首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
OBJECTIVE: To determine whether the vapor pressure of desflurane could be decreased by using a solvent to reduce the anesthetic molar fraction in a solution (Raoult's Law). We hypothesized that such an anesthetic mixture could produce anesthesia using a nonprecision vaporizer instead of an agent-specific, electronically controlled, temperature and pressure compensated vaporizer currently required for desflurane administration. ANIMAL: One healthy adult female dog. PROCEDURE AND RESULTS: Propylene glycol was used as a solvent for desflurane, and the physical characteristics of this mixture were evaluated at various molar concentrations and temperatures. Using a circle system with a breathing bag attached at the patient end and a mechanical ventilator to simulate respiration, an in-circuit, nonprecision vaporizer containing 40% desflurane and 60% propylene glycol achieved an 11.5% +/- 1.0% circuit desflurane concentration with a 5.2 +/- 0.4 (0 = off, 10 = maximum) vaporizer setting. This experiment was repeated with a dog attached to the breathing circuit under spontaneous ventilation with a fresh gas flow of 0.5 L minute(-1). Anesthesia was maintained for over 2 hours at a mean vaporizer setting of 6.2 +/- 0.4, yielding mean inspired and end-tidal desflurane concentrations of 8.7% +/- 0.5% and 7.9% +/- 0.7%, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Rather than alter physical properties of vaporizers to suit a particular anesthetic agent, this study demonstrates that it is also possible to alter physical properties of anesthetic agents to suit a particular vaporizer. However, propylene glycol may not prove an ideal solvent for desflurane because of its instability in solution and substantial-positive deviation from Raoult's Law.  相似文献   

2.
Anesthesia induced by use of a combination of xylazine, ketamine, and halothane, under conditions of spontaneous and mechanically controlled ventilation, was evaluated in 5 llamas positioned in dorsal recumbency. Using chronically implanted catheters, systemic arterial blood pressure, pulmonary arterial pressure, right atrial pressure, heart rate and rhythm, cardiac output, blood pH and gas tensions, body temperature, and respiratory rate were measured before anesthesia induction (baseline), throughout the anesthetic period, and for 1 hour into the recovery period. During anesthesia, llamas undergoing spontaneous ventilation developed hypercapnia and respiratory acidosis. Cardiovascular function was decreased during both types of ventilation. The combination of xylazine, ketamine, and halothane in various doses and 2 ventilation procedures (spontaneous and controlled) provided a reliable method for general anesthesia in llamas, but marked cardiovascular depression developed during anesthesia maintenance with halothane. Spontaneous ventilation resulted in potentially clinically important respiratory acidosis.  相似文献   

3.
Out of circuit vaporizers have some characteristics that differ from in circuit vaporizers. When these are understood, out of circuit vaporizers offer some advantages.  相似文献   

4.
Forty-four healthy dogs undergoing elective ovariohysterectomy were anesthetized with halothane or isoflurane delivered with an in-circuit vaporizer with closed system flow rates or an out-of-circuit vaporizer with semi-closed system flow rates. When dogs were anesthetized with halothane, there were no differences in heart rate, blood pressure, body temperature, respiratory rate, or lingual venous pH, PCO2, or PO2 during induction and maintenance. Lingual venous PO2 was significantly less but still within a clinically acceptable range when isoflurane was used in an in-circuit vaporizer. Recovery times tended to be longer with in-circuit vaporizers. The amount of anesthetic used was not affected by vaporizer location. In-circuit vaporizers were suitable for delivery of halothane or isoflurane to healthy dogs.  相似文献   

5.
In circuit vaporizers have some characteristics that differ from out of circuit vaporizers. In circuit vaporizers are easy to use, effective, and offer several clinical advantages.  相似文献   

6.
OBJECTIVE: To evaluate the effects on oxygen delivery (DO2) of 2.5 and 5 cm H2O of positive end-expiratory pressure (PEEP) applied to the dependent lung during one-lung ventilation (OLV) in anesthetized dogs with a closed thoracic cavity. ANIMALS: 7 clinically normal adult Walker Hound dogs. PROCEDURE: Dogs were anesthetized, and catheters were inserted in a dorsal pedal artery and the pulmonary artery. Dogs were positioned in right lateral recumbency, and data were collected during OLV (baseline), after application of 2.5 cm H2O of PEEP for 15 minutes during OLV, and after application of 5 cm H2O of PEEP for 15 minutes during OLV. Hemodynamic and respiratory variables were analyzed and calculations performed to obtain DO2, and values were compared among the various time points by use of an ANOVA for repeated measures. RESULTS: PEEP induced a significant decrease in shunt fraction that resulted in a significant increase in arterial oxygen saturation. However, it failed to significantly affect arterial oxygen content (CaO2) or cardiac output. Thus, DO2 was not affected in healthy normoxemic dogs as a net result of the application of PEEP. CONCLUSIONS AND CLINICAL RELEVANCE: The use of PEEP during OLV in anesthetized dogs with a closed thoracic cavity did not affect DO2. Use of PEEP during OLV in dogs with a closed thoracic cavity is recommended because it does not affect cardiac output and any gain in CaO2 will be beneficial for DO2 in critically ill patients.  相似文献   

7.
The purpose of this study was to investigate the cardiopulmonary influences of sevoflurane in oxygen at two anaesthetic concentrations (1.5 and 2 MAC) during spontaneous and controlled ventilation in dogs. After premedication with fentany-droperidol (5 microg/kg and 0.25 mg/kg intramuscularly) and induction with propofol (6 mg/kg intravenously) six dogs were anaesthetized for 3 h. Three types of ventilation were compared: spontaneous ventilation (SpV), intermittent positive pressure ventilation (IPPV), and positive end expiratory pressure ventilation (PEEP, 5 cm H2O). Heart rate, haemoglobin oxygen saturation, arterial blood pressures, right atrial and pulmonary arterial pressures, pulmonary capillary wedge pressure and cardiac output were measured. End tidal CO2%, inspiratory oxygen fraction, respiration rate and tidal volume were recorded using a multi-gas analyser and a respirometer. Acid-base and blood gas analyses were performed. Cardiac index, stroke volume, stroke index, systemic and pulmonary vascular resistance, left and right ventricular stroke work index were calculated. Increasing the MAC value during sevoflurane anaesthesia with spontaneous ventilation induced a marked cardiopulmonary depression; on the other hand, heart rate increased significantly, but the increases were not clinically relevant. The influences of artificial respiration on cardiopulmonary parameters during 1.5 MAC sevoflurane anaesthesia were minimal. In contrast, PEEP ventilation during 2 MAC concentration had more pronounced negative influences, especially on right cardiac parameters. In conclusion, at 1.5 MAC, a surgical anaesthesia level, sevoflurane can be used safely in healthy dogs during spontaneous and controlled ventilation (IPPV and PEEP of 5 cm H2O).  相似文献   

8.
OBJECTIVE: To examine the accuracy and precision of isoflurane and sevoflurane anesthetic vaporizers. SAMPLE POPULATION: 5 identical isoflurane and 5 identical sevoflurane vaporizers. PROCEDURES: Oxygen flow rates from 0.02 to 10 L/min were used with different vaporizer dial settings. Agent concentrations were measured at the common gas outlet by use of a refractometer. Accuracy was defined as the difference between measured agent concentrations, and dial settings were expressed as a percentage of the applied dial settings. Precision was defined as SD of the measured agent concentrations for each combination of dial setting and flow. RESULTS: Isoflurane values were generally greater than the dial settings. Accuracy of the isoflurane vaporizer was > 20% when 0.6% and 1% was dialed. Accuracy of the sevoflurane vaporizer was always within +/- 20% but decreased at 0.02 L/min flow and at combinations of high flow and high dial settings. Overall precision of the isoflurane vaporizer was better than that of the sevoflurane vaporizer. CONCLUSIONS AND CLINICAL RELEVANCE: A possible explanation for the inaccuracy of the isoflurane vaporizer may be that it was manufactured to be accurate with air but not oxygen, which must be accounted for when using the vaporizer with oxygen, especially with nonrebreathing systems. The sevoflurane vaporizer may not deliver accurate agent concentrations at high flow and high dial settings. Both vaporizers are suitable for clinical use with a wide range of oxygen flow rates if these precautions are properly addressed.  相似文献   

9.
Cardiopulmonary measurements were determined in 19 nonanesthetized, normal ponies. Mean values for arterial pressure, pulmonary arterial pressure, cardiac output, heart rate, packed cell volume, and hemoglobin are reported, as well as acid-base determinations of arterial blood and cerebrospinal fluid. Respiratory function test data include total ventilation, respiratory rate, alveolar ventilation, oxygen uptake, and carbon dioxide output. The data compare favorably with the available data from previous reports on ponies. Because of large day-to-day variations in total ventilation, alveolar ventilation should be measured if ponies are used in the study of pulmonary function.  相似文献   

10.
IntroductionThe use of alveolar recruitment maneuvers during general anaesthesia of horses is a potentially useful therapeutic option for the ventilatory management. While the routine application of recruitments would benefit from the availability of dedicated large animal ventilators their impact on ventilation and perfusion in the horse is not yet well documented nor completely understood.Case historyA healthy 533 kg experimental horse underwent general anaesthesia in lateral recumbency. During intermittent positive pressure ventilation a stepwise alveolar recruitment maneuver was performed.ManagementAnaesthesia was induced with ketamine and midazolam and maintained with isoflurane in oxygen using a large animal circle system. Mechanical ventilation was applied in pressure ventilation mode and an alveolar recruitment maneuver performed employing a sequence of ascending and descending positive end expiratory pressures. Next to the standard monitoring, which included spirometry, additionally three non-invasive monitoring techniques were used: electrical impedance tomography (EIT), volumetric capnography and respiratory ultrasonic plethysmography. The functional images continuously delivered by EIT initially showed markedly reduced ventilation in the dependent lung and allowed on-line monitoring of the dynamic changes in the distribution of ventilation during the recruitment maneuver. Furthermore, continuous monitoring of compliance, dead space fraction, tidal volumes and changes in end expiratory lung volume were possible without technical difficulties.Follow upThe horse made an unremarkable recovery.ConclusionThe novel non-invasive monitoring technologies used in this study provided unprecedented insights into the physiology of lung collapse and recruitment. The synergic information of these techniques holds promise to be useful when developing and evaluating new ventilatory strategies in horses.  相似文献   

11.
Pneumothorax (45 ml of N/kg of body weight insufflated into the pleural space) in anesthetized dogs ventilated with air caused a significant (P less than 0.05) increase in pleural pressure, central venous pressure, capillary wedge pressure, and venous admixture. Cardiac index (CI) and arterial O2 tensions were decreased. Ventilation with 100% O2 increased arterial O2 tensions, but did not affect calculated intrapulmonary shunting of blood or CI. Application of 10 cm of H2O-positive end-expiratory pressure in the presence of pneumothorax during positive-pressure ventilation and high-frequency jet ventilation reduced intrapulmonary shunting of blood, which remained higher than control values, and caused a further decrease in CI. Cardiopulmonary function during pneumothorax in anesthetized dogs was more profoundly affected by the application of positive end-expiratory pressure than by the form of mechanical ventilation.  相似文献   

12.
ObjectiveCardiovascular responses to hypovolemia and hypotension are depressed during general anesthesia. A considerable number of anesthetized and critically ill animals may not benefit hemodynamically from a fluid bolus; therefore, it is important to have measures for accurate prediction of fluid responsiveness. Static measures of preload, such as central venous pressure, do not provide accurate prediction of fluid responsiveness, whereas dynamic measures of cardiovascular function, obtained during positive pressure ventilation, are highly predictive. This review describes key physiological concepts behind heart–lung interactions during positive pressure ventilation, factors that can modify this relationship and provides the basis for a rational interpretation of the information obtained from dynamic measurements, with a focus on pulse pressure variation (PPV).Database usedPubMed. Search items used were: heart–lung interaction, positive pressure ventilation, pulse pressure variation, dynamic index of fluid therapy, goal-directed hemodynamic therapy, dogs, cats, pigs, horses and rabbits.ConclusionsThe veterinary literature suggests that targeting specific PPV thresholds should guide fluid therapy in lieu of conventional assessments. Understanding the physiology of heart–lung interactions during intermittent positive pressure ventilation provides a rational basis for interpreting the literature on dynamic indices of fluid responsiveness, including PPV. Clinical trials are needed to evaluate whether goal-directed fluid therapy based on PPV results in improved outcomes in veterinary patient populations.  相似文献   

13.
Wick catheters were used to measure intracompartmental muscle pressures (ICMP) within the long heads of the triceps brachii and extensor carpi radialis muscles of 8 horses maintained under halothane anesthesia while their breathing was controlled by intermittent positive-pressure ventilation. Blood gas, cardiac output, and blood pressure determinations were monitored to maintain a stable plane of anesthesia. The horses were positioned in left lateral recumbency and were placed sequentially on each of 4 contact surfaces for 1 hour. The 4 surfaces used for each horse were concrete, foam rubber, air dunnage bag, and a water mattress. Hematologic and biochemical determinations were made before and 24 hours after anesthesia. All horses recovered from the anesthesia. One horse had forelimb lameness for 36 hours after anesthesia, which was clinically diagnosed as a myoneuropathy. The ICMP values were markedly elevated in the muscle bellies of the lower limb of all horses. Supporting the horse on a water mattress caused the least dramatic pressure elevation and foam caused the most. The triceps muscle and, to a lesser extent, the extensor carpi radialis muscle of the lower limb are at risk of ischemia in anesthetized horses because the ICMP may exceed the critical closing pressure of 30 mm of Hg required for capillary blood flow.  相似文献   

14.
Laser surgery and laparoscopy are two relatively new surgical techniques gaining popularity in veterinary medicine, which require special consideration when being performed on the anesthetized patient. For laser surgery, consideration must be given to the possibility of atmospheric contamination, inappropriate energy transfer, eye injury, perforation of a vessel or anatomic structure, perforation of the endotracheal tube, and fire. The primary concern with laparoscopy and thoracoscopy is the creation of a pneumoperitoneum or pneumothorax, which can result in (1) hypercarbia and inadequate ventilation, (2) poor cardiac output and systemic blood pressure, and (3) gas embolism. To minimize complications, patients should be placed on positive pressure ventilation, be well hydrated before and during the procedure, and be thoroughly monitored (ECG, capnography, pulse oximetry.  相似文献   

15.
OBJECTIVE: To compare the effects of spontaneous breathing and mechanical ventilation on haemodynamic variables, including muscle and skin perfusion measured with laser Doppler flowmetery, in horses anaesthetized with isoflurane. STUDY DESIGN: Prospective controlled study. ANIMALS: Ten warm-blood trotter horses (five males, five females). Mean mass was 492 kg (range 420-584 kg) and mean age was 5 years (range 4-8 years). MATERIALS AND METHODS: After pre-anaesthetic medication with detomidine (10 microg kg(-1)) anaesthesia was induced with intravenous (IV) guaifenesin and thiopental (4-5 mg kg(-1) IV) and maintained using isoflurane in oxygen. The horses were positioned in dorsal recumbency. In five animals breathing was initially spontaneous (SB) while the lungs of the other five were ventilated mechanically using intermittent positive pressure ventilation (IPPV). Total anaesthesia time was 4 hours with the ventilatory mode changed after 2 hours. During anaesthesia, heart rate (HR) cardiac output (Qt) stroke volume (SV) systemic arterial blood pressures (sAP), and pulmonary arterial pressure (pAP) were recorded. Peripheral perfusion was measured in the semimembranosus and gluteal muscles and on the tail skin using laser Doppler flowmetry. Arterial (a) and mixed venous (v) blood gases, pH, haemoglobin concentration [Hb], haematocrit (Hct), plasma lactate concentration and muscle temperature were measured. Oxygen content, venous admixture (s/Qt) oxygen delivery (DO(2)) and oxygen consumption (VO(2)) were calculated. RESULTS: During mechanical ventilation, HR, sAP, pAP, Qt, SV, Qs/Qt and PaCO(2) were lower and PaO(2) was higher compared with spontaneous breathing. There were no differences between the modes of ventilation in the level of perfusion, DO(2), VO(2), [Hb], (Hct), or plasma lactate concentration. After the change from IPPV to SB, left semimembranosus muscle and skin perfusion improved, while muscle perfusion tended to decrease when SB was changed to IPPV. Low-frequency flow motion was seen twice as frequently during IPPV compared with SB. CONCLUSIONS: Mechanical ventilation impaired cardiovascular function compared with SB in horses during isoflurane anaesthesia. Muscle and skin perfusion changes occurred with ventilation, although further studies are needed to elucidate the underlying mechanisms.  相似文献   

16.
The hemodynamic effects of high arterial carbon dioxide pressure (PaCO2) during anesthesia in horses were studied. Eight horses were anesthetized with xylazine, guaifenesin, and thiamylal, and were maintained with halothane in oxygen (end-tidal halothane concentration = 1.15%). Baseline data were collected while the horses were breathing spontaneously; then the horses were subjected to intermittent positive-pressure ventilation, and data were collected during normocapnia (PaCO2, 35 to 45 mm of Hg), moderate hypercapnia (PaCO2, 60 to 70 mm of Hg), and severe hypercapnia (PaCO2, 75 to 85 mm of Hg). Hypercapnia was induced by adding carbon dioxide to the inspired gas mixture. Moderate and severe hypercapnia were associated with significant (P less than 0.05) increases in aortic blood pressure, left ventricular systolic pressure, cardiac output, stroke volume, maximal rate of increase and decrease in left ventricular pressure (positive and negative dP/dtmax, respectively), and median arterial blood flow, and decreased time constant for ventricular relaxation. These hemodynamic changes were accompanied by increased plasma epinephrine and norepinephrine concentrations. Administration of the beta-blocking drug, propranolol hydrochloride, markedly depressed the response to hypercapnia. This study confirmed that in horses, hypercapnia is associated with augmentation of cardiovascular function.  相似文献   

17.
【目的】研究两种通风模式下杭州地区规模化猪场舍内环境参数及其分布规律,筛选出适合本地区推广的通风模式。【方法】选取杭州地区具有代表性的横向通风和纵向通风两种通风模式下育肥舍为研究对象,开展了早、中、晚3个不同时间点,进风口、舍中央和排风口3个不同位置的热环境参数、有害气体浓度的监测,持续监测1周。分析不同时间点和舍内不同位置对热环境参数(温度、相对湿度、风速)以及有害气体(氨气(NH3)和硫化氢(H2S))浓度的影响,并对两种模式下的热环境参数及有害气体浓度进行比较分析;采用空气沉淀法收集舍内环境中的细菌,并对细菌进行培养及统计分析,比较两种模式下育肥舍中细菌数量差异。【结果】两种通风模式下育肥舍相对湿度均低于国家标准,位置和各时间点对相对湿度影响不大,其中纵向通风舍内的相对湿度显著高于横向通风模式(P<0.05)。两种通风模式舍内平均温度没有显著性差异(P>0.05),舍内中午温度显著高于早、晚(P<0.05),位置对纵向通风舍内温度影响较大。纵向通风舍内平均风速为(1.09±0.42)m/s,符合国家标准且极显著高于横向...  相似文献   

18.

Objective

To compare the effects of two concentrations of oxygen delivered to the anaesthetic breathing circuit on oxygenation in mechanically ventilated horses anaesthetised with isoflurane and positioned in dorsal or lateral recumbency.

Methods

Selected respiratory parameters and blood lactate were measured and oxygenation indices calculated, before and during general anaesthesia, in 24 laterally or dorsally recumbent horses. Horses were randomly assigned to receive 100% or 60% oxygen during anaesthesia. All horses were anaesthetised using the same protocol and intermittent positive pressure ventilation (IPPV) was commenced immediately following anaesthetic induction and endotracheal intubation. Arterial blood gas analysis was performed and oxygenation indices calculated before premedication, immediately after induction, at 10 and 45 min after the commencement of mechanical ventilation, and in recovery.

Results

During anaesthesia, the arterial partial pressure of oxygen was adequate in all horses, regardless of position of recumbency or the concentration of oxygen provided. At 10 and 45 min after commencing IPPV, the arterial partial pressure of oxygen was lower in horses in dorsal recumbency compared with those in lateral recumbency, irrespective of the concentration of oxygen supplied. Based on oxygenation indices, pulmonary function during general anaesthesia in horses placed in dorsal recumbency was more compromised than in horses in lateral recumbency, irrespective of the concentration of oxygen provided.

Conclusion

During general anaesthesia, using oxygen at a concentration of 60% instead of 100% maintains adequate arterial oxygenation in horses in dorsal or lateral recumbency. However, it will not reduce pulmonary function abnormalities induced by anaesthesia and recumbency.  相似文献   

19.
One hundred sixty horses were anesthetized with xylazine, guaifenesin, thiamylal, and halothane for elective soft tissue and orthopedic procedures. Horses were randomly assigned to one of four groups. Group 1 (n = 40): Horses positioned in lateral (LRG1,; n = 20) or dorsal (DRG1,; n = 20) recumbency breathed spontaneously throughout anesthesia. Group 2 (n = 40): Intermittent positive pressure ventilation (IPPV) was instituted throughout anesthesia in horses positioned in lateral (LRG2; n = 20) or dorsal (DRG2; n = 20) recumbency. Group 3 (n = 40): Horses positioned in lateral (LRG3; n = 20) or dorsal (DRG3; n = 20) recumbency breathed spontaneously for the first half of anesthesia and intermittent positive pressure ventilation was instituted for the second half of anesthesia. Group 4 (n = 40): Intermittent positive pressure ventilation was instituted for the first half of anesthesia in horses positioned in lateral (LRG4; n = 20) or dorsal (DRG4; n = 20) recumbency. Spontaneous ventilation (SV) occured for the second half of anesthesia. The mean time of anesthesia was not significantly different within or between groups. The mean time of SV and IPPV was not significantly different in groups 3 and 4. Variables analyzed included pH, PaCO2, PaO2, and P(A-a)O2 (calculated). Spontaneous ventilation resulted in significantly higher PaCO2 and P(A-a)O2 values and significantly lower PaO2 values in LRG1, and DRG1, horses compared with LRG2 and DRG2 horses. Intermittent positive pressure ventilation resulted in normocarbia and significantly lower P(A-a)O2 values in LRG2 and DRG2 horses. In LRG2 the Pao2 values significantly increased from 20 minutes after induction to the end of anesthesia. The PaO2 and P(A-a)O2 values were not significantly different from the beginning of anesthesia after IPPV in DRG2 or DRG3. The PaO2 values significantly decreased and the P(A-a)O2 values significantly increased after return to SV in horses in LRG4, and DRG4. The PaO2 values were lowest and the P(A-a)O2 values were highest in all horses positioned in dorsal recumbency compared with lateral recumbency and in SV horses compared with IPPV horses. The pH changes paralleled the changes in PaCO2. Blood gas values during right versus left lateral recumbency in all groups were also evaluated. The PaO2 values were significantly lower and the P(A-a)O2 values were significantly higher during SV in horses positioned in left lateral (LRLG1) compared with right lateral (LRRG1) recumbency. No other significant changes were found comparing left and right lateral recumbency. Arterial hypoxemia (PaO2 < 60 mm Hg) developed in 35% of DRG1 horses and 20% of DRG2 horses at the end of anesthesia. Arterial hypercarbia (PaCO2= 50–60 mm Hg) developed in DRoi horses. Arterial hypoxemia that developed in 20% of DRG3 horses was not improved with IPPV. Arterial hypoxemia developed in 55% of DRG4 horses after return to SV. Some DRG4 horses with hypoxemia also developed hypercarbia, whereas some had PaCO2 values within normal limits. Arterial hypoxemia developed in one LRG1, and two LRG4, horses. Hypercarbia developed in onlv one LRG4 horse.  相似文献   

20.
Cardiopulmonary effects of halothane anesthesia in cats   总被引:2,自引:0,他引:2  
The cardiopulmonary effects of 2 planes of halothane anesthesia (halothane end-tidal concentrations of 1.78% [light anesthesia] and 2.75% [deep anesthesia]) and 2 ventilatory modes (spontaneous ventilation [SV] or mechanically controlled ventilation [CV]) were studied in 8 cats. Anesthesia was induced and maintained with halothane in O2 only, and each cat was administered each treatment according to a Latin square design. Cardiac output, arterial blood pressure, pulmonary arterial pressure, heart rate, respiratory frequency, and PaO2, PaCO2, and pH were measured during each treatment. Stroke volume, cardiac index, and total peripheral resistance were calculated. A probability value of less than 5% was accepted as significant. In the cats, cardiac output, cardiac index, and stroke volume were reduced by deep anesthesia and CV, although only the reduction attributable to CV was significant. Systemic arterial pressure was significantly reduced by use of deep anesthesia and CV. Respiratory frequency was significantly lower during CV than during SV. Arterial PO2 was significantly decreased at the deeper plan of anesthesia, compared with the lighter plane. At the deeper plane of anesthesia, arterial PCO2 and pulmonary arterial pressure were significantly lower during CV than during SV. The deeper plane of halothane anesthesia depressed cardiopulmonary function in these cats, resulting in hypotension and considerable hypercapnia. Compared with SV, CV significantly reduced circulatory variables and should be used with care in cats. Arterial blood pressure was judged to be more useful for assessing anesthetic depth than was heart rate or respiratory frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号