首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
The effects of weight gain and subsequent weight loss on glucose tolerance and insulin response were evaluated in 12 healthy cats. Intravenous glucose tolerance tests (IVGTT) were performed at entry into the study, after a significant gain of body weight induced by feeding palatable commercial cat food ad libitum, after a significant loss of body weight induced by feeding a poorly palatable purified diet to discourage eating and promote fasting, and after recovery from fasting when body weight had returned to pre-study values and cats were eating commercial foods. A complete physical examination with measurement of body weight was performed weekly, a CBC and serum biochemistry panel were evaluated at the time of each IVGTT, and a liver biopsy specimen obtained 2 to 4 days after each IVGTT was evaluated histologically for each cat. Mean serum glucose and insulin concentrations after glucose infusion and total amount of insulin secreted during the second 60 minutes and entire 120 minutes after glucose infusion were significantly (P > .05) increased after weight gain, as compared with baseline. At the end of weight loss, cats had hepatic lipidosis and serum biochemical abnormalities consistent with feline hepatic lipidosis. There was a significant (P > .05) increase in mean serum glucose concentration and t1/2, and a significant (P > .05) decrease in mean serum insulin concentration and the glucose disappearance coefficient (K) after glucose infusion for measurements obtained after weight loss, compared with those obtained after weight gain and at baseline. Insulin peak response, insulino-genic index, and total amount of insulin secreted during the initial 10 minutes, 20 minutes, and 60 minutes after glucose infusion were decreased markedly (P > .05), compared with measurements obtained after weight gain and at baseline. In addition, the total amount of insulin secreted for 120 minutes after glucose infusion was decreased markedly (P > .05) in measurements obtained after weight loss, compared with those obtained after weight gain. At the end of recovery, all cats were voluntarily consuming food, serum biochemical abnormalities identified after weight loss had resolved, the number and size of lipid vacuoles in hepatocytes had decreased, and results of IVGTT were similar to those obtained at baseline. These findings confirmed the reversibility of obesity-induced insulin resistance in cats, and documented initial deterioration in glucose tolerance and insulin response to glucose infusion when weight loss was caused by severe restriction of caloric intake.  相似文献   

2.
A total of 16 mature healthy horses (body weight: 515.3 ± 37 kg [mean ± SD]) were used in two experiments to determine (1) how psyllium affects postprandial blood glucose and insulin concentrations, and (2) how psyllium affects blood glucose and insulin concentrations after an intravenous glucose infusion. Psyllium was fed along with a grain and hay ration (given twice daily) for 60 days. Treatments were as follows: (1) 90 g psyllium/d, (2) 180 g psyllium/d, (3) 270 g psyllium/d, (4) an isocaloric, no supplemental psyllium control. Pre- and postprandial blood samples were collected on day 60 for experiment 1, and blood samples collected before and after intravenous glucose infusion were analyzed for experiment 2. In experiment 1, horses fed with psyllium for 60 days had lower (P < .01) mean postprandial blood glucose concentrations and there was a treatment × time effect for glucose (P < .001) and insulin (P = .03). Plasma glucose was lower at 90 minutes (P = .05) and 120 minutes (P < .001) after a meal in horses fed with psyllium as compared with an isocaloric control. Postprandial serum insulin concentrations were lower at 90 minutes (P = .002) and 300 minutes (P < .001) after a meal in horses fed with psyllium as compared with an isocaloric control. In experiment 2, peak glucose concentrations were lower (P = .01) in horses fed with psyllium for the previous 60 days compared with untreated horses and there was a treatment by time effect for glucose (P = .05). Peak blood glucose response was lower (P = .01) in horses fed with psyllium as compared with an isocaloric control after intravenous glucose infusion, whereas peak insulin concentrations and average insulin concentrations remained similar. Psyllium fed daily for 60 days alters postprandial glycemia and insulinemia in normal, nonobese, and unexercised horses.  相似文献   

3.
Five experiments were conducted with mares to better define factors that might affect the assessment of insulin sensitivity via direct insulin injection, and to then apply this method of assessing insulin sensitivity to trials which tested two potential supplements for improving poor insulin sensitivity in horses. The experiments assessed the effects of the following: (1) previous administration of epinephrine, (2) overnight feed deprivation versus hay or pasture consumption, (3) 10-day acclimatization to hay in a dry lot versus pasture grazing, (4) cinnamon extract supplementation, and (5) fish oil supplementation on insulin sensitivity. Mares of known high and low insulin sensitivities were used in the first three experiments, whereas mares with low insulin sensitivities were used in the supplement trials. Epinephrine administration increased blood glucose concentrations (P < .05) and prevented the insulin-induced decrease in blood glucose concentrations in both sensitive and insensitive mares. Overnight feed deprivation decreased (P < .06) insulin sensitivity relative to overnight ad libitum access to hay, and both regimens resulted in reduced insulin sensitivity relative to overnight pasture availability; sensitive and insensitive mares responded similarly except when kept on pasture (P = .0854). Ten days of hay consumption in a dry lot reduced (P < .05) insulin sensitivity in insensitive mares, but not in sensitive mares, relative to pasture grazing. Supplementation with cinnamon extract or fish oil had no effect on insulin sensitivity of mares with known low insulin sensitivity under the conditions of these experiments.  相似文献   

4.
In humans, the consumption of soluble fibers reduces glycemic response after a meal. We hypothesized high soluble fiber diets would reduce and delay postprandial glucose and insulin responses in horses. In a 4 × 4 Latin square design experiment, four Quarter Horse geldings were adapted to diets containing orchardgrass hay (ORCH) or ORCH with 1 of 3 treatment ingredients: molassed sugar beet pulp (BEET), almond hulls (HULL), or steam-crimped oats (OATS). Blood was serially sampled for 6 hours after feeding 0.15% body weight (BW) of the treatment ingredient (meal test) or 1.1 g starch/kg BW from oats plus the treatment ingredient (starch test) to evaluate glycemic and insulinemic responses. Glycemic response during the meal test peaked between 60 and 90 min after feeding (P < .05) and tended to be altered by diet (P = .071) and diet × time (P = .076). Serum insulin was affected by diet (P = .008), time (P < .001), and diet × time (P < .001) during the meal test, with concentrations lower in ORCH compared with BEET and OATS (P < .05). In the starch test, glucose was lower (P < .05) in ORCH and HULL compared with BEET and insulin was lower (P = .046) in ORCH compared with BEET. In both tests, horses took longer (P < .05) to consume HULL, likely influencing postprandial responses. Future research integrating the functional properties of feeds with physiological responses will be necessary to elucidate how soluble fiber affects postprandial glucose metabolism in horses.  相似文献   

5.
Eight weanling Standardbred horses were used to evaluate the effects on growth and plasma glucose of two differently processed diets with identical ingredients fed at a rate of 3% of body weight, as fed, daily. The daily ration was divided into two equal feedings at 7:00 am and 7:00 pm. The hay and grain diet (diet HG) consisted of 50% alfalfa hay cubes and 50% of a commercial growing horse texturized grain mix fed as is, without any further processing, with each part fed in separate containers. The completely pelleted diet (diet P) consisted of the same proportions of the hay cubes and grain mix that was ground, pelleted, and fed in a single container. Two groups of four horses were fed either diet P or diet HG for two 21-day periods such that each horse consumed each diet for 21 days. On the last day of each feeding period, 7-mL blood samples were drawn into heparinized evacuated blood tubes for determination of plasma glucose concentration. Blood samples were drawn 30 minutes before the afternoon feeding, immediately before, and every 30 minutes thereafter for 5 hours. Analysis of variance found greater (P = .027) average daily gain for horses fed diet P versus diet HG. A nonsignificant difference was seen in feed efficiency (P = .057) for horses fed diet P versus diet HG. Plasma glucose changes were compared across treatments using area under the curve analysis. No difference (P > .05) was found in the postprandial plasma glucose changes between diet treatments.  相似文献   

6.
Background: This study describes the efficacy of a new protamine zinc recombinant human insulin (PZIR) preparation for treating diabetic cats. Objective: To evaluate effects of PZIR on control of glycemia in cats with newly diagnosed or poorly controlled diabetes mellitus. Animals: One hundred and thirty‐three diabetic cats 120 newly diagnosed and 13 previously treated. Methods: Prospective, uncontrolled clinical trial. Cats were treated with PZIR twice daily for 45 days. Control of glycemia was assessed on days 7, 14, 30, and 45 by evaluation of change in water consumption, frequency of urination, appetite, and body weight, serum fructosamine concentration, and blood glucose concentrations determined 1, 3, 5, 7, and 9 hours after administration of PZIR. Adjustments in dosage of PZIR were made as needed to control glycemia. Results: PZIR administration resulted in a significant decrease in 9‐hour mean blood glucose (199 ± 114 versus 417 ± 83 mg/dL, X± SD, P < .001) and serum fructosamine (375 ± 117 versus 505 ± 96 μmol/L, P < .001) concentration and a significant increase in mean body weight (5.9 ± 1.4 versus 5.4 ± 1.5 kg, P= .017) in 133 diabetic cats at day 45 compared with day 0, respectively. By day 45, polyuria and polydipsia had improved in 79% (105 of 133), 89% (118 of 133) had a good body condition, and 9‐hour mean blood glucose concentration, serum fructosamine concentration, or both had improved in 84% (112 of 133) of the cats compared with day 0. Hypoglycemia (<80 mg/dL) was identified in 151 of 678, 9‐hour serial blood glucose determinations and in 85 of 133 diabetic cats. Hypoglycemia causing clinical signs was confirmed in 2 diabetic cats. Conclusions and Clinical Relevance: PZIR is effective for controlling glycemia in diabetic cats and can be used as an initial treatment or as an alternative treatment in diabetic cats that do not respond to treatment with other insulin preparations.  相似文献   

7.
To investigate the effects of amino acids on ghrelin‐induced growth hormone (GH), insulin and glucagon secretion in lactating dairy cattle, six Holstein cows were randomly assigned to two infusion treatments in a cross‐over design. Mixture solution of amino acids (AMI) or saline (CON) was continuously infused into the left side jugular vein via catheter for 4 h. At 2 h after the start of infusion, synthetic bovine ghrelin was single injected into the right side jugular vein through the catheter. Ghrelin injection immediately increased plasma GH, glucose and non‐esterified fatty acids (P < 0.05) with no difference between both treatments. Additionally, plasma insulin and glucagon concentrations were increased by ghrelin injection in both treatments. The peak value of plasma insulin concentration was greater in AMI compared with CON (P < 0.05). Plasma glucagon concentration showed no difference in the peak value reached at 5 min between both treatments, and then the plasma levels in AMI compared with CON showed sustained higher values (P < 0.05). After plasma glucose concentration reached the peak, the decline was greater in AMI compared with CON (P < 0.05). These results showed that the increased plasma amino acids may enhance ghrelin action which in turn enhances insulin and glucagon secretions in lactating cows.  相似文献   

8.
Effects of degree of obesity on basal concentrations of insulin, glucose, thyroxine (T4), triiodothyronine (T3), estradiol-17 beta (E) and progesterone (P) were measured in serum from 50 estrous and 73 diestrous Holstein heifers and the insulin response to glucose infusion was assessed in diestrous obese (n = 7) and lean (n = 7) heifers. Basal concentrations of glucose, T4, T3, E and P were not correlated with degree of obesity, although concentrations of glucose, T4 and T3 were higher (P less than .05) at estrus than diestrus. Basal concentrations of insulin at estrus and diestrus were positively correlated (r = .6; P less than .001) with degree of obesity but this relationship was different (P less than .001) between estrus and diestrus. Furthermore, there was interaction (P less than .001) between body condition and stage of the estrous cycle only for basal concentrations (mean +/- SE) of insulin, with the difference in insulin levels (microU/ml) between 12 obese and 12 lean heifers at diestrus (11.7 +/- 1.3 vs 6.7 +/- .6; P less than .05) increasing during estrus (21.9 +/- 2.4 vs 10.8 +/- 1.3; P less than .001). Insulin response to glucose infusion was greater in obese than in lean heifers, whether determined as actual concentration (P less than .01) or as insulin response areas (P less than .05) above base-line concentrations. Obese heifers were less responsive to insulin since hyperinsulinemia and euglycemia coexisted, and because glucose fractional removal rates were similar in both groups after glucose infusion in spite of greater concentrations of insulin in obese heifers. Thus, obesity in heifers was associated with insulin resistance, basal hyperinsulinemia and greater glucose-induced secretion of insulin.  相似文献   

9.
The purpose of the present paper was to investigate the effect of regular walking exercise on glucose tolerance and insulin response to i.v. glucose infusion in growing beef steers. Four crossbred beef steers walked on a treadmill during a 6 week exercise period (1.2 km/h, 1 h/day and 5 days/week). The changes in plasma glucose and insulin levels following glucose infusion were analyzed immediately prior to (bodyweight: 260.4 ± 24.2 kg) and after (295.7 ± 30.1 kg) the exercise period. The basal levels of plasma glucose (86.4 vs. 82.0 mg/dL, P = 0.040) and insulin (24.5 vs. 14.3 μU/mL, P = 0.016) were significantly lower after the exercise period. Further, the increase in the levels of plasma glucose (420.4 vs. 280.8 mg/dL, P < 0.001) and insulin (94.5 vs. 73.1 μU/mL, P = 0.028) following the glucose infusion decreased after the exercise period. The area under the curve of plasma glucose (108.8 vs. 62.9 mg/dL per min, P < 0.001) and insulin (53.6 vs. 29.7 μU/mL per min, P = 0.018) indicated more rapid clearance of exogenous glucose and less insulin secretion for glucose clearance after the exercise period. These results suggest that regular exercise improves glucose tolerance, with lower insulin response to glucose infusion in growing steers, as observed in rodents and humans.  相似文献   

10.
Serum glucose and plasma C-peptide response to IV glucagon administration was evaluated in 24 healthy dogs, 12 dogs with untreated diabetes mellitus, 30 dogs with insulin-treated diabetes mellitus, and 8 dogs with naturally acquired hyperadrenocorticism. Serum insulin response also was evaluated in all dogs, except 20 insulin-treated diabetic dogs. Blood samples for serum glucose, serum insulin, and plasma C-peptide determinations were collected immediately before and 5,10,20,30, and (for healthy dogs) 60 minutes after IV administration of 1 mg glucagon per dog. In healthy dogs, the patterns of glucagon-stimulated changes in plasma C-peptide and serum insulin concentrations were identical, with single peaks in plasma C-peptide and serum insulin concentrations observed approximately 15 minutes after IV glucagon administration. Mean plasma C-peptide and serum insulin concentrations in untreated diabetic dogs, and mean plasma C-peptide concentration in insulin-treated diabetic dogs did not increase significantly after IV glucagon administration. The validity of serum insulin concentration results was questionable in 10 insulin-treated diabetic dogs, possibly because of anti-insulin antibody interference with the insulin radioimmunoassay. Plasma C-peptide and serum insulin concentrations were significantly increased (P < .001) at all blood sarnplkg times after glucagon administration in dogs with hyperadrenocorticism, compared with healthy dogs, and untreated and insulin-treated diabetic dogs. Five-minute C-peptide increment, C-peptide peak response, total C-peptide secretion, and, for untreated diabetic dogs, insulin peak response and total insulin secretion were significantly lower (P < .001) in diabetic dogs, compared with healthy dogs, whereas these same parameters were significantly increased (P < .011 in dogs with hyperadrenocorticism, compared with healthy dogs, and untreated and insulin-treated diabetic dogs. Although not statistically significant, there was a trend for higher plasma C-peptide concentrations in untreated diabetic dogs compared with insulin-treated diabetic dogs during the glucagon stimulation test. Baseline C-peptide concentrations also were significantly higher (P < .05) in diabetic dogs treated with insulin for less than 6 months, compared with diabetic dogs treated for longer than 1 year. Finally, 7 of 42 diabetic dogs had baseline plasma C-peptide concentrations greater than 2 SD (ie, >0.29 pmol/mL) above the normal mean plasma C-peptide concentration; values that were significantly higher, compared with results in healthy dogs (P < .001) and with the other 35 diabetic dogs (P < .001). In summary, measurement of plasma C-peptide concentration during glucagon stimulation testing allowed differentiation among healthy dogs, dogs with impaired β-cell function (ie, diabetes mellitusl, and dogs with increased β-cell responsiveness to glucagon (ie, insulin resistance). Plasma C-peptide concentrations during glucagon stimulation testing were variable in diabetic dogs and may represent dogs with type-1 and type-2 diabetes or, more likely, differences in severity of β-cell loss in dogs with type-1 diabetes. J Vet Intern Med 1996;10:116–122. Copyright © 1996 by the American College of Veterinary Internal Medicine.  相似文献   

11.

Background

Insulin secretion and tissue sensitivity to insulin is considered to be one of the factors controlling lipid metabolism post partum. The objective of this study was to compare glucose-induced blood insulin and metabolite responses in Estonian Holstein (EH, n = 14) and Estonian Red (ER, n = 14) cows.

Methods

The study was carried out using the glucose tolerance test (GTT) performed at 31 ± 1.9 days post partum during negative energy balance. Blood samples were obtained at -15, -5, 5, 10, 20, 30, 40, 50 and 60 min relative to infusion of 0.15 g/kg BW glucose and analysed for glucose, insulin, triglycerides (TG), non-esterified fatty acids (NEFA), cholesterol and β-hydroxybutyrate (BHB). Applying the MIXED Procedure with the SAS System the basal concentration of cholesterol, and basal concentration and concentrations at post-infusion time points for other metabolites, area under the curve (AUC) for glucose and insulin, clearance rate (CR) for glucose, and maximum increase from basal concentration for glucose and insulin were compared between breeds.

Results

There was a breed effect on blood NEFA (P < 0.05) and a time effect on all metabolites concentration (P < 0.01). The following differences were observed in EH compared to ER: lower blood insulin concentration 5 min after glucose infusion (P < 0.05), higher glucose concentration 20 (P < 0.01) and 30 min (P < 0.05) after infusion, and higher NEFA concentration before (P < 0.01) and 5 min after infusion (P < 0.05). Blood TG concentration in ER remained stable, while in EH there was a decrease from the basal level to the 40th min nadir (P < 0.01), followed by an increase to the 60th min postinfusion (P < 0.01).

Conclusion

Our results imply that glucose-induced changes in insulin concentration and metabolite responses to insulin differ between EH and ER dairy cows.  相似文献   

12.
Blood glycosylated hemoglobin (GHb) concentration was quantified in 84 healthy cats, 9 cats with stress-induced hyperglycemia, 37 cats with newly diagnosed diabetes mellitus, and 122 diabetic cats treated with insulin or glipizide. Diabetic control was classified as good or poor in insulin-treated or glipizide-treated cats based on review of history, physical examination findings, changes in body weight, and measurement of blood glucose concentrations. Blood GHb concentration was determined using an affinity chromatography assay. Mean blood GHb concentration was similar for healthy normoglycemic cats and cats with transient, stress-induced hyperglycemia, but was significantly (P < .001) higher in untreated diabetic cats when compared with healthy normoglycemic cats. Mean blood GHb concentration was significantly (P < .001) higher in 84 cats with poorly controlled diabetes mellitus when compared with 38 cats in which the disease was well controlled. Mean blood GHb concentration decreased significantly (P < .01) in 6 cats with untreated diabetes mellitus after insulin and dietary treatment. A similar significant (P < .01) decrease in mean blood GHb concentration occurred in 7 cats with poorly controlled diabetes mellitus after diabetic control was improved by an increase in insulin dosage from 1.1 ± 0.9 to 1.4 ± 0.6 U/kg/ 24 h and by feeding a diet containing increased fiber content and in 6 cats with transient diabetes mellitus 8.2 ± 0.6 weeks after discontinuing insulin treatment. There was a significant (P< .01) stress-induced increase in mean fasting blood glucose concentration and mean blood glucose concentration for 12 hours after administration of insulin or glipizide but no change in mean blood GHb concentration in 5 docile diabetic cats 12.2 ± 0.4 weeks after the cats became fractious as a result of frequent hospitalizations and blood samplings. Results of this study suggest that evaluation of blood GHb concentration may be a clinically useful tool for monitoring glycemic control of diabetes in cats.  相似文献   

13.
Limited research has been conducted to evaluate effects of fatty acid (FA) supplementation on mare and foal FA profiles and foal immunity. Dietary polyunsaturated FAs, particularly ω-3 FAs, increase fluidity of intestinal cell membranes. Fluidity of mammary tissues may also be altered to allow more incorporation of immunoglobulin G (IgG) into milk. Therefore, the goal of this study was to determine effects of incorporating dietary ω-3 FAs on mares, her milk, and her subsequent foal. Pregnant mares were assigned to one of three diets beginning 28 days before expected foaling date until 84 days after foaling. Diet 1 was a commercial feed (CON); diet 2 was diet 1 plus a fish oil blend (FO); and diet 3 was diet 1 plus a blend of fish and soybean oil (FSO). Mare serum FA concentrations were not affected by treatment (P > .05) with the exception of 20:5, which had a treatment × time interaction (P < .05). Mare milk FA concentrations were not affected by treatment (P > .05) with the exception of 16:1 and 20:5. Foal serum FA concentration was not affected by treatment with the exception of 18:2, which had a treatment × time interaction, and 20:5 (P < .0001), which was greatest in FO foals and least in CON foals. Dietary supplementation of ω-3 FAs did increase 20:5 in mare serum, milk, as well as serum of their subsequent foals. No differences were found for mare plasma IgG (P = .1318), serum insulin (P = .3886), plasma glucose (P = .2407), or milk IgG (P = .1262) concentrations for treatment. Foal plasma IgG (P = .2767), serum insulin (P = .4843), or plasma glucose (P = .1204) were not affected by treatment. Omega-3 FA in mare serum, milk, and foal serum were able to be manipulated by diet; however, IgG concentration was unchanged.  相似文献   

14.
The main experiment assessed whether the inhibitory effects of the dopamine agonist, cabergoline, on prolactin and α-melanocyte stimulating hormone (MSH) concentrations would persist throughout a longer-term administration (65 days). The possible effect of cabergoline on insulin sensitivity was also studied. Ten mares known to be insulin insensitive were allotted to two groups (treated vs. control). An insulin challenge, a glucose tolerance test, and a sulpiride challenge were administered before treatment. On day 0, treated mares (n = 5) received an injection of 5 mg cabergoline in slow-release vehicle; control mares (n = 5) received an equivalent vehicle injection. Injections were repeated every 10 days for a total of seven injections. Sulpiride challenges were done 1 day before each cabergoline treatment to assess possible refractoriness to the treatment. Behavior and hair coat density were also monitored. Plasma prolactin was suppressed (P < .01) to undetectable levels in mares receiving cabergoline; control mares had robust prolactin responses to each sulpiride injection. There was no indication of refractoriness to cabergoline over time. Plasma MSH concentrations after sulpiride were also suppressed (P < .05) by cabergoline. After treatment, neither the glucose response to insulin nor the insulin response to glucose differed (P > .1) between groups. No behavioral changes were noted because of treatment. Weight of hair samples indicated that cabergoline perturbed (P < .05) winter coat growth. It is concluded that 5 mg of cabergoline in slow-release vehicle administered every 10 days is an effective way of delivering dopaminergic activity to mares that results in no noticeable detrimental effects and no refractoriness to the drug.  相似文献   

15.
Objective: To determine endogenous serum insulin concentration in dogs with diabetic ketoacidosis (DKA), and to compare it to endogenous serum insulin concentration in diabetic dogs with ketonuria but no acidosis (KDM), diabetic dogs with uncomplicated diabetes mellitus (DM) that did not have ketonuria or acidosis, and dogs with non‐pancreatic disease (NP). Design: Prospective study. Setting: Veterinary Hospital of the University of Pennsylvania. Animals: Forty‐four client‐owned dogs; 20 dogs with newly diagnosed diabetes mellitus (7 dogs with DKA, 6 dogs with KDM, and 7 dogs with DM) and 24 dogs with non‐pancreatic disease. Interventions: Blood and urine samples were obtained at the time of admission to the hospital. Measurements and main results: Signalment, clinical signs, physical examination findings, and concurrent disease were recorded for all dogs. Blood glucose concentration, venous blood pH, venous blood HCO3? concentration, urinalysis, and endogenous serum insulin concentration were determined in all dogs. Dogs with DKA have significantly decreased endogenous serum insulin concentrations compared to dogs with DM (P = 0.03) and dogs with non‐pancreatic disease (P = 0.0002), but not compared to dogs with KDM (P = 0.2). Five of 7 dogs with DKA had detectable endogenous serum insulin concentrations, and 2 of these dogs had endogenous serum insulin concentration within the normal range. Conclusions: Diabetic dogs with ketoacidosis have significantly decreased endogenous serum insulin concentration compared to dogs with uncomplicated diabetes mellitus. However, most dogs with DKA have detectable endogenous serum insulin concentrations, and some dogs with DKA have endogenous serum insulin concentrations within the normal range.  相似文献   

16.
Background: Feline systemic arterial hypertension (SHT) is associated with a wide spectrum of left ventricular (LV) geometric patterns as well as diastolic, and to a lesser extent, systolic myocardial dysfunction. However, little is known about SHT‐related cardiac changes in dogs. Hypothesis: SHT in dogs is responsible for morphological and functional cardiac alterations. Animals: Thirty dogs with spontaneous untreated SHT and 28 age‐ and body weight‐matched healthy dogs as controls. Methods: Prospective observational study. Conventional echocardiography and 2‐dimensional color tissue Doppler imaging were performed in SHT dogs by trained observers and compared with controls. Results: Forty‐seven percent of SHT dogs (14/30) had diffuse concentric hypertrophy. None had left atrial dilatation and 10/30 (33%) had aortic insufficiency (AoI) associated with proximal aortic dilatation. Longitudinal diastolic left ventricular free wall (LVFW) motion was altered in all SHT dogs at the base (early to late diastolic wave ratio, E/A = 0.5 ± 0.1 versus 1.3 ± 0.3 for controls, P < .0001) and the apex (E/A = 1.6 ± 1.7 versus 3.9 ± 3.1, P < .05). Longitudinal motion of the interventricular septum at the base (E/A = 0.7 ± 0.4 versus 1.1 ± 0.1, P < .01) and radial LVFW motion in the subendocardium (E/A = 0.9 ± 0.5 versus 1.6 ± 0.3, P < .01) were also altered in dogs with SHT. Longitudinal LVFW systolic velocities and gradients were also significantly decreased (P < .05) in SHT dogs. Conclusion and Clinical Importance: As in SHT in cats, SHT in dogs is associated with myocardial dysfunction independently of the presence of myocardial hypertrophy. However, unlike feline SHT, it results in a homogeneous LV geometric pattern with a relatively high prevalence of AoI.  相似文献   

17.
The main objective of this study was to investigate the relationships between changes in plasma leptin concentration and feed intake or bodyweight in female and castrated male lambs with fattening. Four female and four castrated male lambs were used and were fed roughage and concentrate supplemented with beef tallow ad libitum for 28 weeks. Although the feed intake and bodyweight increased with fattening in both the castrated male and female lambs, they decreased at 24–28 weeks in the female lambs. At the end of fattening, the crude fat content in the muscle (loin) of the female lambs was significantly higher than in the castrated male lambs (P < 0.05), while the crude protein content in the loin and fillet meat was higher in the castrated male than in the female lambs (P < 0.05). The plasma leptin concentration showed high values at a later stage of fattening (P < 0.05). In the female lambs the plasma insulin concentration increased at a later stage of fattening (P < 0.05) and was positively correlated (P < 0.0001, r = 0.78) with plasma leptin. Plasma metabolites (glucose, nonesterified fatty acid, total cholesterol and triglyceride) concentrations were also changed with fattening. Plasma total cholesterol was positively related to plasma leptin, more closely in the female than in the castrated male lambs (in females, r = 0.63, P < 0.001; in males, r = 0.38, P < 0.01). The accumulation of body fat was probably accelerated by the consumption of a lot of concentrate feed supplemented with treated beef tallow and by the stimulation of insulin with fattening. Consequently, the plasma leptin concentration increased, especially toward the end of the fattening period. The decrease in feed intake and bodyweight after the 24th week of fattening was possibly caused by an increase in leptin that is involved in the homeostatic regulation of body energy by regulating appetite.  相似文献   

18.
Background: Anti‐insulin antibodies (AIA) occur in diabetic dogs after insulin therapy, although their clinical significance is unclear. Hypothesis: Treatment of diabetic dogs with heterologous insulin is more likely to stimulate production of AIA than is treatment with homologous insulin. Animals: Diabetic dogs sampled before insulin therapy (n = 40), diabetic dogs sampled following treatment with porcine (homologous) insulin (n = 100), bovine (heterologous) lente insulin (n = 100), or bovine protamine zinc (PZI) insulin (n = 20), and nondiabetic control dogs (n = 120). Methods: Prospective observational study. Sera were analyzed by ELISA for antibodies against porcine insulin, bovine insulin, insulin A, B, or C peptides, and control antigens; canine distemper virus (CDV) and canine thyroglobulin (TG). Canine isotype‐specific antibodies were used to determine total and anti‐insulin IgG1 : IgG2 ratios. Results: There was no difference in CDV or TG reactivity among the groups. AIA were detected in 5 of 40 newly diagnosed (untreated) diabetic dogs. There was no significant difference in AIA (ELISA optical density reactivity) comparing control and porcine insulin‐treated diabetic dogs (P > .05). Anti‐insulin reactivity was most prevalent in bovine PZI insulin‐treated dogs (90%; P < .01), and bovine lente insulin‐treated dogs (56%; P < .01). AIA induced by treatment were enriched for the IgG1 isotype. Conclusions and Clinical Importance: This study indicates that bovine insulin is more immunogenic than porcine insulin when used for treatment of diabetic dogs.  相似文献   

19.
This study tested the hypothesis that grain and intravenous dextrose challenges would alter plasma concentrations of active ghrelin, adiponectin, leptin, glucose, insulin, and cortisol in Standardbred mares. To deliver 0.5 g of glucose (dextrose solution for the intravenous test)/kg of BW, mares received intravenous dextrose (50% solution) or oral grain administration in 2 trials. In response to the oral grain challenge, plasma glucose and insulin concentrations increased (P < 0.001) by 56 and 802%, respectively. Plasma ghrelin concentration initially decreased (P < 0.001) by 40%, then subsequently increased (P < 0.05) from its nadir by 259%. Plasma leptin concentration decreased (P = 0.002) 17% compared with baseline. There was no change (P = 0.34) in plasma adiponectin concentration in response to oral grain challenge; however, plasma cortisol concentrations decreased (P < 0.001) by 24%. In response to the intravenous dextrose challenge, plasma glucose and insulin concentrations increased (P < 0.001) by 432 and 395%, respectively. Plasma active ghrelin concentration initially decreased (P < 0.001) by 56%, then subsequently increased (P < 0.001) from its nadir by 314%. Plasma leptin concentration also increased (P < 0.001) by 33% compared with baseline. There was no change (P = 0.18) in plasma adiponectin concentration throughout the dextrose challenge. Plasma cortisol concentration increased (P = 0.027) by 20%. Hence, oral grain and intravenous nutrient challenges have the ability to alter variables potentially related to energy metabolism in mares, with acute changes in glucose and insulin possibly modulating changes in ghrelin and leptin.  相似文献   

20.
Effects of three dietary lysine (protein) concentrations during lactation on metabolic state, protein metabolism, reproductive hormones, and performance were investigated in 36 primiparous sows. Sows were assigned randomly to one of three diets containing .4% (low lysine, LL), 1.0% (medium lysine, ML), or 1.6% (high lysine, HL) total lysine from intact protein sources. All diets contained 2.1 Mcal NE/kg and exceeded the recommended requirements for all other nutrients. Actual lysine intakes over an 18-d lactation were 16, 36, and 56 g/d for sows fed LL, ML, and HL, respectively. Fractional breakdown rate of muscle was determined on d 4 and 15 of lactation by using a three-compartment kinetic model of 3-methylhistidine metabolism. Increasing lysine intake during lactation did not affect fractional breakdown rate of muscle on d 4 of lactation but decreased it on d 15 (P < .05). Sows fed LL had a reduced number of LH pulses on d 12 and 18 (P < .05) and reduced serum estradiol (E2) concentration on d 18 of lactation compared with sows fed ML and HL treatments. However, LH pulses and E2 concentrations were similar between ML and HL treatments (P > .35). Increasing lysine intake increased serum urea nitrogen (SUN) and postprandial insulin concentrations (P < .05) during lactation but had no effect on plasma glucose concentrations (P > .20). Sows fed HL had greater serum IGF-I on d 6 and 18 than sows fed ML (P < .05). Number of LH peaks was correlated with serum insulin concentration 25 min after feeding on d 6 and 18 (r = .31 to .41; P < .1) and pre- (r = .33 to .46) and postprandial (r = .30 to .58) SUN concentrations (P < .05) during different stages of lactation. Results indicate that, compared with medium lysine intake, low lysine intake increased muscle protein degradation and decreased concentrations of insulin, SUN, and estradiol and LH pulsatility. In contrast, high lysine (protein) intake increased SUN, insulin, and IGF-I, but did not increase secretion of estradiol and LH compared with medium lysine intake. Furthermore, nutritional impacts on reproduction may be mediated in part through associated effects on circulating insulin concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号