首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A study was conducted to evaluate the effect of cut on biomass productivity, oil content, composition, and bioactivity of Ocimum basilicum L. (cvs. German and Mesten) and Ocimum sanctum L. (syn. O. tenuiflorum L.) (cv. Local) in Mississippi. Yields of basil herbage and essential oil were high and comparable to those reported in the literature. Essential oil content of O. basilicum cv. German varied from 0.40 to 0.75%, the oil content of cv. Mesten varied from 0.50 to 0.72%, and the oil content of cv. Local (of O. sanctum) ranged from 0.17 to 0.50% in air-dried basil. Herbage and essential oil yields of cvs. German and Mesten of O. basilicum increased with the second and then again with the third cut, whereas herbage and oil yields of cv. Local of O. sanctum increased with the third cut relative to the previous cuts. Overall, essential oil yields were 115, 123, and 51 kg/ha for the cvs. German, Mesten, and Local, respectively. The major oil constituents of cvs. German and Mesten (of O. basilicum) were (-)-linalool (30-40%) and eugenol (8-30%), whereas the major oil constituents of cv. Local (of O. sanctum) were eugenol (8-43%) and methylchavicol (15-27%). Essential oils from both species grown in Mississippi showed in vitro activity against Leishmania donovani (IC50 = 37.3-49.6 microg/mL), which was comparable to the activity of commercial oil (IC50 = 40-50 microg/mL). Minor basil oil constituents (+)-delta-cadinene, 3-carene, alpha-humulene, citral, and (-)- trans-caryophyllene had antileishmanial activity, whereas other constituents were ineffective. None of the oil was cytotoxic to mammalian cells.  相似文献   

2.
Wild Amazonian basil Ocimum micranthum Willd. (O. campechianum Mill.) Labiatae essential oil was analyzed by GC and GC-MS: 31 compounds were identified. The main components were eugenol (46.55 +/- 5.11%), beta-caryophyllene (11.94 +/- 1.31%), and beta-elemene (9.06 +/- 0.99%), while a small amount of linalool (1.49 +/- 0.16%) was detected. The oil was tested for its in vitro food-related biological activities and compared with common basil Ocimum basilicum and Thymus vulgaris commercial essential oils. Radical scavenging activity was evaluated employing 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay. The oil exerted a good capacity to act as a nonspecific donor of hydrogen atoms or electrons when checked in the diphenylpicrylhydrazyl assay, quenching 76,61 +/- 0.33% of the radical, with values higher than those reported by reference oils. In the beta-carotene bleaching test, the oil provided an antioxidant efficacy comparable with that of O. basilicum and T. vulgaris essential oils. These data were confirmed by photochemiluminescence, where the oil showed a remarkable antioxidant capacity (2.39 +/- 0.1), comparable to that of Trolox and vitamin E, and higher than the other essential oils. Antibacterial activity of O. micranthum essential oil was evaluated against Gram positive and Gram negative bacterial strains. The oil showed a dose-dependent antifungal activity against pathogenic and food spoiling yeasts.  相似文献   

3.
Essential oils extracted by hydrodistillation from local plants in Benin, western Africa, and oil from seeds of the neem tree (Azadirachta indica) were evaluated in vitro and in vivo for their efficacy against Fusarium verticillioides infection and fumonisin contamination. Fumonisin in corn was quantified using a fluorometer and the Vicam method. Oils from Cymbopogon citratus, Ocimum basilicum, and Ocimum gratissimum were the most effective in vitro, completely inhibiting the growth of F. verticillioides at lower concentrations over 21 days of incubation. These oils reduced the incidence of F. verticillioides in corn and totally inhibited fungal growth at concentrations of 8, 6.4, and 4.8 microL/g, respectively, over 21 days. At the concentration of 4.8 microL/g, these oils did not affect significantly fumonisin production. However, a marked reduction of fumonisin level was observed in corn stored in closed conditions. The oils adversely affected kernel germination at 4.8 microL/g and therefore cannot be recommended for controlling F. verticillioides on stored corn used as seeds, when used at this concentration. The oil of neem seeds showed no inhibitory effect but rather accelerated the growth of F. verticillioides.  相似文献   

4.
The essential oils of Ocimum basilicum L., Origanum vulgare L., and Thymus vulgaris L. were analyzed by means of gas chromatography-mass spectrometry and assayed for their antioxidant and antimicrobial activities. The antioxidant activity was evaluated as a free radical scavenging capacity (RSC), together with effects on lipid peroxidation (LP). RSC was assessed measuring the scavenging activity of the essential oils on 2,2-diphenyl-1-picrylhydrazil (DPPH(*)) and OH(*) radicals. Effects on LP were evaluated following the activities of essential oils in Fe(2+)/ascorbate and Fe(2+)/H(2)O(2) systems of induction. Essential oils exhibited very strong RSCs, reducing the DPPH radical formation (IC(50)) in the range from 0.17 (oregano) to 0.39 microg/mL (basil). The essential oil of T. vulgaris exhibited the highest OH radical scavenging activity, although none of the examined essential oils reached 50% of neutralization (IC(50)). All of the tested essential oils strongly inhibited LP, induced either by Fe(2+)/ascorbate or by Fe(2+)/H(2)O(2). The antimicrobial activity was tested against 13 bacterial strains and six fungi. The most effective antibacterial activity was expressed by the essential oil of oregano, even on multiresistant strains of Pseudomonas aeruginosa and Escherichia coli. A significant rate of antifungal activity of all of the examined essential oils was also exhibited.  相似文献   

5.
Notwithstanding the wide range of biological and pharmacological activities reported for sweet basil (Ocimum basilicum L.), many discrepancies are still present in the evaluation of its health-promoting properties. These discordances could be at least in part due to insufficient details of qualitative and quantitative composition, connected to the ample variability of this species. Furthermore, many investigations have been carried out in vitro, with few data available on the effectiveness in biological systems. In this study, the protective effect of essential oils and water-soluble extracts derived from three different cultivars of sweet basil has been evaluated in cultured cardiomyocytes. To verify the effectiveness of supplemented oils/extracts in counteracting oxidative damage, cardiomyocytes were stressed by the addition of hydrogen peroxide. The results indicate that (a) in vitro antioxidant activity is not predictive of biological activity and (b) basil can yield extracts with substantially different protective effects, in relation to composition and extraction techniques. Variation among different cultivars has also been detected.  相似文献   

6.
The antioxidant activity of a methanolic extract of Ocimum basilicum L. (sweet basil) was examined using different in vitro assay model systems. The crude extract was fractionated on a Sephadex LH-20 column, and six fractions were identified. The DPPH scavenging assay system and the oxidation of the soy phosphotidylcholin liposome model system were used to evaluate the antioxidant activity of each fraction. Fraction IV showed the strongest activity followed by fractions V and VI. Phenolic compounds responsible for the antioxidative activity of the fractions were characterized by atmospheric pressure chemical ionization liquid chromatography-mass spectrometry. The major antioxidant compound in fraction IV was confirmed as rosmarinic acid by (1)H NMR and characteristic fragmentations in the mass spectrum. Moreover, the native of antioxidant activity of rosmarinic acid in the liposome system was examined. The results showed that one rosmarinic acid can capture 1.52 radicals, and furthermore, the existence of a synergistic effect between alpha-tocopherol and rosmarinic acid was revealed.  相似文献   

7.
In this study, the chemical constituents and antioxidant property of holy basil (Ocimum sanctum Linn.) field-grown plant parts (leaves, stems, and inflorescence) were compared with those of respective callus cultures induced from each explant in in vitro. The callus cultures were successfully initiated on Murashige and Skoog (MS) medium supplemented with 2,4-dichlorophenoxy acetic acid (2,4-D) (1 mg/L) combined with different concentrations (0.1-0.5 mg/L) of kinetin as plant growth regulators. The distribution of phenolic compounds in these extracts was analyzed using reverse phase high-performance liquid chromatography with reference standards. Interestingly, rosmarinic acid (RA) was found to be the predominant phenolic acid in all callus extracts in comparison with field-grown plant parts. In this study, the antioxidant activity of the extracts was evaluated with six different in vitro antioxidant-testing systems. Their activities of scavenging superoxide anion radicals, 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH), hydroxyl radicals, hydrogen peroxide, chelating ferrous iron, and ferric ion reducing potential were assessed. The antioxidant activity was increased in all testing systems with increasing amounts of extract. However, at the same concentration, the callus extracts exhibited higher antioxidant activity in all of the testing systems than the extract obtained from field-grown plant parts. The data obtained from this study suggested the possibility of the isolation of a high content of RA from in vitro callus cultures rather than field-grown plant organs of holy basil.  相似文献   

8.
The phenol content and antioxidant activity of extra virgin olive oils (EVOOs) differing in their origins and degradation degrees were studied. The o-diphenolic compounds typical of olive oil, namely, the oleuropein derivatives hydroxytyrosol (3',4'-dihydroxyphenylethanol, 3',4'-DHPEA), the dialdehydic form of elenolic acid linked to 3',4'-DHPEA (3',4'-DHPEA-EDA), and an isomer of oleuropein aglycon (3',4'-DHPEA-EA), were analyzed by HPLC. The antioxidant activity was studied by (a) the xanthine oxidase (XOD)/xanthine system, which generates superoxide radical and hydrogen peroxide; (b) the diaphorase (DIA)/NADH/juglone system, which generates superoxide radical and semiquinonic radical; and (c) the 2,2-diphenyl-1-picrylhydrazyl radical (DPPH) test. Results showed that EVOOs with a low degradation level (as evaluated by acidity, peroxide number, and spectroscopic indices K(232), K(270), and deltaK according to the EU Regulation) had a higher content of 3',4'-DHPEA-EDA and a lower content of 3',4'-DHPEA than oils having intermediate and advanced degradation levels. EVOOs with a low degradation degree were 3-5 times more efficient as DPPH scavengers and 2 times more efficient as inhibitors of the XOD-catalyzed reaction than oils with intermediate and advanced degradation levels. The DIA-catalyzed reaction was inhibited by EVOOs having low or intermediate degradation levels but not by the most degraded oils.  相似文献   

9.
This paper reports the use of spectrophotometric and voltammetric methods for the determination of the antioxidant capacity of buckwheat and its products originated from a technological line of a buckwheat roasted groats producer. 80% methanol extracts from raw and roasted buckwheat and groats and hulls obtained from roasted buckwheat were used. The spectrophotometric methods included (1) free radical scavenging activities of the extracts against ABTS*+ radical cation (TEAC) and 2,2-diphenyl-1-picrylhydrazyl radical (DPPH RSA) and (2) determination of reducing capacity by the means of Folin-Ciocalteu reagent (FCR) application. The radical scavenging activities of the extracts were also investigated using a voltammetric assay. Moreover, the flavonoids profiles of the studied materials were provided. Buckwheat roasting caused a decrease in TEAC, DPPH RSA, and FCR reducing capacity by 70%. The lowest TEAC, DPPH RSA, and FCR reducing capacities were noted for roasted groats. Both DPPH RSA and TEAC methods were highly positively correlated with the FCR reducing capacity assay (r = 0.98 and r = 0.99). Cyclic voltammograms of analyzed buckwheat extracts were useful for evaluation of the antioxidant capacity. The total charge below the anodic current waveform was correlated with the data obtained by TEAC (r = 0.770), DPPH RSA (r = 0.88), and FCR reducing capacity (r = 0.81). The changes in the antioxidant capacity of buckwheat and its products followed the changes in flavonoids composition. In particular, the concentration of flavonoids was related to measurements by cyclic voltammetry.  相似文献   

10.
One known and two novel antioxidant compounds have been isolated from bamboo (Phyllostachys edulis). The butanol-soluble extract of the bamboo leaves was found to have a significant antioxidant activity, as measured by scavenging the stable 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical and the superoxide anion radical (O(2)(-)) in the xanthine/xanthine oxidase assay system. Antioxidant activity-directed fractionation of the extract led to the isolation and characterization of three structural isomeric chlorogenic acid derivatives: 3-O-(3'-methylcaffeoyl)quinic acid (1), 5-O-caffeoyl-4-methylquinic acid (2), and 3-O-caffeoyl-1-methylquinic acid (3). Compounds 2 and 3 were isolated and characterized for the first time from the natural products. In the DPPH scavenging assay as well as in the iron-induced rat microsomal lipid peroxidation system, compounds 2 (IC(50) = 8.8 and 19.2 microM) and 3 (IC(50) = 6.9 and 14.6 microM) showed approximately 2-4 times higher antioxidant activity than did chlorogenic acid (IC(50) = 12.3 and 28.3 microM) and other related hydroxycinnamates such as caffeic acid (IC(50) =13.7 and 25.5 microM) and ferulic acid (IC(50) = 36.5 and 56.9 microM). Among the three compounds, compound 1 yielded the weakest antioxidant activity, and the DPPH scavenging and lipid peroxidation inhibitory activity (IC(50) = 16.0 and 29.8 microM) was lower than those of chlorogenic and caffeic acids. All three compounds exhibited both superoxide scavenging activities and inhibitory effects on xanthine oxidase. Their superoxide anion (O(2)(-)) scavenging activities (IC(50) = 1, 4.3 microM; 2, 2.8 microM; and 3, 1.2 microM) were markedly stronger than those of ascorbic acid (IC(50) = 56.0 microM), alpha-tocopherol (IC(50) > 100 microM), and other test compounds, although their inhibition effects on xanthine oxidase may contribute to the potent scavenging activity. alpha-Tocopherol exerted a significant inhibitory effect (65.5% of the control) on superoxide generation in 12-O-tetradecanoylphorbol-13-acetate-induced human promyelocytic leukemia HL-60 cells, and compound 3 showed moderate activity (36.0%). On the other hand, other compounds including 1, 2, chlorogenic acid, and other antioxidants were weakly active (24.8-10.1%) in the suppression of superoxide generation.  相似文献   

11.
Although the salt resistance mechanisms in plants have received much consideration for many years, varieties’ differences affecting salt resistance are still unsettled. Within the Ocimum genus there occur about 200 species in different varieties and forms. A pot experiment was performed to better understand salt stress responses in crop plants; we compared the impacts of salinity stress on growth and physio-biochemical characteristics in three varieties of basil (Ocimum basilicum) var. odoratus, O. b. var. alba and O. b. var. purpurascens) grown under four levels of salinity stress (0, 50, 100, and 150?mM NaCl) with mycorrhiza (Glomus clarum Nicol. &; Schenck) or without. Results showed significant differences within salinity treatments in all cultivars studied. In this study, the biomass production and physio-biochemical parameters of all cultivars reduced with raised salinity levels except concentration of reducing sugars, sodium, and proline at 150 mM of NaCl, only the variety ‘purpurascens’ didn't show reduction and observed resistant against severe salinity. The colonization of arbuscular mycorrhiza fungi enhanced the biomass production and accumulation of nutrients, reducing sugars, total soluble carbohydrates, photosynthetic pigments, proline, and protein by reducing Na. This study should help understand the function of AMF fungi in basil cultivars’ tolerance to salinity stress.  相似文献   

12.
Basil (Ocimum basilicum L.) is a popular culinary herb, and its essential oils have been used extensively for many years in food products, perfumery, and dental and oral products. Basil essential oils and their principal constituents were found to exhibit antimicrobial activity against a wide range of Gram-negative and Gram-positive bacteria, yeast, and mold. The present paper reviews primarily the topic of basil essential oils with regards to their chemical composition, their effect on microorganisms, the test methods for antimicrobial activity determination, and their possible future use in food preservation or as the active (antimicrobial), slow release, component of an active package.  相似文献   

13.
The essential oils of rosemary ( Rosmarinus officinalis L.) and sage ( Salvia officinalis L.) were analyzed by means of gas chromatography-mass spectrometry and assayed for their antimicrobial and antioxidant activities. Antimicrobial activity was tested against 13 bacterial strains and 6 fungi, including Candida albicans and 5 dermatomycetes. The most important antibacterial activity of both essential oils was expressed on Escherichia coli, Salmonella typhi, S. enteritidis, and Shigella sonei. A significant rate of antifungal activity, especially of essential oil of rosemary, was also exhibited. Antioxidant activity was evaluated as a free radical scavenging capacity (RSC), together with the effect on lipid peroxidation (LP). RSC was assessed by measuring the scavenging activity of essential oils on 2,2-diphenyl-1-picrylhydrazil (DPPH) and hydroxyl radicals. Effects on LP were evaluated following the activities of essential oils in Fe(2+)/ascorbate and Fe(2+)/H2O2 systems of induction. Investigated essential oils reduced the DPPH radical formation (IC50 = 3.82 microg/mL for rosemary and 1.78 microg/mL for sage) in a dose-dependent manner. Strong inhibition of LP in both systems of induction was especially observed for the essential oil of rosemary.  相似文献   

14.
The effect of the treatment of chitosan at various concentrations (0.01%, 0.05%, 0.1%, 0.5%, and 1%) upon sweet basil (Ocimum basilicum L.) before seeding and transplanting was investigated in aspects of the amount of phenolic and terpenic compounds, antioxidant activity, and growth of the basil, as well as the phenylalanine ammonia lyase (PAL) activity. The total amount of the phenolic and terpenic compounds increased after the chitosan treatment. Especially, the amounts of rosmarinic acid (RA) and eugenol increased 2.5 times and 2 times, respectively, by 0.1% and 0.5% chitosan treatment. Due to the significant induction of phenolic compounds, especially RA, the corresponding antioxidant activity assayed by the DPPH (2,2-diphenyl-1-picrylhydrazyl) free radical scavenging test increased at least 3.5-fold. Also, the activity of PAL, a key regulatory enzyme for the phenylpropanoid pathway, increased 32 times by 0.5% chitosan solution. Moreover, after the elicitor chitosan treatment, the growth in terms of the weight and height of the sweet basil significantly increased about 17% and 12%, respectively. Our study demonstrates that an elicitor such as chitosan can effectively induce phytochemicals in plants, which might be another alternative and effective means instead of genetic modification.  相似文献   

15.
Plant essential oils from 29 plant species were tested for their insecticidal activities against the Japanese termite, Reticulitermes speratus Kolbe, using a fumigation bioassay. Responses varied with plant material, exposure time, and concentration. Good insecticidal activity against the Japanese termite was achived with essential oils of Melaleuca dissitiflora, Melaleuca uncinata, Eucalyptus citriodora, Eucalyptus polybractea, Eucalyptus radiata, Eucalyptus dives, Eucalyptus globulus, Orixa japonica, Cinnamomum cassia, Allium cepa, Illicium verum, Evodia officinalis, Schizonepeta tenuifolia, Cacalia roborowskii, Juniperus chinensis var. horizontalis, Juniperus chinensis var. kaizuka, clove bud, and garlic applied at 7.6 microL/L of air. Over 90% mortality after 3 days was achieved with O. japonica essential oil at 3.5 microL/L of air. E. citriodora, C. cassia, A. cepa, I. verum, S. tenuifolia, C. roborowskii, clove bud, and garlic oils at 3.5 microL/L of air were highly toxic 1 day after treatment. At 2.0 microL/L of air concentration, essential oils of I. verum, C. roborowskik, S. tenuifolia, A. cepa, clove bud, and garlic gave 100% mortality within 2 days of treatment. Clove bud and garlic oils showed the most potent antitermitic activity among the plant essential oils. Garlic and clove bud oils produced 100% mortality at 0.5 microL/L of air, but this decreased to 42 and 67% after 3 days of treatment at 0.25 microL/L of air, respectively. Analysis by gas chromatography-mass spectrometry led to the identification of three major compounds from garlic oil and two from clove bud oils. These five compounds from two essential oils were tested individually for their insecticidal activities against Japanese termites. Responses varied with compound and dose. Diallyl trisulfide was the most toxic, followed by diallyl disulfide, eugenol, diallyl sulfide, and beta-caryophyllene. The essential oils described herein merit further study as potential fumigants for termite control.  相似文献   

16.
The essential oil obtained by hydrodistillation from aerial parts of Satureja cuneifolia Ten., collected in three different maturation stages such as preflowering, flowering, and postflowering, were analyzed simultaneously by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS). Thymol (42.5-45.2%), p-cymene (19.4-24.3%), and carvacrol (8.5-13.2%) were identified as the main constituent in all stages. At the same time, the essential oils and main components were evaluated for their antimicrobial activity using a microdilution assay resulting in the inhibition of a number of common human pathogenic bacteria including methicillin-resistant Staphylococcus aureus (MRSA) and the yeasts Candida albicans and Candida tropicalis. The minimum inhibitory concentrations (MIC) varied between 62.5 and 250 microg/mL within a moderate antimicrobial activity range. Furthermore, the antioxidant capacity of the essential oils and major components thymol and carvacrol were examined in vitro. The essential oils obtained from S. cuneifolia in three different stages and its main components were interacted with 1,1-diphenyl-2-picrylhydrazyl (DPPH (*)) as a nitrogen-centered stable radical, resulting in IC 50 = 1.6-2.1 mg/mL. In addition, the effects on inhibition of lipid peroxidation of the essential oils were assayed using the beta-carotene bleaching method. All of the tested oils inhibited the linoleic acid peroxidation at almost the same level as butylated hydroxytoluene (BHT) (93.54-94.65%). BHT and ascorbic acid were used as positive controls in the antioxidant assays.  相似文献   

17.
The effect of methyl jasmonate (MeJA) in terms of its induction of inherent bioactive chemicals in sweet basil (Ocimum basilicum L.) was evaluated after MeJA was sprayed on healthy basil plants. The total phenolic content of the sweet basil significantly increased after 0.1 and 0.5 mM MeJA treatments compared with the control not subjected to MeJA. Two phenolic compounds, rosmarinic acid (RA) and caffeic acid (CA), were identified as strong antioxidant constituents of the sweet basil. Their amounts also significantly increased after the MeJA treatment. In addition, eugenol and linalool increased 56 and 43%, respectively, by the 0.5 mM MeJA treatment. Due to the accumulation of RA, CA, and eugenol, which possess strong 2,2-diphenyl-1-picrylhydrazyl (DPPH*) free radical scavenging activities, the antioxidant activity of the sweet basil extract was 2.3-fold greater than that of the control after the 0.5 mM MeJA treatment. In the DPPH* assay, the EC50 values of RA, CA, and eugenol were determined as 23, 46, and 59 microM, respectively, which indicated they were 6-, 3-, and 2.4-fold more efficient than BHT (140 microM). Besides, an unidentified HPLC peak in the methanolic extract of the sweet basil was 4.3-fold higher than that of the control after the 0.5 mM MeJA treatment.  相似文献   

18.
Many herbs and spices have been shown to contain high levels of polyphenolic compounds with potent antioxidant properties. In the present study, we explore how nutrient availability, specifically nitrogen fertilization, affects the production of polyphenolic compounds in three cultivars (Dark Opal, Genovese, and Sweet Thai) of the culinary herb, basil ( Ocimum basilicum L.). Nitrogen fertilization was found to have a significant effect on total phenolic levels in Dark Opal ( p < 0.001) and Genovese ( p < 0.001) basil with statistically higher phenolic contents observed when nutrient availability was limited at the lowest (0.1 mM) applied nitrogen treatment. Similarly, basil treated at the lowest nitrogen fertilization level generally contained significantly higher rosmarinic ( p = 0.001) and caffeic ( p = 0.001) acid concentrations than basil treated at other nitrogen levels. Nitrogen fertilization also affected antioxidant activity ( p = 0.002) with basil treated at the highest applied nitrogen level, 5.0 mM, exhibiting lower antioxidant activity than all other nitrogen treatments. The anthocyanin content of Dark Opal basil was not affected by applied nitrogen level, but anthocyanin concentrations were significantly impacted by growing season ( p = 0.001). Basil cultivar was also determined to have a statistically significant effect on total phenolic levels, rosmarinic and caffeic acid concentrations, and antioxidant activities.  相似文献   

19.
Varieties of kola nuts (Cola nitida alba, Cola nitida rubra A. Chev, and Cola acuminata Schott & Endl), a group of popular Nigerian and West African stimulants, were analyzed for their content of secondary plant metabolites. The three varieties of the kola nuts contained appreciable levels of (+)-catechin (27-37 g/kg), caffeine (18-24 g/kg), (-)-epicatechin (20-21 g/kg), procyanidin B 1 [epicatechin-(4beta-->8)-catechin] (15-19 g/kg), and procyanidin B2 [epicatechin-(4beta-->8)-epicatechin] (7-10 g/kg). Antioxidant capacity of the extracts and purified metabolites was assessed by two HPLC-based and two colorimetric in vitro assays. Extracts of all varieties exhibited antioxidant capacity with IC 50 values in the range 1.70-2.83 and 2.74-4.08 mg/mL in the hypoxanthine/xanthine oxidase and 2-deoxyguanosine HPLC-based assays, respectively. Utilization of HPLC-based assays designed to reflect in situ generation of free radicals (e.g., HO(*)), as opposed to general assays (DPPH, FRAP) in common use which do not, indicate that, of the major secondary plant metabolites present in kola nut extracts, caffeine is potentially the more effective cancer chemopreventive metabolite in terms of its antioxidant capacity.  相似文献   

20.
The contents of secondary plant substances in solvent extracts of various byproducts (barks, kernels, peels, and old and young leaves) in a range of Brazilian mango cultivars were identified and quantitated. The results show that the profiles of secondary plant substances such as xanthone C-glycosides, gallotannins, and benzophenones in different byproducts vary greatly but are fairly consistent across cultivars. The free radical scavenging activity of the solvent extracts was evaluated using a high-performance liquid chromatography-based hypoxanthine/xanthine oxidase assay and revealed dose-dependent antioxidant capacity in all extracts. Four (mangiferin, penta- O-galloyl-glucoside gallic acid, and methyl gallate) of the major phenolic compounds detected were also evaluated in additional in vitro bioassay systems such as oxygen radical absorbance capacity, 2,2-diphenyl-1-picrylhydrazyl, and ferric reducing ability of plasma. Mangiferin in particular, detected at high concentrations in young leaves (Coite = 172 g/kg), in bark (Momika = 107 g/kg), and in old leaves (Itamaraka = 94 g/kg), shows an exceptionally strong antioxidant capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号