首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detecting canine brain lesions on computed tomography (CT) or magnetic resonance (MR) scans can be difficult if the lesions do not enhance well following administration of intravenous contrast material. Changes in the shape and position of the ventricular system can be important in the diagnosis of such lesions. Normal variation within the canine ventricular system has not been documented. MR scans from 62 normal Labrador retriever type dogs were evaluated. Five dogs had symmetric enlargement of the ventricles, while nineteen dogs had mild to severe ventricular asymmetry. The incidence of asymmetry in normal dogs must be considered when using ventricular configuration as an indication of central nervous system abnormality.  相似文献   

2.
Magnetic resonance (MR) imaging of the canine brain is commonly acquired at field strengths ranging from 0.2 to 1.5 T. Our purpose was to compare the MR image quality of the canine brain acquired at 3 vs. 7 T in dogs. Low‐resolution turbo spin echo (TSE) T2‐weighted images (T2W) were obtained in transverse, dorsal, and sagittal planes, and high‐resolution TSE T2W and turbo spin echo proton density‐weighted images were obtained in the transverse and dorsal planes, at both 3 and 7 T. Three experienced reviewers evaluated 32 predetermined brain structures independently and without knowledge of field strength for spatial resolution and contrast. Overall image quality and evidence of artifacts were also evaluated. Contrast of gray and white matter was assessed quantitatively by measuring signal intensity in regions of interest for transverse plane images for the three pulse sequences obtained. Overall, 19 of the 32 neuroanatomic structures had comparable spatial resolution and contrast at both field strengths. The overall image quality for low‐resolution T2W images was comparable at 3 and 7 T. High‐resolution T2W was characterized by superior image quality at 3 vs. 7 T. Magnetic susceptibility and chemical shift artifacts were slightly more noticeable at 7 T. MR imaging at 3 and at 7 T provides high spatial resolution and contrast images of the canine brain. The use of 3 and 7 T MR imaging may assist in the elucidation of the pathogenesis of brain disorders, such as epilepsy.  相似文献   

3.
The brain of one control dog and two dogs with spontaneous central nervous system pathology (one hydrocephalus, one meningoencepholocoele) were examined with low- and high-field-strength magnetic resonance devices to evalute the suitability of low-field magnets for canine brain imaging. We used 0.1 T and 1.0 T magnetic resonance (MR) imagers. The best image quality was seen 1.0 T imaging due to better signal-to-noise-ratio, but both systems produced satisfactory anatomic images of the brain.  相似文献   

4.
High resolution computed tomography (CT) was used to determine the normal appearance of the brain of an adult Beagle dog. Objects as small as 0.6 mm for bony structures (high contrast) and 1.5–2.0 mm for soft tissue structures (low contrast) could be resolved in the CT images. Multiplanar imaging using direct transverse and reformatted dorsal and sagittal images made it possible to obtain a three dimensional presentation of anatomy. Selective viewing, where CT number window and level settings were varied, was used to optimize visualization of specific brain structures. Normal high contrast components, cerebrospinal fluid, and osseous land-marks, were important aids in identification of various intracranial structures. Quantitative densitometry was performed to characterize various regions of the brain in terms of their x-ray attenuation values or CT numbers. This study indicated that high resolution CT provides a qualitative and quantitative appraisal of the canine brain that is unavailable using conventional radiographic technics.  相似文献   

5.
Computed tomography (CT) is commonly used in veterinary practice to evaluate dogs with suspected brain disease, however contrast resolution limitations and artifacts may reduce visualization of clinically important anatomic features. The purpose of this study was to develop an optimized CT protocol for evaluating the canine brain. The head of a 5‐year‐old Springer Spaniel with no neurological signs was imaged immediately following euthanasia using a 4‐slice CT scanner and 282 protocols. Each protocol used a fixed tube voltage of 120 kVp and 10 cm display field of view. Other acquisition and reconstruction parameters were varied. For each protocol, four selected images of the brain were reconstructed, anonymized and saved in DICOM format. Three board‐certified veterinary radiologists independently reviewed each of the four images for each protocol and recorded a numerical quality score for each image. The protocol yielding the lowest total numerical score was defined as the optimal protocol. There was overall agreement that the optimal protocol was the one with the following parameters: sequential mode, 300 mAs, 1 mm slice thickness, 1 s tube rotation time, medium image reconstruction algorithm and applied beam hardening correction. Sequential imaging provided optimal image resolution. The thin‐sliced images provided a small blur due to partial volume artifacts. A high tube current resulted in a relatively low noise level. Use of a medium frequency image reconstruction algorithm provided optimal contrast resolution for brain tissue. Use of a proprietary beam hardening correction filter (Posterior Fossa Optimization) markedly reduced beam‐hardening artifact.  相似文献   

6.
The purpose of this study was to describe relevant canine brain structures as seen on T2-weighted images following magnetic resonance (MR) imaging at 7 T and to compare the results with imaging at 1.5 T. Imaging was performed on five healthy laboratory beagle dogs using 1.5 and 7 T clinical scanners. At 1.5 T, spin echo images were acquired, while gradient echo images were acquired at 3 T. Image quality and conspicuity of anatomic structures were evaluated qualitatively by direct comparison of the images obtained from the two different magnetic fields. The signal-to-nose ratio (SNR) and contrast-to-noise ratio (CNR) were calculated and compared between 1.5 and 7 T. The T2-weighted images at 7 T provided good spatial and contrast resolution for the identification of clinically relevant brain anatomy; these images provided better delineation and conspicuity of the brain stem and cerebellar structures, which were difficult to unequivocally identify at 1.5 T. However, frontal and parietal lobe and the trigeminal nerve were difficult to identify at 7 T due to susceptibility artifact. The SNR and CNR of the images at 7 T were significantly increased up to 318% and 715% compared with the 1.5 T images. If some disadvantages of 7 T imaging, such as susceptibility artifacts, technical difficulties, and high cost, can be improved, 7 T clinical MR imaging could provide a good experimental and diagnostic tool for the evaluation of canine brain disorders.  相似文献   

7.
Alberto  Arencibia  DVM  PhD  Jose M.  Vazquez  DVM  PhD  Juan A.  Ramirez  MD  PhD  Gregorio  Ramirez  DVM  PhD  Jose M.  Vilar  DVM  Miguel A.  Rivero  DVM  Santiago  Alayon  MD  Francisco  Gil  DVM  PhD 《Veterinary radiology & ultrasound》2001,42(5):405-408
The purpose of this investigation was to define the magnetic resonance (MR) imaging appearance of the brain and associated structures of the equine head. MR images were acquired in oblique dorsal (T2-weighted), sagittal (T1-weighted), and transverse planes (T2-weighted), using a magnet of 1.5 Tesla and a human body coil. Relevant anatomic structures were identified and labeled at each level. The resulting images provided excellent anatomic detail of the cranioencephalic structures. Annotated MR images from this study are intended as a reference for clinical imaging studies of the equine head, specially in the diagnosis of brain diseases in the horse.  相似文献   

8.
Astrocytomas and oligodendrogliomas represent one third of histologically confirmed canine brain tumors. Our purpose was to describe the magnetic resonance (MR) imaging features of histologically confirmed canine intracranial astrocytomas and oligodendrogliomas and to examine for MR features that differentiate these tumor types. Thirty animals with confirmed astrocytoma (14) or oligodendroglioma (16) were studied. All oligodendrogliomas and 12 astrocytomas were located in the cerebrum or thalamus, with the remainder of astrocytomas in the cerebellum or caudal brainstem. Most (27/30) tumors were associated with both gray and white matter. The signal characteristics of both tumor types were hypointense on T1‐weighted images (12 each) and hyperintense on T2‐weighted images (11/14 astrocytomas, 12/16 oligodendrogliomas). For astrocytomas and oligodendrogliomas, respectively, common findings were contrast enhancement (10/13, 11/15), ring‐like contrast enhancement (6/10, 9/11), cystic regions within the mass (7/14, 12/16), and hemorrhage (4/14, 6/16). Oligodendrogliomas were significantly more likely to contact the brain surface (meninges) than astrocytomas (14/16, 7/14, respectively, P=0.046). Contact with the lateral ventricle was the most common finding, occurring in 13/14 astrocytomas and 14/16 oligodendrogliomas. No MR features were identified that reliably distinguished between these two tumor types. Contrast enhancement was more common in high‐grade tumors (III or IV) than low‐grade tumors (II, P=0.008).  相似文献   

9.
The "Visible Animal Project" (VAP) is comprised of axial anatomic cryosections and corresponding CT and MR images of a mature dog. The digital database is used for the creation of three-dimensional computer graphics of canine anatomy. The technique of cryodissection is described in detail. The combining of the corresponding CT and MR images, and cryosections as well as the data processing for the creation of three-dimensional reconstructions is presented and examples are shown. For the first time a complete high-resolution three-dimensional database of a dog is available, which can be used as the base for further high quality three-dimensional reconstructions, similar to the "Visible Human Project" (VHP).  相似文献   

10.
通过磁共振(magnetic resonance imaging,MRI)影像技术探讨湖羊颅脑影像解剖结构。使用1.5 T磁共振扫描仪对10只健康湖羊进行扫查,采用自旋回波(SE)序列,快速自旋回波(FSE)序列以及液体衰减反转恢复(FLAIR)3种序列对湖羊脑部矢状面、横断面及冠状面进行成像。对获得的影像进行详细的解剖结构注释,并且测量了湖羊间脑、颅脑、端脑、第三脑室、第四脑室高度及下垂体的长度、宽度和高度。得到了一套完整的湖羊颅脑磁共振影像解剖图谱及正常湖羊脑解剖结构测量数据。本研究结果可为湖羊及其他绵羊颅脑疾病的影像学诊断提供依据,同时也为医学实验动物模型的研究提供了有价值的参考。  相似文献   

11.
A stereotactic brain biopsy system that is magnetic resonance (MR) imaging-guided has not been validated in dogs. Our purpose was to determine the mean needle placement error in the caudate nucleus, thalamus, and midbrain of a canine cadaver brain using the modified Brainsight stereotactic system. Relocatable reference markers (fiducial markers) were attached to the cadaver head using a dental bite block. A T1-weighted gradient echo three-dimensional (3D) sequence was acquired using set parameters. Fiducial markers were used to register the head to the acquired MR images in reference to a 3D position sensor. This allowed the planning of trajectory path to brain targets in real time. Coordinates (X, Y, Z) were established for each target and 0.5 microl of diluted gadolinium was injected at each target using a 26-gauge needle to create a lesion. The center of the gadolinium deposition was identified on the postoperative MR images and coordinates (X', Y', Z') were established. The precision of this system in bringing the needle to target (needle placement error) was calculated. Seventeen sites were targeted in the brain. The mean needle placement error for all target sites was 1.79 +/- 0.87 mm. The upper bound of error for this stereotactic system was 3.31 mm. There was no statistically significant relationship between needle placement error and target depth (P = 0.23). The ease of use and precision of this stereotactic system support its development for clinical use in dogs with brain lesions > 3.31 mm.  相似文献   

12.
Reversible magnetic resonance (MR) imaging lesions have been described in humans following seizures. This condition has not yet been reported in animals. This paper describes reversible abnormalities identified in 3 dogs using MR imaging that was performed initially within 14 days of the last seizure and follow-up imaging that was performed after 10 to 16 weeks of anticonvulsant therapy. All three dogs had lesions in the piriform/temporal lobes, characterized by varying degrees of hyperintensity on T2-weighted images and hypointensity on T1-weighted images. In one dog, contrast enhancement was evident. On reevaluation, partial resolution occurred in all 3 dogs. In a fourth animal with an olfactory meningioma, similar appearing lesions in the temporal cortex and right and left piriform lobes were identified after seizure activity. A surgical biopsy of the temporal cortex and hippocampus was performed and edema, neovascularization, reactive astrocytosis, and acute neuronal necrosis were evident. These histologic findings are similar to those reported in humans with seizures. Recognizing the potential occurrence of reversible abnormalities in MR images is important in developing a diagnostic and therapeutic plan in canine patients with seizures. Repeat imaging after seizure control may help differentiate between seizure-induced changes and primary multifocal parenchymal abnormalities.  相似文献   

13.
The medical records and magnetic resonance (MR) images of dogs with an acquired trigeminal nerve disorder were reviewed retrospectively. Trigeminal nerve dysfunction was present in six dogs with histologic confirmation of etiology. A histopathologic diagnosis of neuritis (n=2) or nerve sheath tumor (n=4) was made. Dogs with trigeminal neuritis had diffuse enlargement of the nerve without a mass lesion. These nerves were isointense to brain parenchyma on T1-weighted (T1W) precontrast images and proton-density-weighted (PDW) images and either isointense or hyperintense on T2-weighted (T2W) images. Dogs with a nerve sheath tumor had a solitary or lobulated mass with displacement of adjacent neuropil. Nerve sheath tumors were isointense to the brain parenchyma on T1W, T2W, and PDW images. All trigeminal nerve lesions enhanced following contrast medium administration. Atrophy of the temporalis and masseter muscles, with a characteristic increase in signal intensity on T1W images, were present in all dogs.  相似文献   

14.
LOW FIELD MAGNETIC RESONANCE IMAGING OF THE CANINE CENTRAL NERVOUS SYSTEM   总被引:1,自引:0,他引:1  
Magnetic resonance (MR) imaging is a relatively new method of medical imaging. MR studies on the normal canine central nervous system were performed using a low field MR scanner. The regions of interest were the head, neck, and lumbar region. The MR findings in two patients with brain atrophy and cervical neck disc protrusion were also evaluated. Based on our findings it appears that low-field scanners will be satisfactory for use in veterinary diagnostic imaging.  相似文献   

15.
The normal neonatal canine brain exhibits marked differences from that of the mature brain. With development into adulthood, there is a decrease in relative water content and progressive myelination; these changes are observable with magnetic resonance imaging (MRI) and are characterized by a repeatable and predictable time course. We characterized these developmental changes on common MRI sequences and identified clinically useful milestones of transition. To accomplish this, 17 normal dogs underwent MRI of the brain at various times after birth from 1 to 36 weeks. Sequences acquired were T1‐weighted (T1W), T2‐weighted (T2W), fluid attenuated inversion recovery, short tau inversion recovery, and diffusion weighted imaging sequences. The images were assessed subjectively for gray and white matter relative signal intensity and results correlated with histologic findings. The development of the neonatal canine brain follows a pattern that qualitatively matches that observed in humans, and which can be characterized adequately on T1W and T2W images. At birth, the relative gray matter to white matter signal intensity of the cortex is reversed from that of the adult with an isointense transition at 3–4 weeks on T1W and 4–8 weeks on T2W images. This is followed by the expected mature gray matter to white matter relative intensity that undergoes continued development to a mostly adult appearance by 16 weeks. On the fluid attenuated inversion recovery sequence, the cortical gray and white matter exhibit an additional signal intensity reversal during the juvenile period that is due to the initial high relative water content at the subcortical white matter, with its marked T1 relaxation effect.  相似文献   

16.
17.
Magnetization transfer imaging is a modality capable of examining the non-water components of brain tissue by examining the effects they have on water protons. It may be used qualitatively to increase the visibility of lesions seen during magnetic resonance angiography and following the administration of an intravenous paramagnetic contrast medium. Quantitatively, it can be used to examine the effect of pathology on magnetization transfer contrast, to provide a measurement of myelination, as well as to quantify disease progression in trauma, neoplasia, neurodegeneration and other disorders of the brain. This paper reviews the theory of magnetization transfer imaging, its applications, and provides an example of its use in examining the canine brain.  相似文献   

18.
The canine meninges are not visible as discrete structures in noncontrast magnetic resonance (MR) images, and are incompletely visualized in T1‐weighted, postgadolinium images, reportedly appearing as short, thin curvilinear segments with minimal enhancement. Subtraction imaging facilitates detection of enhancement of tissues, hence may increase the conspicuity of meninges. The aim of the present study was to describe qualitatively the appearance of canine meninges in subtraction MR images obtained using a dynamic technique. Images were reviewed of 10 consecutive dogs that had dynamic pre‐ and postgadolinium T1W imaging of the brain that was interpreted as normal, and had normal cerebrospinal fluid. Image‐anatomic correlation was facilitated by dissection and histologic examination of two canine cadavers. Meningeal enhancement was relatively inconspicuous in postgadolinium T1‐weighted images, but was clearly visible in subtraction images of all dogs. Enhancement was visible as faint, small‐rounded foci compatible with vessels seen end on within the sulci, a series of larger rounded foci compatible with vessels of variable caliber on the dorsal aspect of the cerebral cortex, and a continuous thin zone of moderate enhancement around the brain. Superimposition of color‐encoded subtraction images on pregadolinium T1‐ and T2‐weighted images facilitated localization of the origin of enhancement, which appeared to be predominantly dural, with relatively few leptomeningeal structures visible. Dynamic subtraction MR imaging should be considered for inclusion in clinical brain MR protocols because of the possibility that its use may increase sensitivity for lesions affecting the meninges.  相似文献   

19.
The stifle joints of eleven military working dogs were evaluated using conventional magnetic resonance (MR) imaging and MR arthrography. A protocol optimizing MR imaging of the canine stifle joint is discussed, as well as potential uses for administration of intra-articular gadolinium. The technique for performing MR arthrography is described, and post-contrast image findings are reviewed. MR arthrography was performed by using an intra-articular injection of diluted gadolinium. Consistently good quality images were obtained, and no complications were clinically detected following MR arthrography. Cranial cruciate ligament abnormalities were seen in six dogs, meniscal abnormalities were visualized in nine menisci, and synovitis and medial ligament strain were seen in eight dogs. Surgical and post-mortem confirmation of these findings is discussed in seven dogs. Although MR arthrography adds an invasive procedure to conventional MR imaging, it can provide useful information on pathologic changes in the canine stifle joint.  相似文献   

20.
Evaluation of the canine temporomandibular joint (TMJ) is important in the clinical diagnosis of animals presenting with dysphagia, malocclusion and jaw pain. In humans, magnetic resonance imaging (MRI) is the modality of choice for evaluation of the TMJ. The objectives of this study were to establish a technical protocol for performing MRI of the canine TMJ and describe the MRI anatomy and appearance of the normal canine TMJ. Ten dogs (one fresh cadaver and nine healthy live dogs) were imaged. MRIs were compared with cadaveric tissue sections. T1‐weighted (T1‐W) transverse closed‐mouth, T1‐W sagittal closed‐mouth, T1‐W sagittal open‐mouth, and T2‐W sagittal open‐mouth sequences were obtained. The condylar process of the mandible and the mandibular fossa of the temporal bone were hyperintense to muscle and isointense to hypointense to fat on T1‐W images, mildly hyperintense to muscle on T2‐W images, and were frequently heterogeneous. The articular disc was visible in 14/20 (70%) TMJs on T1‐W images and 13/20 (65%) TMJs on T2‐W images. The articular disc was isointense to hyperintense to muscle on T1‐W images and varied from hypointense to hyperintense to muscle on T2‐W images. The lateral collateral ligament was not identified in any joint. MRI allows evaluation of the osseous and certain soft tissue structures of the TMJ in dogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号