silk fiber reinforced polypropylene (PP) matrix composites (20 wt% fiber) were fabricated in the same way and the mechanical properties were compared over the silk based composites. TS, YM, BS, BM, IS of silk fiber reinforced polypropylene composites were found 55.6 MPa, 760 MPa, 57.1 MPa, 3320 MPa and 17 kJ/m2 respectively. Degradation of composites in soil was measured upto twelve weeks. It was found that plant based jute fiber/PP composite losses its strength more than animal based silk fiber/PP composite for the same period of time. The comparative study makes it clear that mechanical properties of silk/PP composites are greater than those values of jute/PP composites. But jute/PP composites are more degradable than silk/PP composites i.e., silk/PP composites retain their strength for a longer period than jute/PP composites.  相似文献   

5.
Ni-coated short carbon fibers (Ni-SCFs) were prepared using an electrodeposition method. Short carbon fiber (SCF) reinforced epoxy composites were prepared by changing the fiber content (0.1–0.7 wt%). To investigate the effect of Ni-coated short carbon fibers on the mechanical and electrical properties of the composites, we prepared two kinds of reinforcements: the short carbon fibers treated by 400 °C (400 °C treated SCFs) and Ni-SCFs. Fracture characteristics of the composites revealed the Ni coatings and the epoxy matrix had a better interface, so that the results of tensile and bending strength were better in epoxy/Ni-SCFs composites than those in epoxy/400 °C treated SCFs composites. The 400 °C treated SCFs decreased the electrical resistivity of the epoxy composites, compared to the pure epoxy. However the epoxy/Ni-SCFs composites had lower electrical resistivity than epoxy/400 °C treated SCFs with the same fiber content.  相似文献   

6.
Process parameters such as gelation and curing temperatures are parameters that influence the pultruded kenaf reinforced vinyl ester composites profile quality and performance. The effect of gelation and curing temperatures on mechanical (tensile, flexural and compression properties) and morphological properties of pultruded kenaf reinforced vinyl ester composites were analyzed. Obtained results indicated that increase of gelation and curing temperatures during the pultrusion process of kenaf reinforced vinyl ester composites influenced the mechanical properties of the composites. When the gelation and curing temperatures were increased, tensile strength, tensile modulus, flexural strength, flexural modulus and compressive strength were affected and they were either increased or decreased. The factors that influenced these results include improper curing, excessive curing, water diffusion, and the problems associated with interfacial bonding between fibre and matrices. The optimum values of the tensile strength for gelation and curing temperatures of kenaf pultruded composites were at 100 °C and 140 °C, tensile modulus at 80 °C and 180 °C, flexural strength at 100 ° and 140 °, flexural modulus at 120 ° and 180 °, and compressive strength at 120 °C and 180 °C, respectively. The scanning electron micrographs of tensile fractured samples clearly show that with the increase in gelation temperature, it creates the lumens between matrix and kenaf fibre thus reducing tensile properties whereas increasing the curing temperature caused less fibre pull out and enhanced fibre/matrix interfacial bonding.  相似文献   

7.
The chemical and morphological properties of ramie fibers treated by chemical surface modification were examined with Fourier transform infrared (FT-IR) spectroscopy. The mechanical and thermal decomposition properties were evaluated with respect to tensile strength, tensile modulus and thermogravimetric analysis (TGA). Surface morphological changes were investigated with scanning electron microscopy (SEM). Finally, the capabilities of composites reinforced with various chemically treated fibers were analyzed by investigating tensile and impact strengths. Additionally, the thermal mechanical properties of the composites were investigated with thermal mechanical analysis (TMA). Based on the results of these analyses, we concluded that pectin, lignin and hemicellulose were removed and thermal stability was increased with chemical treatments. The composites reinforced with ramie fiber showed better properties compared with pure PLA matrix with respect to tensile and impact strengths. The peroxide-treated fiber composite had the smallest thermal expansion.  相似文献   

8.
In order to develop composites with better mechanical properties and environmental performance, it becomes necessary to increase the hydrophobicity of the natural fibers and to improve the interface between matrix and natural fibers. Graft copolymerization of natural fibers is one of the best methods to attain these improvements. Only few workers have reported the use of graft copolymers as reinforcing material in the preparation of composites. So in the present paper, we report the preparation of graft copolymers of flax fibers with methyl acrylate (MA) using Fenton’s reagent (FAS-H2O2) as redox system. Synthesized flax-g-poly(MA) was characterized with FTIR, TGA/DTA, scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques. Composites were prepared using flax-g-poly(MA) as a reinforcement and phenolformaldehyde (PF) as the binding material. Mechanical properties of phenol-formaldehyde composites were compared and it has been found that composites reinforced with flax-g-poly(MA) showed improvement in mechanical properties. Composites reinforced with flax-g-poly(MA) showed better tensile strength (235 N) and compressive strength (814 N) in comparison to composites reinforced with original flax fiber which showed lesser tensile strength (162 N) and compressive strength (372 N). Composites reinforced with flax-g-poly(MA) shows the improved MOR, MOE, and SP.  相似文献   

9.
Cellulose nanowhisker (CNW) reinforced electrospun Bombyx mori silk fibroin (SF) nanofibers were fabricated. The morphology, structure, and mechanical properties of nanofibers were investigated by FE-SEM, TEM, FTIR, and tensile testing. It was found that the nanofiber size decreased obviously from 250 nm in the unreinforced mat to 77–160 nm in the CNW reinforced mats depending on the CNW content due to the increased conductivity of spinning dope. In the reinforced mats, the CNWs were embedded in the SF matrix separated from each other, and aligned along the fiber axis. There was a positive correlation between the CNW content and the tensile strength and Young’s modulus of reinforced mats. However the strain at break dropped gradually with the increase of CNW. When the CNW content was 2 w/w%, the tensile strength and Young’s modulus of reinforced SF nanofiber mats were about 2 times higher than those of unreinforced mat.  相似文献   

10.
In present article fabrication and characterization of unfilled and granite powder filled carbon epoxy composites are reported. Addition of carbon fiber shows positive effect on mechanical performance of the composites. However, incorporation of granite powder has negative hybridizing effect on the properties such as tensile strength, flexural strength and inter-laminar shear strength. The storage modulus evaluated at 30 °C is in close agreement with flexural modulus of composites. Further, successful attempt is made for numerical simulation of actual geometry of wind turbine blade. The results obtained from numerical analysis are comparable with experimental results.  相似文献   

11.
This study has examined the flexural properties of natural and chemically modified coir fiber reinforced cementitious composites (CFRCC). Coir fibers of two different average lengths were used, and the longer coir fibers were also treated with a 1 % NaOH solution for comparison. The fibers were combined with cementitious materials and chemical agents (dispersant, defoamer or wetting agent) to form CFRCC. The flexural properties of the composites, including elastic stress, flexural strength, toughness and toughness index, were measured. The effects of fiber treatments, addition of chemical agents and accelerated ageing of composites on the composites’ flexural properties were examined. The results showed that the CFRCC samples were 5–12 % lighter than the conventional mortar, and that the addition of coir fibers improved the flexural strength of the CFRCC materials. Toughness and toughness index, which were associated with the work of fracture, were increased more than ten times. For the alkalized long coir fiber composites, a higher immediate and long-term toughness index was achieved. SEM microstructure images revealed improved physicochemical bonding in the treated CFRCC.  相似文献   

12.
Jute fabric reinforced polypropylene composites were fabricated by compression molding technique. Fiber content in the composites was optimized at 45 % by weight of fiber by evaluating the mechanical parameters such as tensile strength, tensile modulus, bending strength, bending modulus. Surface treatment of jute fabrics was carried out by mercerizing jute fabrics with aqueous solutions of NaOH (5, 10 and 20 %) at different soaking times (30, 60 and 90 mins) and temperatures (0, 30 and 70 °C). The effect of mercerization on weight and dimension of jute fabrics was studied. Mechanical properties of mercerized jute-PP composites were measured and found highest at 20 % NaOH at 0 °C for 60 min soaking time. Thermal analytical data from thermogravimetric and differential thermal analysis showed that mercerized jute-PP composite achieved higher thermal stability compared to PP, jute fabrics and control composite. Degradation characteristics of the composites were studied in soil, water and simulated weathering conditions. Water uptake of the composites was also investigated.  相似文献   

13.
The chemical structure of a new gemini dicationic imidazolium ionic liquid, 3,3′-[1,2-ethanediylbis (oxy-2,1-ethanediyl)]-bis[1-methyl-imidazolium]-dibromide (PEG150-DIL) was established by 1H-NMR and elemental analyses. Then, PEG150-DIL was applied to pretreat ramie fiber. PEG150-DIL treated ramie fiber was characterized by FT-IR, XRD, DSC-TG and FE-SEM. Finally, the mechanical and dyeing properties of PEG150-DIL pretreated ramie fibers were studied. The optimum condition of PEG150-DIL modification was carried out at 100 °C for 30 min. The color strength increased obviously with the duration time and temperature of the PEG150-DIL. The tensile strength and strength retention of PEG150-DIL -treated ramie fibers decreased with the increase of pretreating time and temperature. The tensile strength retention was 86.20 % under optimal PEG150-DIL pretreating condition (100 °C, 30 min).  相似文献   

14.
Sansevieria (genus) cylindrica (species) belongs to Agavaceae family plant fiber first time used as a reinforcing agent in the epoxy system. Fibre extracted from leaves, fairly lesser density, porosity, higher strength to weight ratio (hereafter called SCF) and these fibers were alkali-treated and yet impregnated on the epoxy system using wet hand lay up technique in order to compare with untreated fiber on performance. DMA, TGA, DSC, FTIR, SEM, degradation temperature, flexural and tensile tests were performed for untreated and alkali-treated epoxy composites using different SCF volumes viz. 1 vol.%, 5 vol.%, 7 vol.% and 9 vol.%. Alkali treated fibre were found to have higher initial and final degradation temperatures and flexural and tensile strength. The removal of the amorphous hemi-cellulose on alkali treatment was played an instrumental in improving properties. A 3 °C increase in glass transition temperature and decomposition temperature were recorded respectively and over all treated SCF composites reinforced on the epoxy were shown significant results than untreated. Storage modulus and tan ?? were observed well at 9 vol.% treated SCF while flexural and tensile were increased by 35 and 13 % for SCF treated composites respectively.  相似文献   

15.
The effects of chemical treatment on the flexural and impact properties of sugar palm fiber reinforced high impact polystyrene (HIPS) composites were studied. Two types of concentration of alkali solution (4 % and 6 %) and also two types of percentage of compatibilizing agent (2 % and 3 %) have been used in this study. The alkaline treatment is carried out by immersing the fibers in 4 % and 6 % of alkali solution for 1 hour. A 40 wt. % of alkali treated sugar palm fiber (SPF) was blended with HIPS using Brabender machine at temperature of 165 °C. The second treatment was employed by compounding mixture of sugar palm fibers and HIPS with 2 and 3 % of compatibilizing agent using the same procedure. The composites plate with dimensions of 150×150×3 mm was produced by using the hot press machine. The flexural strength, flexural modulus and impact strength of composites were measured and the values were compared to the untreated composites. Improvement of the mechanical properties of the composites has been shown successfully. Alkali treatment using 6 % NaOH solution improve the flexural strength, flexural modulus and impact strength of the composites as amount 12 %, 19 % and 34 % respectively, whereas compatibilizing agent treatment only showed the improvement on the impact strength, i.e. 6 % and 16 % improvement for 2 % and 3 % MAH respectively.  相似文献   

16.
In effort to improve the soft properties of ramie fiber, we synthesized a carboxylate-containing polymer for use as a modifying agent, and successfully modified the ramie fiber in a strong base with the carboxylate-containing polymer. We applied Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) to investigate the structures of the raw and modified ramie fibers, and further investigated the mechanical and dyeing properties of the raw and modified ramie fibers. The results showed that the surface of the ramie fiber underwent significant changes due to the grafting reaction of the carboxylate-containing polymer and fiber. After the chemical modification, the flexural strength and initial modulus of the modified ramie fiber decreased while tensile strength increased, indicating that the softness of the modified ramie fiber increased though its tensile resistance remained high. In addition, the fixation of reactive dyes on the modified ramie fiber was larger than that of the reactive dyes on the raw ramie fiber. Our observations of mechanical properties and dye fixation indicated that the carboxylate-containing polymer is an effective and efficient soft modifier.  相似文献   

17.
This article describes a new process for strengthening natural silk fibers. This process is simple yet effective for mass production of high strength silk fibers, enabled by drawing at a lower temperature and immediately heat setting at a higher temperature. The processing conditions were investigated and optimized to improve the strength. Silk fibers drawn to the maximum ratio at room temperature and then heat set at 200 °C show best tensile properties. Some salient features of the resulting fibers are tensile strength at break reaching 533±10.2 MPa and Young’s modulus attaining 12.9±0.57 GPa. These values are significantly higher than those of natural silk fibers (tensile strength increased by 44 % and Young’s modulus by 135 %). Wide-angle X-ray diffraction and FTIR confirm the transformation of silk I to silk II crystalline structure for the fiber obtained from this process. DSC and TGA data also provide support for the structural change of the silk fiber.  相似文献   

18.
Sugar palm fiber is one of the most abundant natural fibers used in biocomposites. However, prediction of the mechanical properties of such natural fiber reinforced composites is still challenging. Most of the theoretical modelings are based the micromechanical method. There have been little studies involving statistical approach for prediction of mechanical properties of natural fiber reinforced composites. In this study, the tensile properties of short sugar palm fiber-reinforced high impact polystyrene (SPF-HIPS) composites obtained by means of statistical approach were investigated and compared with the experimental observations and with micromechanical models available in the literature. Statistical approach was used to predict the performance of the composite part with different fiber loadings. A two-parameter Weibull distribution function was used to model the fiber length distribution in the composite. For the experimental validation, the composites were prepared by hot compression technique for different fiber loadings (10 %, 20 %, 30 %, 40 % and 50 % by weight). Tensile testing of the composites was carried out according to ASTM D638 to obtain the composites tensile strength and modulus of elasticity. Experimental results showed that the tensile strength of the composite reduced due to the addition of sugar palm fibers, whereas the elastic modulus increased by a factor of up to 1.34. The current statistical model predicted the tensile properties of SPF-HIPS composite close to the experimental values. It was found that statistical approach with standard micromechanical models can be used to predict the mechanical properties of sugar palm fiber reinforced HIPS composites. Hence, this study could assist in decisions regarding the design of natural fiber reinforced composite products.  相似文献   

19.
Most materials used in daily life are polymeric materials based on petrochemistry. The used polymeric materials can cause land pollution and air pollution after landfill or incineration. In contrast, natural fiber reinforced (NFR) composites are more suitable for the environment, however the reliability in terms of the durability and weatherability of NFR composites is still lacking. Thus, NFR composites require the reliability involved with durability and weatherability. In this work, poly(butylene terephthalate-co-glutarate) (PBTG), with a chemical structure similar to biodegradable PBAT, was used as the matrix in the composites, and hemp fibers were used as the reinforcement. Hemp/PBTG composites were fabricated by stacking hemp-fiberwebs and PBTG films with various fiber contents and thermal exposure times. Characteristics of the composites, such as the morphological structure, chemical structure, tensile properties, compressive properties, flexural properties, and impact strength, were analyzed to obtain the effects of fiber volume fraction and thermal exposure. As a result, hemp/PBTG composites were hardened in proportion to fiber volume fractions, and the hardening behavior of the composites increased tensile strength and flexural strength. However, the hardened structure of the composites decreased the impact strength and compressive strength of the composites. On the other hand, the mechanical properties of hemp/PBTG composites with thermal exposure times, were governed significantly by the brittleness behavior of the resin and the increased crystallinity of hemp fibers. Thus, the hemp fibers contributed to the improvements on structural stability, tensile strength and flexural strength of the hemp/PBTG composites, and increased the thermal durability of the composites with various thermal exposures.  相似文献   

20.
This paper presents the three-point bending properties of 3D needle-punched composites with two fiber architectures at room and elevated temperatures. The influences of temperature and fiber architectures on the load/deflection curves, bending strength and bending stiffness are analyzed. Macro-Fracture morphology and SEM micrographs are examined to understand the damage and failure mechanism. The results show that the bending properties of plain structure needle-punched composites are superior to those with non-woven structure. Meanwhile, the bending properties of composites decrease significantly with the increase of testing temperature. Moreover, the damage and failure patterns of composites vary with fiber architecture and testing temperatures. For the plain structure, 90 ° and 0 ° fiber bundles can bear the load together. At room temperature, the composite shows brittle fracture feature and exhibits local damage with matrix cracking, breakage and tearing of the fibers. While at a higher temperature, the composite shows less fracture and becomes more softened and plastic. It damages with matrix cracking, falling off and plastic deformation, fiber layer/web delaminating, and interface debonding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号