首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The surface topography, tensile properties, and thermal properties of ramie fibers were investigated as reinforcement for fully biodegradable and environmental-friendly ‘green’ composites. SEM micrographs of a longitudinal and cross-sectional view of a single ramie fiber showed a fibrillar structure and rough surface with irregular cross-section, which is considered to provide good interfacial adhesion with polymer resin in composites. An average tensile strength, Young’s modulus, and fracture strain of ramie fibers were measured to be 627 MPa, 31.8 GPa, and 2.7 %, respectively. The specific tensile properties of the ramie fiber calculated per unit density were found to be comparable to those of E-glass fibers. Ramie fibers exhibited good thermal stability after aging up to 160°C with no decrease in tensile strength or Young’s modulus. However, at temperatures higher than 160°C the tensile strength decreased significantly and its fracture behavior was also affected. The moisture content of the ramie fiber was 9.9%. These properties make ramie fibers suitable as reinforcement for ‘green’ composites. Also, the green composites can be fabricated at temperatures up to 160°C without reducing the fiber properties.  相似文献   

2.
Natural fibers are largely divided into two categories depending on their origin: plant based and animal based. Plant based natural jute fiber reinforced polypropylene (PP) matrix composites (20 wt% fiber) were fabricated by compression molding. Bending strength (BS), bending modulus (BM), tensile strength (TS), Young’s modulus (YM), and impact strength (IS) of the composites were found 44.2 MPa, 2200 MPa, 41.3 MPa, 750 MPa and 12 kJ/m2, respectively. Animal based natural B. mori silk fiber reinforced polypropylene (PP) matrix composites (20 wt% fiber) were fabricated in the same way and the mechanical properties were compared over the silk based composites. TS, YM, BS, BM, IS of silk fiber reinforced polypropylene composites were found 55.6 MPa, 760 MPa, 57.1 MPa, 3320 MPa and 17 kJ/m2 respectively. Degradation of composites in soil was measured upto twelve weeks. It was found that plant based jute fiber/PP composite losses its strength more than animal based silk fiber/PP composite for the same period of time. The comparative study makes it clear that mechanical properties of silk/PP composites are greater than those values of jute/PP composites. But jute/PP composites are more degradable than silk/PP composites i.e., silk/PP composites retain their strength for a longer period than jute/PP composites.  相似文献   

3.
The chemical and morphological properties of ramie fibers treated by chemical surface modification were examined with Fourier transform infrared (FT-IR) spectroscopy. The mechanical and thermal decomposition properties were evaluated with respect to tensile strength, tensile modulus and thermogravimetric analysis (TGA). Surface morphological changes were investigated with scanning electron microscopy (SEM). Finally, the capabilities of composites reinforced with various chemically treated fibers were analyzed by investigating tensile and impact strengths. Additionally, the thermal mechanical properties of the composites were investigated with thermal mechanical analysis (TMA). Based on the results of these analyses, we concluded that pectin, lignin and hemicellulose were removed and thermal stability was increased with chemical treatments. The composites reinforced with ramie fiber showed better properties compared with pure PLA matrix with respect to tensile and impact strengths. The peroxide-treated fiber composite had the smallest thermal expansion.  相似文献   

4.
Composites were prepared with 13, 23 30 and 40 % fiber and evaluated the mechanical performance in tensile, flexural and impact. The mechanical properties of these composites were also evaluated function of time at 110 °C thermal exposure. Caroa fibers were characterized by techniques such as thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the best mechanical properties were achieved for composites containing 23 to 30 % fiber. The incorporation of 23 % fiber caroa increased both the modulus of elasticity in the tensile test as the flexural strength and impact, the composite with 30 % fiber caroa showed higher tensile strength. The results show that the tensile and flexural strength of the composite decreased with time of thermal exposure. The thermal aging at 110 °C caused a decrease in tensile properties of the composites.  相似文献   

5.
Composites based on pure Basalt and Basalt/Jute fabrics were fabricated. The mechanical properties of the composites such as flexural modulus, tensile modulus and impact strength were measured depending upon weave, fiber contents and resin. Dynamic mechanical analysis of all composites were done. From the results it is found that pure basalt fiber combination maintains higher values in all mechanical tests. Thermo-gravimetric (TG/DTG) composites showed that thermal degradation temperatures of composites shifted to higher temperature regions compared to pure jute fabrics. Addition of basalt fiber improved the thermal stability of the composite considerably. Scanning electron microscopic images of tensile fractured composite samples illustrated that better fiber-matrix interfacial interaction occurred in hybrid composites. The thermal conductivity of composites are also investigated and thermal model is used to check their correlation.  相似文献   

6.
Sugar palm fiber is one of the most abundant natural fibers used in biocomposites. However, prediction of the mechanical properties of such natural fiber reinforced composites is still challenging. Most of the theoretical modelings are based the micromechanical method. There have been little studies involving statistical approach for prediction of mechanical properties of natural fiber reinforced composites. In this study, the tensile properties of short sugar palm fiber-reinforced high impact polystyrene (SPF-HIPS) composites obtained by means of statistical approach were investigated and compared with the experimental observations and with micromechanical models available in the literature. Statistical approach was used to predict the performance of the composite part with different fiber loadings. A two-parameter Weibull distribution function was used to model the fiber length distribution in the composite. For the experimental validation, the composites were prepared by hot compression technique for different fiber loadings (10 %, 20 %, 30 %, 40 % and 50 % by weight). Tensile testing of the composites was carried out according to ASTM D638 to obtain the composites tensile strength and modulus of elasticity. Experimental results showed that the tensile strength of the composite reduced due to the addition of sugar palm fibers, whereas the elastic modulus increased by a factor of up to 1.34. The current statistical model predicted the tensile properties of SPF-HIPS composite close to the experimental values. It was found that statistical approach with standard micromechanical models can be used to predict the mechanical properties of sugar palm fiber reinforced HIPS composites. Hence, this study could assist in decisions regarding the design of natural fiber reinforced composite products.  相似文献   

7.
Acrylonitrile-Butadiene-Styrene copolymers (ABS) reinforced with wood flour were investigated for rheological, mechanical and thermal properties. Three grades of commercial ABS resin (high flow (HF-ABS), medium impact (MI-ABS) and super high impact (SI-ABS) grades) were characterized using H-NMR and elemental analysis for the determination of co-monomer content. Wood flour from Para rubber trees treated with N-2 (aminoethyl)-3-(aminopropyl) trimethoxy silane was blended with ABS in the melt blending process using a twin-screw extruder. Wood flour contents used in this work were 0.0 %, 9.1 %, and 33.3 % wt. The composites with higher acrylonitrile contents showed higher melt viscosity especially at the low shear rate. Carreau’s model was used for curve-fitting. The extrudate swell ratio of the composites tended to increase at the shear rate of 10–500 s−1 and then decreased dramatically once the shear rate were further applied. Neat ABS and wood/ABS composites with higher butadiene content illustrated a higher swelling ratio. The neat MI-ABS and composites showed the highest ultimate tensile strength and modulus due to the butadiene content effect. As the wood flour loading was increased, the tensile modulus of all ABS composites increased with the sacrifice of the tensile strength of composites. The elongation at break and impact strength were noticeably the highest for wood/SI-ABS composites among all because of the effect of rubbery butadiene content. Thermal stability of plastic in 9.1 % wood in HF-ABS composites was improved compared with the neat HF-ABS due to the low acrylonitrile content.  相似文献   

8.
A commercially available polyester resin was reinforced with cabuya fibers. The experimental variables were the fiber loading and the length of the fiber. Tensile strength, flexural strength, and the Izod impact resistance were measured for the samples and compared to the polyester resin performance without reinforcement. Mechanical properties of the cabuya fiber reinforced material were also compared with the same resin but reinforced with glass fibers. An increase in fiber load decreases the tensile strength for the cabuya reinforced composite, where a value of 52.6 MPa corresponded to the tensile stress of the resin without reinforcement and a value of 34.5 MPa for the best reinforcement achieved with cabuya. An increase in both fiber load and length increases the Young’s modulus of the cabuya reinforced material, and a maximum value of 2885 MPa was obtained. The Young’s modulus and impact resistance values for the cabuya composite (2885 MPa and 100.87 J/m, respectively) reached higher values than those obtained for non-reinforced polyester material (2639 MPa and 5.82 J/m, respectively), and lower than the glass fiber composite (5526 MPa and 207.46 J/m, respectively); while the tensile and flexural strength obtained for the cabuya composite (34.5 MPa and 32.6 MPa, respectively) were lower than the unreinforced (52.6 MPa and 62.9 MPa, respectively) and glass fiber reinforced polyester (87.3 MPa and 155 MPa, respectively).  相似文献   

9.
This study aims to investigate the effects of two types of wood flour; oil palm mesocarp flour (OMF) and rubberwood flour (RWF), and their particle sizes on mechanical, physical, and thermal properties of wood flour reinforced recycled polypropylene (rPP) composites. The composite materials were manufactured into panels by using a twin-screw extruder. The rPP composites based on RWF significantly showed higher flexural, tensile, and compressive properties (both strength and modulus) as well as hardness and thermal stability than those composites based on OMF for the same particle sizes. However, distribution of RWF in the rPP matrix was less homogeneous than that of the rPP/OMF composites. Furthermore, a decrease of the particle sizes of filler for the rPP/OMF or RWF composites increased the flexural, tensile, compressive, and hardness properties. Likewise, the thermal stability of both OMF and RWF composites were insignificantly affected by the particle sizes.  相似文献   

10.
Denim, a twilled cotton fabric, was used to enhance the mechanical and thermal properties of poly(lactic acid) (PLA). The denim fabric reinforced composites with different numbers of denim layers were fabricated by using a hand layup method. The impact, tensile, and dynamic mechanical properties of the composites were observed with increasing denim layers to examine the reinforcing effect of denim fabrics. Numerical analysis was carried out to model the elastic modulus of the composite by using a commercial software. Three-dimensional geometry of the denim fabric reinforced PLA composite was generated through a CAD program, and the elastic modulus was calculated by applying uniform deformation on one surface. The impact strength, tensile strength, and thermal properties of the composites were improved by piling denim fabrics. The denim fabric reinforced composites exhibited outstanding impact strength due to the retarded crack propagation as well as large energy dissipation. The 3 layer denim reinforced composite showed best results among all specimens, and its impact strength, tensile strength, and tensile modulus were measured to be 82 J/m, 75.76 MPa, and 4.65 GPa, respectively. The PLA/denim composites have good mechanical properties and can substitute traditional composites such as glass fiber or carbon fiber reinforced composites.  相似文献   

11.
A study on the tensile and flexural properties of jute-glass-carbon fibers reinforced epoxy hybrid composites in inter-ply configuration is presented in this paper. Test specimens were manufactured by hand lay-up process and their tensile and flexural properties were obtained. The effects of the hybridization, different fibers content and plies stacking sequence on the mechanical properties of the tested hybrid composites were investigated. Two-parameter Weibull distribution function was used to statistically analyze the experimental results. The failure probability graphs for the tested composites were drawn. These graphs are important tools for helping the designers to understand and choose the suitable material for the required design and development. Results showed that the hybridization process can potentially improve the tensile and flexural properties of jute reinforced composite. The flexural strength decreases when partial laminas from a carbon/epoxy laminate are replaced by glass/epoxy or jute/epoxy laminas. Also, it is realized that incorporating high strength fibers to the outer layers of the composite leads to higher flexural resistance, whilst the order of the layers doesn’t affect the tensile properties.  相似文献   

12.
To improve interfacial adhesion between carbon fiber and epoxy resin, the epoxy matrix is modified with N-(2-aminoethyl)-3-aminopropylmethyldimethoxysilane (YDH602) and N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (YDH792), respectively. And the effect of matrix modification on the mechanical performance of carbon/epoxy composites is investigated in terms of tensile, flexural and interlaminar properties. The flexural properties indicate that the optimum concentration of silane coupling agents YDH602 and YDH792 for the matrix modification is approximately 0.5 wt% of the epoxy resin system, and the mechanical properties of the YDH792-modified epoxy composites is better than that of the YDH602-modified epoxy composites at the same concentration. Compared to unmodified epoxy composite, the incorporation of 0.5 wt% YDH792 results in an increase of 4, 44 and 42 % in tensile, flexural and interlaminar shear strength (ILSS) values of the carbon/epoxy composite, respectively, while the corresponding enhancement of tensile and flexural modulus is 3 and 15 %. These improvements in mechanical properties can be considered to be an indication of better fiber/matrix interfacial adhesion as confirmed by SEM micrographs of the fracture surface after interlaminar shear testing. The viscosity of the modified epoxy resin system can be reduced by incorporation of silane coupling agent YDH792, which is beneficial for fiber impregnation or wetting during liquid composite molding process.  相似文献   

13.
Process parameters such as gelation and curing temperatures are parameters that influence the pultruded kenaf reinforced vinyl ester composites profile quality and performance. The effect of gelation and curing temperatures on mechanical (tensile, flexural and compression properties) and morphological properties of pultruded kenaf reinforced vinyl ester composites were analyzed. Obtained results indicated that increase of gelation and curing temperatures during the pultrusion process of kenaf reinforced vinyl ester composites influenced the mechanical properties of the composites. When the gelation and curing temperatures were increased, tensile strength, tensile modulus, flexural strength, flexural modulus and compressive strength were affected and they were either increased or decreased. The factors that influenced these results include improper curing, excessive curing, water diffusion, and the problems associated with interfacial bonding between fibre and matrices. The optimum values of the tensile strength for gelation and curing temperatures of kenaf pultruded composites were at 100 °C and 140 °C, tensile modulus at 80 °C and 180 °C, flexural strength at 100 ° and 140 °, flexural modulus at 120 ° and 180 °, and compressive strength at 120 °C and 180 °C, respectively. The scanning electron micrographs of tensile fractured samples clearly show that with the increase in gelation temperature, it creates the lumens between matrix and kenaf fibre thus reducing tensile properties whereas increasing the curing temperature caused less fibre pull out and enhanced fibre/matrix interfacial bonding.  相似文献   

14.
Most materials used in daily life are polymeric materials based on petrochemistry. The used polymeric materials can cause land pollution and air pollution after landfill or incineration. In contrast, natural fiber reinforced (NFR) composites are more suitable for the environment, however the reliability in terms of the durability and weatherability of NFR composites is still lacking. Thus, NFR composites require the reliability involved with durability and weatherability. In this work, poly(butylene terephthalate-co-glutarate) (PBTG), with a chemical structure similar to biodegradable PBAT, was used as the matrix in the composites, and hemp fibers were used as the reinforcement. Hemp/PBTG composites were fabricated by stacking hemp-fiberwebs and PBTG films with various fiber contents and thermal exposure times. Characteristics of the composites, such as the morphological structure, chemical structure, tensile properties, compressive properties, flexural properties, and impact strength, were analyzed to obtain the effects of fiber volume fraction and thermal exposure. As a result, hemp/PBTG composites were hardened in proportion to fiber volume fractions, and the hardening behavior of the composites increased tensile strength and flexural strength. However, the hardened structure of the composites decreased the impact strength and compressive strength of the composites. On the other hand, the mechanical properties of hemp/PBTG composites with thermal exposure times, were governed significantly by the brittleness behavior of the resin and the increased crystallinity of hemp fibers. Thus, the hemp fibers contributed to the improvements on structural stability, tensile strength and flexural strength of the hemp/PBTG composites, and increased the thermal durability of the composites with various thermal exposures.  相似文献   

15.
In effort to improve the soft properties of ramie fiber, we synthesized a carboxylate-containing polymer for use as a modifying agent, and successfully modified the ramie fiber in a strong base with the carboxylate-containing polymer. We applied Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscopy (SEM) to investigate the structures of the raw and modified ramie fibers, and further investigated the mechanical and dyeing properties of the raw and modified ramie fibers. The results showed that the surface of the ramie fiber underwent significant changes due to the grafting reaction of the carboxylate-containing polymer and fiber. After the chemical modification, the flexural strength and initial modulus of the modified ramie fiber decreased while tensile strength increased, indicating that the softness of the modified ramie fiber increased though its tensile resistance remained high. In addition, the fixation of reactive dyes on the modified ramie fiber was larger than that of the reactive dyes on the raw ramie fiber. Our observations of mechanical properties and dye fixation indicated that the carboxylate-containing polymer is an effective and efficient soft modifier.  相似文献   

16.
This study presents the mechanical and thermal properties of environment-friendly composites made from recycled newspaper fibers reinforced recycled poly(ethylene terephthalate) (rPET) resin with the addition of styrene-ethylene-butylene-styrene grafted maleic anhydride (SEBS-g-MA) as compatibilizer. The effect of SEBS-g-MA addition (i.e., 10 phr) by using a twin-screw extruder to the rPET resin, followed by different fiber content (5, 10 and 15 wt.%) on the tensile, flexural and impact properties of the composites were determined. Stiffness of composites increased significantly compared to those of rPET/SEBS-g-MA blend. Fiber addition resulted in moderate increases in both tensile and flexural strength of the composites. Scanning electron microscope (SEM) photomicrographs of the impact fracture surfaces demonstrate good adhesion at 5 and 10 % fiber content. Differential scanning calorimetry (DSC) showed that the presence of newspaper fibers enhanced the nonisothermal crystallization kinetics and crystallinity. Thermal stability of the composites was improved as indicated by thermogravimetric analysis (TGA).  相似文献   

17.
Green composites from Pattawia pineapple leaf fiber (PALF) and poly(lactic acid) (PLA) were prepared. The mechanical method was chosen to extract PALF from fresh leaves due to this method gave high yield of fiber, short extraction time, and environmental friendly. Tensile and thermal properties, together with morphology of the fibers were disclosed. The fibers were conducted into a specified length of 1–3 mm and blended with PLA, using a twin screw extruder, with the PALF content of 10–50 wt%. Tensile testing, morphology investigation and thermogravimetric analysis were applied. Preliminary results showed that tensile modulus of the composites depended on PALF content. The tensile modulus and elongation at break of the composite containing 40 % PALF was about 48 %, and 111 % increase, respectively, compared with that of PLA. With addition of maleic anhydride coupling agent, such the composite showed the tensile modulus of 5.1 GPa, which was 34 % higher than that of the non-coupling agent composite, and about 104 % higher than that of PLA. Although the elongation at break of the composite containing 40 % PALF was found to dramatically increase by 111 %, the introduction of maleic anhydride in such the composite caused only 57 % increase in the elongation at break compared with that of PLA. Finally, a pilot product of square boxes was produced successfully from the proposed composite, by conventional injection molding process.  相似文献   

18.
Cellulose nanowhisker (CNW) reinforced electrospun Bombyx mori silk fibroin (SF) nanofibers were fabricated. The morphology, structure, and mechanical properties of nanofibers were investigated by FE-SEM, TEM, FTIR, and tensile testing. It was found that the nanofiber size decreased obviously from 250 nm in the unreinforced mat to 77–160 nm in the CNW reinforced mats depending on the CNW content due to the increased conductivity of spinning dope. In the reinforced mats, the CNWs were embedded in the SF matrix separated from each other, and aligned along the fiber axis. There was a positive correlation between the CNW content and the tensile strength and Young’s modulus of reinforced mats. However the strain at break dropped gradually with the increase of CNW. When the CNW content was 2 w/w%, the tensile strength and Young’s modulus of reinforced SF nanofiber mats were about 2 times higher than those of unreinforced mat.  相似文献   

19.
This study was conducted to evaluate the suitability of using residual plant fibers from agricultural waste streams as reinforcement in thermoplastic composites. Three groups of plant fibers evaluated included cotton burrs, sticks and linters from cotton gin waste (CGW), guayule whole plant, and guayule bagasse. The plant fibers were characterized for physical (bulk density and particle size distribution) and chemical properties (ash, lignin and cellulose contents). A laboratory experiment was designed with five fiber filler treatments, namely control (oak wood fiber as the filler - OWF), cotton burr and sticks (CBS), CBS with 2% (by weight) second cut linters (CBL), CBS with 30% (by weight) guayule whole plant (CGP), and CBS with 30% (by weight) guayule bagasse (CGB). The composite samples were manufactured with 50% of fiber filler, 40% of virgin high-density polyethylene (HDPE), and 10% other additives by weight. The samples were extruded to approximately 32 × 7 mm cross-sectional profiles, and tested for physico-mechanical properties. The CBS and CBL had considerably lower bulk density than the other fibers. Cotton linters had the highest α-cellulose (66.6%), and lowest hemicellulose (15.8%) and lignin (10.5%) of all fibers tested. Guayule whole plant had the lowest α-cellulose and highest ash content. Both CBS and guayule bagasse contained α-cellulose comparable to OWF, but slightly lower hemicellulose. Evaluation of composite samples made from the five fiber treatments indicated that fibers from cotton gin byproducts and guayule byproducts reduced the specific gravity of the composites significantly. However, the CBS and CBL samples exhibited high water absorption and thickness swelling, but the addition of guayule bagasse reduced both properties to similar levels as the wood fiber. The CGP exhibited significantly lower coefficient of thermal expansion. Composite samples with the five different fiber fillers showed similar hardness and nail holding capacity, yet oak fibers imparted superior strength and modulus under flexure and compression with the exception of the compressive modulus of CGB composites. In general, both cotton ginning and guayule processing byproducts hold great potential as fiber fillers in thermoplastic composites.  相似文献   

20.
This study developed a novel PHB-lignin-jute biodegradable composite with preferable mechanical properties and low water absorption. The appearances of fracture surface of composites were analyzed by scanning electron microscope. The result suggested a Gaussian-like distribution of the size particles supporting the presence of lignin with a radius smaller than 0.5 μm. According to X-ray diffraction, the presence of lignin and jute fibers was decreased the crystallization of PHB. Moreover, the glass transition temperature of PHB increased, and the endotherm during glass transition was decreased. The maximum tensile strength and modulus of composites were obtained with 30 wt% jute fiber contents and 4 wt% lignin contents. The presence of jute fibers was largely increased the water absorption of composites. However, the presence of lignin was effectively decreased the water absorption of composites at saturation levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号