首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although recent psychophysical studies indicate that visual awareness and top-down attention are two distinct processes, it is not clear how they are neurally dissociated in the visual system. Using a two-by-two factorial functional magnetic resonance imaging design with binocular suppression, we found that the visibility or invisibility of a visual target led to only nonsignificant blood oxygenation level-dependent (BOLD) effects in the human primary visual cortex (V1). Directing attention toward and away from the target had much larger and robust effects across all study participants. The difference in the lower-level limit of BOLD activation between attention and awareness illustrates dissociated neural correlates of the two processes. Our results agree with previously reported V1 BOLD effects on attention, while they invite a reconsideration of the functional role of V1 in visual awareness.  相似文献   

2.
Relationships between the M and P retino-geniculo-cortical visual pathways and "dorsal" visual areas were investigated by measuring the sources of local excitatory input to individual neurons in layer 4B of primary visual cortex. We found that contributions of the M and P pathways to layer 4B neurons are dependent on cell type. Spiny stellate neurons receive strong M input through layer 4Calpha and no significant P input through layer 4Cbeta. In contrast, pyramidal neurons in layer 4B receive strong input from both layers 4Calpha and 4Cbeta. These observations, along with evidence that direct input from layer 4B to area MT arises predominantly from spiny stellates, suggest that these different cell types constitute two functionally specialized subsystems.  相似文献   

3.
Attention helps us process potentially important objects by selectively increasing the activity of sensory neurons that represent the relevant locations and features of our environment. This selection process requires top-down feedback about what is important in our environment. We investigated how parietal cortical output influences neural activity in early sensory areas. Neural recordings were made simultaneously from the posterior parietal cortex and an earlier area in the visual pathway, the medial temporal area, of macaques performing a visual matching task. When the monkey selectively attended to a location, the timing of activities in the two regions became synchronized, with the parietal cortex leading the medial temporal area. Parietal neurons may thus selectively increase activity in earlier sensory areas to enable focused spatial attention.  相似文献   

4.
Shuler MG  Bear MF 《Science (New York, N.Y.)》2006,311(5767):1606-1609
We discovered that when adult rats experience an association between visual stimuli and subsequent rewards, the responses of a substantial fraction of neurons in the primary visual cortex evolve from those that relate solely to the physical attributes of the stimuli to those that accurately predict the timing of reward. In addition to revealing a remarkable type of response plasticity in adult V1, these data demonstrate that reward-timing activity-a "higher" brain function-can occur very early in sensory-processing paths. These findings challenge the traditional interpretation of activity in the primary visual cortex.  相似文献   

5.
Theoretical studies suggest that primary visual cortex (area V1) uses a sparse code to efficiently represent natural scenes. This issue was investigated by recording from V1 neurons in awake behaving macaques during both free viewing of natural scenes and conditions simulating natural vision. Stimulation of the nonclassical receptive field increases the selectivity and sparseness of individual V1 neurons, increases the sparseness of the population response distribution, and strongly decorrelates the responses of neuron pairs. These effects are due to both excitatory and suppressive modulation of the classical receptive field by the nonclassical receptive field and do not depend critically on the spatiotemporal structure of the stimuli. During natural vision, the classical and nonclassical receptive fields function together to form a sparse representation of the visual world. This sparse code may be computationally efficient for both early vision and higher visual processing.  相似文献   

6.
The frontal eye field (FEF) is one of several cortical regions thought to modulate sensory inputs. Moreover, several hypotheses suggest that the FEF can only modulate early visual areas in the presence of a visual stimulus. To test for bottom-up gating of frontal signals, we microstimulated subregions in the FEF of two monkeys and measured the effects throughout the brain with functional magnetic resonance imaging. The activity of higher-order visual areas was strongly modulated by FEF stimulation, independent of visual stimulation. In contrast, FEF stimulation induced a topographically specific pattern of enhancement and suppression in early visual areas, but only in the presence of a visual stimulus. Modulation strength depended on stimulus contrast and on the presence of distractors. We conclude that bottom-up activation is needed to enable top-down modulation of early visual cortex and that stimulus saliency determines the strength of this modulation.  相似文献   

7.
Recovery of masked visual targets by inhibition of the masking stimulus   总被引:1,自引:0,他引:1  
Theories of visual backward masking all assume that a masked target is eliminated from the visual system. Experiments on reaction time to masked signals suggest otherwise, as does a recent demonstration that a masked target can be restored to phenomenal awareness by backward masking of the target's mask. Two experiments are reported here that substantiate the possibility of recovering a masked target, by using different stimulus materials and a more elaborate design than was employed in the first demonstration of this effect.  相似文献   

8.
A high spatial resolution optical imaging system was developed to visualize cerebral cortical activity in vivo. This method is based on activity-dependent intrinsic signals and does not use voltage-sensitive dyes. Images of the living monkey striate (VI) and extrastriate (V2) visual cortex, taken during visual stimulation, were analyzed to yield maps of the distribution of cells with various functional properties. The cytochrome oxidase--rich blobs of V1 and the stripes of V2 were imaged in the living brain. In V2, no ocular dominance organization was seen, while regions of poor orientation tuning colocalized to every other cytochrome oxidase stripe. The orientation tuning of other regions of V2 appeared organized as modules that are larger and more uniform than those in V1.  相似文献   

9.
The site of visual adaptation   总被引:12,自引:0,他引:12  
In response to background illumination, the adaptation properties of the b-wave are similar to those observed in the human eye with psychophysical methods. With increasing background luminance the b-wave sensitivity is diminished; except at the lowest background intensity the elevation of the log threshold is linearly related to the increase of background intensity, the relation having a slope of almost 1. The a-wave, however, behaves quite differently. At low background luminances it shows little adaptation. With higher background luminances the awave saturates, and no a-wave potential can be elicited with any stimulus intensity. The L-type S-potentials respond to background light in much the same way as the a-wave does. Thus, the b-wave is the first of the known responses in the visual system to show typical adaptation properties. This suggests that the site of visual adaptation may be in the bi-polarcell layer, the presumed locus of b-wave generation. Recent electron microscopic studies have demonstrated reciprocal synapses between the bipolar terminals and amacrine processes, and it is suggested that such a synaptic arrangement could account for visual adaptation by a mechanism of inhibitory feedback on the bipolar cells.  相似文献   

10.
Momentary awareness of a visual scene is very limited; however, this limitation has not been formally characterized. We test the hypothesis that awareness reflects a surprisingly impoverished data structure called a labeled Boolean map, defined as a linkage of just one feature value per dimension (for example, the color is green and the motion is rightward) with a spatial pattern. Features compete with each other, whereas multiple locations form a spatial pattern and thus do not compete. Perception of the colors of two objects was significantly improved by successive compared with simultaneous presentation, whereas perception of their locations was not. Moreover, advance information about which objects are relevant aided perception of colors much more than perception of locations. Both results support the Boolean map hypothesis.  相似文献   

11.
A sudden touch on one hand can improve vision near that hand, revealing crossmodal links in spatial attention. It is often assumed that such links involve only multimodal neural structures, but unimodal brain areas may also be affected. We tested the effect of simultaneous visuo-tactile stimulation on the activity of the human visual cortex. Tactile stimulation enhanced activity in the visual cortex, but only when it was on the same side as a visual target. Analysis of effective connectivity between brain areas suggests that touch influences unimodal visual cortex via back-projections from multimodal parietal areas. This provides a neural explanation for crossmodal links in spatial attention.  相似文献   

12.
Paths of information flow through visual cortex.   总被引:7,自引:0,他引:7  
The main route of information flow in the cerebral cortex is from the middle layers of cortex to upper and lower layers. However, upper layers of the cat primary visual cortex can be directly driven by inputs from secondary visual cortex when activity in middle layers is disrupted. Upper-layer activity can be driven either by middle layers or by direct corticocortical inputs. One consequence of this result is that areas of cortex thought to be carrying out low-order analysis may be able to extract considerable information from higher order areas.  相似文献   

13.
Objects displaced intermittently across the visual field will nonetheless give an illusion of continuous motion [called apparent motion (AM)] under many common conditions. It is believed that form perception is of minor importance in determining AM, and that AM is mediated by motion-sensitive areas in the "where" pathway of the cortex. However, form and motion typically interact in specific ways when natural objects move through the environment. We used functional magnetic resonance imaging to measure cortical activation to long-range AM, compared to short-range AM and flicker, while we varied stability of structural differences between forms. Long-range AM activated the anterior-temporal lobe in the visual ventral pathway, and the response varied according to the form stability. The results suggest that long-range AM is associated with neural systems for form perception.  相似文献   

14.
The intrinsic neuronal code that carries visual information and the perceptual mechanism for decoding that information are not known. However, multivariate statistics and information theory show that neurons in four visual areas simultaneously carry multiple, stimulus-related messages by utilizing multiplexed temporal codes. The complexity of these temporal messages increases progressively across the visual system, yet the temporal codes overlap in time. Thus, visual perception may depend on the concurrent processing of multiplexed temporal messages from all visual areas.  相似文献   

15.
Selective attention gates visual processing in the extrastriate cortex   总被引:56,自引:0,他引:56  
Single cells were recorded in the visual cortex of monkeys trained to attend to stimuli at one location in the visual field and ignore stimuli at another. When both locations were within the receptive field of a cell in prestriate area V4 or the inferior temporal cortex, the response to the unattended stimulus was dramatically reduced. Cells in the striate cortex were unaffected by attention. The filtering of irrelevant information from the receptive fields of extrastriate neurons may underlie the ability to identify and remember the properties of a particular object out of the many that may be represented on the retina.  相似文献   

16.
In crowded visual scenes, attention is needed to select relevant stimuli. To study the underlying mechanisms, we recorded neurons in cortical area V4 while macaque monkeys attended to behaviorally relevant stimuli and ignored distracters. Neurons activated by the attended stimulus showed increased gamma-frequency (35 to 90 hertz) synchronization but reduced low-frequency (<17 hertz) synchronization compared with neurons at nearby V4 sites activated by distracters. Because postsynaptic integration times are short, these localized changes in synchronization may serve to amplify behaviorally relevant signals in the cortex.  相似文献   

17.
To find a target object in a crowded scene, a face in a crowd for example, the visual system might turn the neural representation of each object on and off in a serial fashion, testing each representation against a template of the target item. Alternatively, it might allow the processing of all objects in parallel but bias activity in favor of those neurons that represent critical features of the target, until the target emerges from the background. To test these possibilities, we recorded neurons in area V4 of monkeys freely scanning a complex array to find a target defined by color, shape, or both. Throughout the period of searching, neurons gave enhanced responses and synchronized their activity in the gamma range whenever a preferred stimulus in their receptive field matched a feature of the target, as predicted by parallel models. Neurons also gave enhanced responses to candidate targets that were selected for saccades, or foveation, reflecting a serial component of visual search. Thus, serial and parallel mechanisms of response enhancement and neural synchrony work together to identify objects in a scene. To find a target object in a crowded scene, a face in a crowd for example, the visual system might turn the neural representation of each object on and off in a serial fashion, testing each representation against a template of the target item. Alternatively, it might allow the processing of all objects in parallel but bias activity in favor of those neurons that represent critical features of the target, until the target emerges from the background. To test these possibilities, we recorded neurons in area V4 of monkeys freely scanning a complex array to find a target defined by color, shape, or both. Throughout the period of searching, neurons gave enhanced responses and synchronized their activity in the gamma range whenever a preferred stimulus in their receptive field matched a feature of the target, as predicted by parallel models. Neurons also gave enhanced responses to candidate targets that were selected for saccades, or foveation, reflecting a serial component of visual search. Thus, serial and parallel mechanisms of response enhancement and neural synchrony work together to identify objects in a scene.  相似文献   

18.
Human cerebral cortical function degrades during old age. Much of this change may result from a degradation of intracortical inhibition during senescence. We used multibarreled microelectrodes to study the effects of electrophoretic application of gamma-aminobutyric acid (GABA), the GABA type a (GABAa) receptor agonist muscimol, and the GABAa receptor antagonist bicuculline, respectively, on the properties of individual V1 cells in old monkeys. Bicuculline exerted a much weaker effect on neuronal responses in old than in young animals, confirming a degradation of GABA-mediated inhibition. On the other hand, the administration of GABA and muscimol resulted in improved visual function. Many treated cells in area V1 of old animals displayed responses typical of young cells. The present results have important implications for the treatment of the sensory, motor, and cognitive declines that accompany old age.  相似文献   

19.
Normal surroundings appear curved when viewed through wedge prism eyeglasses. But prolonged viewing of uniformly curved lines makes them appear less curved. An environment specially patterned to prevent the appearance of curvature when viewed through a prism made possible the demonstration of change in apparent curvature wholly dependent upon the visual feedback accompanying self-produced movement of the prism-wearer.  相似文献   

20.
How do we perceive the visual motion of objects that are accelerated by gravity? We propose that, because vision is poorly sensitive to accelerations, an internal model that calculates the effects of gravity is derived from graviceptive information, is stored in the vestibular cortex, and is activated by visual motion that appears to be coherent with natural gravity. The acceleration of visual targets was manipulated while brain activity was measured using functional magnetic resonance imaging. In agreement with the internal model hypothesis, we found that the vestibular network was selectively engaged when acceleration was consistent with natural gravity. These findings demonstrate that predictive mechanisms of physical laws of motion are represented in the human brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号