首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
OBJECTIVE: To determine intraocular pressure (IOP) in cats > or = 7 years of age undergoing a routine comprehensive geriatric health examination. DESIGN: Prospective study. ANIMALS: 538 cats (1,068 eyes). PROCEDURE: IOP was measured by applanation tonometry following instillation of 0.5% proparacaine. RESULTS: Mean +/- SD IOP for all eyes was 12.3 +/- 4.0 mm Hg (range, 4 to 31 mm Hg). Mean age was 12.3 +/- 2.9 years. Intraocular pressure did not vary significantly cross-sectionally with age. However, in 78 cats, IOP was measured more than once, and follow-up measurements were significantly less than initial measurements (mean time between measurements, 9.4 +/- 3.0 months). The most useful tonometric criteria for identifying ocular abnormalities on the basis of IOP was an IOP > or = 25 mm Hg (mean + 3 SD) or a difference in IOP between eyes > or = 12 mm Hg. Eight cats met these criteria, and 5 of these cats had ophthalmic abnormalities. Low IOP was a nonspecific indicator of the presence of ocular abnormalities, as 111 cats had an IOP < or = 8 mm Hg, but only 2 had uveitis. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that IOP measurements can be a useful addition to a comprehensive geriatric health examination in cats > or = 7 years of age, especially when combined with an ophthalmic examination. Cats without ocular abnormalities that have lOP > or = 25 mm Hg or a > or = 12 mm Hg difference in IOP between eyes should have tonometry repeated or be referred to an ophthalmologist for further evaluation before beginning antiglaucoma treatment.  相似文献   

2.
提出青海海西地区燕麦生产优化灌溉制度,为当地燕麦优质高效生产提供技术参考。大田试验于2017-2018年在青海省乌兰县金泰牧场开展,2017年无灌溉处理,2018年设置4个灌溉处理,分别为仅开花期灌溉(I1),在分蘖期和拔节期灌溉(I2),在分蘖期、拔节期和开花期灌溉(I3),无灌溉(NI),灌溉处理每次的灌溉量均为50 mm。采用2018年I3处理的数据校准APSIM模型,用2018年其他灌溉处理和2017年的数据验证模型,然后模拟不同降水年型下不同灌溉情景的产量和水分利用,并提出青海海西地区燕麦草地优化灌溉制度。试验结果表明,2018年处理I3的产量和耗水量最高,且与其他处理差异显著,处理I2的水分利用效率最高。2017年无灌溉处理的干物质高于2018年的处理I2、I1和NI,并且水分利用效率比2018年的4个处理均高。模型校准过程中干物质产量和土壤水分的模拟值与实测值的均方根误差(RMSE)分别为0.94 t·hm-2和4.96 mm,4个关键物候期(出苗期、开花期、灌浆期和收获期)的模拟值与实测值的RMSE分别为1、3、4和8 d。验证过程中2018年I1、I2和NI干物质产量和土壤储水量模拟值与实测值的RMSE分别为1.03 t·hm-2和7.13 mm;2017年4个关键物候期的模拟值与实测值的RMSE为1、1、5和10 d。表明调参之后的“APSIM-燕麦”模拟水分和产量的可靠性较高。利用校准后的模型模拟了10种灌溉情景下燕麦的干物质产量、水分利用效率和灌溉水生产效率,结果表明,在2017(降水低于年平均降水量)和2018年(降水高于年平均降水量),情景8(在分蘖期和拔节期灌溉,每次的灌溉量为50 mm)均为最优灌溉方案。研究结果对于研究区的燕麦人工草地的节水灌溉管理具有一定的参考价值。  相似文献   

3.
Objective To study the course of intraocular pressure (IOP) after cataract surgery in 50 dogs. Design Prospective study. Animals Fifty dogs without preoperative ocular hypertension were selected for cataract surgery. Methods All dogs underwent cataract surgery: 25 by manual extracapsular extraction and 25 by phacoemulsification. For each dog, intraocular pressure was measured before surgery, and 1, 3, 5, 18 h, 1 week and 1 month post surgery. Results No significant difference of mean intraocular pressure between the two surgical methods was observed for each time measurement. Nine dogs had postoperative hypertension (IOP > 25 mmHg) during the first 5 hours post surgery. Incidence of postoperative hypertension was not significantly different with manual extracapsular extraction (16%) vs. phacoemulsification (20%). A decrease of mean IOP was observed 1 h after surgery (8.49 mmHg vs. 10.91 mmHg), then an increase 3 and 5 h post surgery (12.3 and 13.32 mmHg, respectively). At 18 h, 1 week and 1 month post surgery, mean IOP decreased. Mean IOP was 10.38, 10.38 and 8.84 mmHg, respectively. Conclusion In this study incidence of POH is not high. However, a follow‐up of IOP in the first hours after cataract surgery is required to avoid complications of the retina and optic nerve and to administer hypotensive treatment if necessary.  相似文献   

4.
OBJECTIVE: The objective of the study was to determine the effects of systemic 0.5% tropicamide on intraocular pressure (IOP), pupillary diameter (PD), blood pressure, and heart rate (HR) in normal felines with normotensive eyes. PROCEDURES: Intraocular pressure, PD, systolic blood pressure (SBP), diastolic blood pressure (DBP), mean blood pressure (MBP), and HR were measured in 18 clinically healthy cats. Each of the previously mentioned parameters was measured every 30 min during the trial period. At T(60), each cat was treated with one to two drops of 0.5% tropicamide ophthalmic solution placed on the dorsal aspect of the tongue. Changes in SBP, DBP, MBP, and HR were evaluated using one-way repeated measures analysis of variance, with time as the repeated factor. IOP and PD were evaluated using two-way repeated measures analysis of variance, with time and side (OD vs. OS) as the repeated factors. P values less than or equal to 0.05 were considered statistically significant. RESULTS: After lingual tropicamide administration, the mean PD at T(60) was 3.53 mm OD and 3.53 mm OS. The mean PD at T(90) was 6.36 mm OD and 6.31 mm OS. The mean PD at T(120) was 8.25 mm OD and 8.19 mm OS. This change in PD from T(60), T(90), and T(120) was statistically significant, demonstrating a linear increase in PD over time after tropicamide application on the tongue (P<0.0001). There was no statistically significant difference in PD when comparing the right to the left pupils (P=0.10). The mean IOP at T(60) was 14 mmHg OD and 12.94 mmHg OS. The mean IOP at T(90) was 14.5 mmHg OD and 14.23 mmHg OS. The mean IOP at T(120) was 14.94 mmHg OD and 14.89 mmHg OS. This change in IOP from T(60), T(90), and T(120) was statistically significant, demonstrating a linear increase in IOP over time after tropicamide application on the tongue (P=0.034). There was no statistically significant difference in IOP when comparing the right eye to the left eye (P=0.28). There were no statistically significant differences in SBP, DBP, MBP, and HR values over time for the duration of the study. CONCLUSIONS: We conclude that although lingual application of tropicamide appears to result in systemic absorption, causing significant pupillary dilation and elevations in IOP, systemic effects on SBP, DBP, MBP, and HR were not observed.  相似文献   

5.
The effects of different arterial carbon dioxide tensions (PaCO2) on cerebrospinal fluid pressure (CSFP) and intraocular pressure (IOP) were studied in 6 male halothane-anesthetized horses positioned in left lateral recumbency. Steady-state anesthetic conditions (1.06% end-tidal halothane concentration) commenced 60 minutes following anesthetic induction with only halothane in oxygen. During atracurium neuromuscular blockade, horses were ventilated, and respiratory rate and peak inspiratory airway pressure were maintained within narrow limits. The CSFP and IOP were measured at 3 different levels of PaCO2 (approx 40, 60, and 80 mm of Hg). The PaCO2 sequence in each horse was determined from a type of switchback design with the initial PaCO2 (period 1), established 30 minutes after the commencement of steady-state anesthesia, being repeated in the middle (period 3) and again at the end (period 5) of the experiment. Measurements taken from the middle 3 periods (2, 3, and 4) would form a Latin square design replicated twice. The interval between each period was approximately 45 minutes. Data from periods 2, 3, and 4 indicated that CSFP (P less than 0.05) and mean systemic arterial pressure increased significantly (P less than 0.05) with high PaCO2. Mean central venous pressure, heart rate, and IOP did not change significantly during these same conditions. Measurements taken during periods 1, 3, and 5 were compared to assess the time-related responses to anesthesia and showed a significant increase in CSFP, a significant decrease in mean central venous pressure, and a small (but not statistically significant) increase in mean systemic arterial pressure.  相似文献   

6.
灌溉对紫花苜蓿生产性能的影响   总被引:3,自引:3,他引:3  
研究灌溉时期和灌溉量对紫花苜蓿产量、质量、耗水量和蒸散率的影响。结果表明:第1、2茬紫花苜蓿的产量随灌水量的增加而增加,第1茬灌溉返青水+分枝期灌水、第2茬刈割后5 d灌水产量较高;第3茬紫花苜蓿产量随灌水量的增加而降低;3茬紫花苜蓿的叶茎比随灌水量的增加而下降,因此,建议北京地区种植紫花苜蓿应在第1茬返青期+分枝期和第2茬刈割初期灌水,第3茬应少灌水或不灌水。紫花苜蓿各茬的耗水量随水分供应量的增加而增加;在适当水分条件下紫花苜蓿蒸散率最小,表现为第1茬紫花苜蓿在返青6 d灌水的蒸散率最低,为278.53,第2茬刈割后5 d灌水的最低,为360.58,第3茬不灌水处理最低,为420.56,3茬紫花苜蓿刈割后5 d+分枝期灌水的蒸散率最高。  相似文献   

7.
OBJECTIVE: To determine the effect of various mydriatics (1% atropine, 1% cyclopentolate, 0.5% tropicamide, 10% phenylephrine) on intraocular pressure (IOP) and pupil size (PS) in normal cats. ANIMALS STUDIED: The mydriatics were tested in 10 adult ophthalmoscopically normal European Domestic Short-haired cats. Procedure Single-dose drug studies were divided into placebo (vehicle of phenylephrine), 10% phenylephrine, 0.5% tropicamide, 1% cyclopentolate and 1% atropine. After measurement of IOP and pupil size (PS) at 8 a.m. on the first day, one drop of the tested drug was applied to one randomly selected eye. The IOP and PS were measured for a minimum of 36 h until the pupil returned to pretest size. RESULTS: Ten per cent phenylephrine had no significant effect on IOP, and the effect on the pupil size was minimal (相似文献   

8.
OBJECTIVE: To evaluate the effect of head position on intraocular pressure (IOP) in horses. ANIMALS: 30 horses. PROCEDURES: Horses were sedated with detomidine HCl (0.01 mg/kg, IV). Auriculopalpebral nerve blocks were applied bilaterally with 2% lidocaine HCl. The corneas of both eyes were anesthetized with ophthalmic 0.5% proparacaine solution. Intraocular pressures were measured with an applanation tonometer with the head positioned below and above heart level. The mean of 3 readings was taken for each eye at each position for data analysis. The effect of head position on IOP was assessed and generalized estimating equations were used to adjust for the correlation from repeated measures of the same eye and intereye correlation from the same horse. RESULTS: Of the 60 eyes, 52 (87%) had increased IOP when measured below the heart level. A significant difference (mean +/- SE, 8.20 +/- 1.01 mm Hg) was seen in the mean IOP when the head was above (17.5 +/- 0.8 mm Hg) or below (25.7 +/- 1.2 mm Hg) heart level. No significant effect of sex, age, or neck length on IOP change was found. CONCLUSIONS AND CLINICAL RELEVANCE: Head position has a significant effect on the IOP of horses. Failure to maintain a consistent head position between IOP measurements could potentially prevent the meaningful interpretation of perceived aberrations or changes in IOP.  相似文献   

9.
OBJECTIVE: To estimate intraocular pressure (IOP) in eyes of healthy camelids, using applanation tonometry. ANIMALS: The eyes of 34 camelids (16 llamas [Lama glamal and 18 alpacas [L. pacos]) that did not have major abnormalities of the ocular surface or intraocular abnormalities. PROCEDURE: Tonometry measurements were obtained from each eye 3 times during a 24-hour period. Each measurement was the mean of several corneal applanations obtained by use of an applanation tonometer. Data were analyzed, using an ANOVA for a repeated-measures design. RESULTS: Mean (+/- SEM) IOP of llamas and alpacas was 13.10+/-0.35 and 14.85+/-0.45 mm Hg, respectively. Range of IOP was 7 to 18 mm Hg for llamas and 11 to 21 mm Hg for alpacas. Mean IOP of llamas was significantly less than the mean IOP of alpacas. Significant differences in IOP were not detected between the right and left eye of animals. Significant differences in IOP were not attributed to sex, age, or time of measurement within llamas or alpacas. CONCLUSIONS AND CLINICAL RELEVANCE: Establishing the mean and range of IOP of clinically normal llamas and alpacas provides a frame of reference that is important for use in a complete ophthalmic examination of camelids, which can assist clinicians in the diagnosis of glaucoma and uveitis. Reasons for the difference in mean IOP between llamas and alpacas are unknown. Although the difference may be unimportant clinically, this finding reiterates the fact that caution must be used when extrapolating IOP among species.  相似文献   

10.
An 11-year-old spayed female Miniature Poodle presented with bilateral senile cataracts. Treatment was cataract removal by phacoemulsification and intraocular lens implantation. Five hours after surgery the operated right eye was partially closed and painful. The right pupil was fully dilated, there was generalized corneal edema, and intraocular pressure (IOP) was increased. After 12 h of medication IOP was controlled. Ten weeks after surgery the owners reported cloudiness of right eye, and the dog was again evaluated. The IOP was again increased and an Ahmed valve was implanted. This case describes describe the progression of this case and benefits of controlling postcataract surgery glaucoma by the implantation of an Ahmed valve.  相似文献   

11.
Ketamine has been implicated as causing increases in intraocular pressure. The purpose of this study is to document the effects of ketamine, diazepam, and their combination on intraocular pressure (IOP) in normal, unpremedicated dogs. Random-source dogs were assigned to one of five groups of 10 dogs each: ketamine 5 mg kg–1 (KET5), ketamine 10 mg kg–1 (KET10), diazepam 0.5 mg kg–1 (VAL), ketamine 10 mg kg–1 with diazepam 0.5 mg kg–1 (KETVAL), saline 0.1 mL kg–1 (SAL), all given intravenously. A baseline IOP was measured before injection, immediately after injection, and at 5, 10, 15, and 20 minutes following injection. IOP was increased over baseline immediately after injection in the KET5, KET10, and KETVAL groups; at 5, 10, and 15 minutes in the KET5 group; and at 20 minutes in the KETVAL group. The mean IOP change compared to SAL increased immediately after injection and at 5 minutes in the KET5, KET10, and KETVAL groups; at 10 and 15 minutes in the KET5 group, and at 20 minutes in the KETVAL group. The mean IOP increased up to 5.7, 3.2, and 3.1 mm Hg over mean baseline in the KET5, KET10, and KETVAL groups, respectively. All dogs in the KET5 group and the majority in the KETVAL and KET10 groups had an increase in their IOP over baseline. Ketamine caused a clinically and statistically significant elevation in IOP over baseline and compared to SAL. The concurrent addition of diazepam did not blunt this increase. Ketamine should be avoided in dogs with corneal trauma, glaucoma, or in those undergoing intraocular surgery.  相似文献   

12.
Objective  To compare the effect of topical latanoprost, intracameral carbachol, or no adjunctive medical therapy on the development of acute postoperative hypertension (POH) and inflammation after routine phacoemulsification and aspiration (PA) of cataracts in dogs.
Design  Retrospective study.
Procedures  Dogs received either one drop of topical 0.005% latanoprost (21 dogs, 39 eyes), an intracameral injection of 0.3 mL of 0.01% carbachol (15 dogs, 30 eyes), or no adjunctive therapy (46 dogs, 90 eyes) immediately following PA of cataract(s). Intraocular pressure (IOP) was measured in all dogs 2 and 4 h after surgery. IOP was measured and aqueous flare assessed at 8 am the day after surgery.
Results  Carbachol-treated dogs had significantly higher mean IOP (33.2 ± SD 20.8 mmHg) 2 h after surgery than dogs receiving no adjunctive therapy (22.0 ± SD 14.1 mmHg) ( P  =  0 .049). There were no significant differences in IOP among groups at any other time point. There were no significant differences in number of POH episodes between dogs treated with carbachol (47%), latanoprost (29%), or dogs that received no adjunctive therapy (33%). There were no significant differences in mean aqueous flare grade between eyes treated with latanoprost (1.7 ± SD 0.4) or carbachol (1.4 ± SD 0.6), and eyes that received no adjunctive therapy (1.7 ± SD 0.4).
Conclusions  Topical 0.005% latanoprost or intracameral injection of 0.3 mL of 0.01% carbachol after PA in dogs did not reduce POH or increase intraocular inflammation compared to dogs not receiving adjunctive therapy after PA of cataracts.  相似文献   

13.
Objective To establish reference values for the Schirmer tear test I (STT I), the phenol red thread tear test (PRTT), the intraocular pressure (IOP) with rebound tonometry, to determine the corneal sensitivity for healthy chinchillas, and to describe clinical aspects of normal chinchilla eyes. Animals One hundred and twenty‐two eyes of 61 healthy pet chinchillas of different age and gender were investigated. Procedures A full ophthalmic exam including slit lamp biomicroscopy, ophthalmoscopy, measurement of STT I, PRTT, determination of the corneal touch threshold (CTT), and the measurement of the IOP (TonoVet®) was performed. The normal appearance of the lid, the iris, the lens, the fundus, and the optic nerve disc was evaluated. Results The results of the STT I were very low and not reliable, and the measurement was discontinued. The median value of PRTT was 14.0 mm wetting/15 s (mean 14.6 ± 3.5 mm wetting/15 s). The median CTT was 32.5 mm (mean 31.2 ± 7.0 mm) respectively 1.2 g/mm2 (mean 1.5 ± 0.9 g/mm2). The median IOP was 3.0 mmHg (mean 2.9 ± 1.8 mmHg). The predominating iris color was brown. The fundus pigmentation varied. Few lens alteration were seen in otherwise healthy chinchilla eyes. Most chinchillas had myelinated discs. Optic nerve cupping was present in 62% of the animals. Conclusion Because of the small amount of tears, the PRT test is recommended for tear measurements in chinchillas. The IOP in chinchillas seems to be quiet is low in comparison to other rodents.  相似文献   

14.
OBJECTIVE: To determine effects of the topically applied calcium-channel blocker flunarizine on intraocular pressure (IOP) in clinically normal dogs. ANIMALS: 20 dogs. PROCEDURES: Baseline diurnal IOPs were determined by use of a rebound tonometer on 2 consecutive days. Subsequently, 1 randomly chosen eye of each dog was treated topically twice daily for 5 days with 0.5% flunarizine. During this treatment period, diurnal IOPs were measured. In addition, pupillary diameter and mean arterial blood pressure (MAP) were evaluated. Serum flunarizine concentrations were measured on treatment day 5. Intraday fluctuation of IOP was analyzed by use of an ANOVA for repeated measures and a trend test. Changes in IOP from baseline values were assessed and compared with IOPs for the days of treatment. Values were also compared between treated and untreated eyes. RESULTS: A significant intraday fluctuation in baseline IOP was detected, which was highest in the morning (mean +/- SE, 15.8 +/- 0.63 mm Hg) and lowest at night (12.9 +/- 0.61 mm Hg). After 2 days of treatment, there was a significant decrease in IOP from baseline values in treated (0.93 +/- 0.35 mm Hg) and untreated (0.95 +/- 0.34 mm Hg) eyes. There was no significant treatment effect on pupillary diameter or MAP. Flunarizine was detected in serum samples of all dogs (mean +/- SD, 3.89 +/- 6.36 microg/L). CONCLUSIONS AND CLINICAL RELEVANCE: Topically applied flunarizine decreased IOP in dogs after 2 days of twice-daily application. This calcium-channel blocker could be effective in the treatment of dogs with glaucoma.  相似文献   

15.
Normal drainage of aqueous humor from the anterior chamber of the canine eye occurred through the angular aqueous plexus and uveoscleral route. In order to understand more clearly, uveoscleral outflow with regard to larger sized tracer particles and the possible influence that varying intraocular pressure (IOP) may have on them, microspheres of 3 sizes, 0.5, 1.0, and 3.0 micron, were perfused at 3 different IOP (20, 50, and 75 mm of Hg) for 3 different times (30, 60, and 90 minutes). Presence of spheres was detected by light microscopy and scanning electron microscopy, and verified by transmission electron microscopy. By 30 minutes of perfusion, all 3 sphere sizes thoroughly infiltrated the anterior uveal trabecular meshwork. At normotensive pressure (20 mm of Hg), spheres of each size penetrated the outer anterior extension of the ciliary musculature and entered the supraciliary space. Only 0.5- and 1.0-micron spheres moved posteriorly into the suprachoridal space. At hypertensive pressures, movement of the tracer particles increased markedly toward the posterior uveal trabecular meshwork. However, 3.0- and 1.0-microns spheres did not enter the supraciliary space and suprachoroidal space, respectively. Spheres also entered the iris, mostly at its root. They remained comparably sparse at different perfusion times and IOP. The present study supported evidence for uveoscleral outflow (vs uveovortex) in the dog and indicated that passage of materials through this pathway may be influenced by IOP when these substances are within a critical size range.  相似文献   

16.
OBJECTIVE-To report values for tear production, central corneal touch threshold (CTT), and intraocular pressure (IOP) in healthy guinea pigs and determine results of aerobic bacterial culture and cytologic examination of conjunctival swab specimens. DESIGN-Cross-sectional study. ANIMALS-31 Healthy guinea pigs (62 eyes) of various ages and breeds. PROCEDURES-Tear production was measured by the phenol red thread tear test (PRT) and Schirmer tear test (STT) before and after topical anesthetic application, CTT was measured with an esthesiometer, and IOP was measured by applanation tonometry. RESULTS-Combining data from all eyes, mean +/- SD PRT values before and after topical anesthetic administration were 21.26 +/- 4.19 mm/15 s and 22.47 +/- 3.31 mm/15 s, respectively, and mean IOP was 18.27 +/- 4.55 mm Hg. Median STT values before and after topical anesthetic administration were 3 mm/min (range, 0 to 12 mm/min) and 4 mm/min (range, 0 to 11 mm/min), respectively, and median CTT was 2.0 cm (range, 0.5 to 3.0 cm). Values did not differ between eyes for any test, but significant differences were identified for PRT values between males and females and between values obtained before and after topical anesthetic administration. Common bacterial isolates included Corynebacterium spp, Streptococcus spp, and Staphylococcus spp. Cytologic examination of conjunctival swab specimens revealed mainly basal epithelial cells; lymphocytes were common. CONCLUSIONS AND CLINICAL RELEVANCE-Results provided information on values for PRT, STT, CTT, and IOP in healthy guinea pigs and on expected findings for aerobic bacterial culture and cytologic examination of conjunctival swab specimens.  相似文献   

17.
OBJECTIVE: To evaluate the effect of topical administration of 2% dorzolamide hydrochloride or 2% dorzolamide hydrochloride-0.5% timolol maleate on intraocular pressure (IOP) in clinically normal horses. ANIMALS: 18 healthy adult horses without ocular abnormalities. PROCEDURE: The IOP was measured at 5 time points (7 AM, 9 AM, 11 AM, 3 PM, 7 PM) over 11 days. On days 1 and 2, baseline values were established. On days 3 through 5, horses received 2% dorzolamide HCI (group D, n = 9) or 2% dorzolamide HCl-0.5% timolol maleate (group DT, 9) in 1 randomly assigned eye every 24 hours immediately following each daily 7 AM IOP measurement. On days 6 through 9, each drug was given every 12 hours (7 AM and 7 PM) in the treated eye. Measurements on days 10 and 11 assessed return to baseline. Mixed linear regression models compared mean IOP difference for each drug at each time period. RESULTS: Mean IOP decreased significantly in all eyes during the 2 dose/d period, compared with the baseline, 1 dose/d, and follow-up periods. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of either drug every 24 hours for short-term treatment does not reduce IOP significantly. Administering either drug every 12 hours induced a significant reduction of IOP; however, controlling for all variables, the reduction was less than 2 mm Hg.  相似文献   

18.
OBJECTIVE: To evaluate the effects of ketamine, diazepam, and the combination of ketamine and diazepam on intraocular pressures (IOPs) in clinically normal dogs in which premedication was not administered. ANIMALS: 50 dogs. PROCEDURES: Dogs were randomly allocated to 1 of 5 groups. Dogs received ketamine alone (5 mg/kg [KET5] or 10 mg/kg [KET10], IV), ketamine (10 mg/kg) with diazepam (0.5 mg/kg, IV; KETVAL), diazepam alone (0.5 mg/kg, IV; VAL), or saline (0.9% NaCl) solution (0.1 mL/kg, IV; SAL). Intraocular pressures were measured immediately before and after injection and at 5, 10, 15, and 20 minutes after injection. RESULTS: IOP was increased over baseline values immediately after injection and at 5 and 10 minutes in the KET5 group and immediately after injection in the KETVAL group. Compared with the SAL group, the mean change in IOP was greater immediately after injection and at 5 and 10 minutes in the KET5 group. The mean IOP increased to 5.7, 3.2, 3.1, 0.8, and 0.8 mm Hg over mean baseline values in the KET5, KET10, KETVAL, SAL, and VAL groups, respectively. All dogs in the KET5 and most dogs in the KETVAL and KET10 groups had an overall increase in IOP over baseline values. CONCLUSIONS AND CLINICAL RELEVANCE: Compared with baseline values and values obtained from dogs in the SAL group, ketamine administered at a dose of 5 mg/kg, IV, caused a significant and clinically important increase in IOP in dogs in which premedication was not administered. Ketamine should not be used in dogs with corneal trauma or glaucoma or in those undergoing intraocular surgery.  相似文献   

19.
A 12-year-old, 13 kg, mixed-breed male dog was referred for anorexia and depression. The dog showed discomfort on abdominal palpation. Abdominal ultrasound examination revealed multiple, small, round anechoic cystic structures. Cystic fluid obtained with fine needle aspiration contained several 2-4 mm white motile flecks. Microscopic examination of the fluid revealed numerous irregularly shaped organisms measuring several hundred microns to 3 mm, the morphology of which was suggestive of intact and fragmented acephalic metacestodes of the genus Mesocestoides sp. Molecular analysis confirmed that the peritoneal infection was caused by Mesocestoides sp.  相似文献   

20.
Intraocular pressure (IOP) was measured in 73 eyes of 37 clinically normal cats with 2 applanation tonometers (Tono-Pen and Mackay-Marg) and the Schiotz indentation tonometer, using the 5.5- and 7.5-g weights. Statistically, the Tono-Pen tonometer underestimated IOP compared with the values obtained by use of the Mackay-Marg tonometer (P less than 0.0001) and the Schiotz tonometer, with either weight and either the human (P less than 0.01) or the canine (P less than 0.0001) calibration tables. Estimates of IOP using the human calibration table and either the 5.5- or 7.5-g weight were not significantly different from each other or from those obtained with the Mackay-Marg tonometer. Schiotz measurements obtained with either weight and converted using the canine calibration table were not only significantly (P less than 0.0001) different from each other, but were also clinically and significantly (P less than 0.0001) higher than measurements obtained with the Tono-Pen and Mackay-Marg tonometers or the Schiotz tonometer, using the human calibration table and either weight. Approximately three quarters of clinically normal cats had an IOP greater than or equal to 30 mm of Hg when Schiotz tonometer measurements were converted with the canine conversion table. The human calibration table was the most clinically useful table for converting Schiotz measurements from clinically normal feline eyes to estimates of IOP in mm of Hg. Normal mean (+/- SD) feline readings with the Schiotz tonometer and the 5.5-g weight was 3.9 +/- 1.4 tonometer scale units (range, 1.0 to 7.5; 95% confidence interval [CI], 1.1 to 6.7).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号