共查询到20条相似文献,搜索用时 12 毫秒
1.
Yasuhara A Tanaka Y Hengel M Shibamoto T 《Journal of agricultural and food chemistry》2003,51(14):3999-4003
Acrylamide formed in browning model systems was analyzed using a gas chromatograph with a nitrogen-phosphorus detector. Asparagine alone produced acrylamide via thermal degradation at the level of 0.99 microgram/g of asparagine. When asparagine was heated with triolein-which produced acrolein at the level of 1.82 +/- 0.31 (n = 5) mg/L of headspace by heat treatment-acrylamide was formed at the level of 88.6 microgram/g of asparagine. When acrolein gas was sprayed onto asparagine heated at 180 degrees C, a significant amount of acrylamide was formed (114 microgram/g of asparagine). On the other hand, when acrolein gas was sprayed onto glutamine under the same conditions, only a trace amount of acrylamide was formed (0.18 microgram/g of glutamine). Relatively high levels of acrylamide (753 microgram/g of ammonia) were formed from ammonia and acrolein heated at 180 degrees C in the vapor phase. The reaction of acrylic acid, which is an oxidation product of acrolein and ammonia, produced a high level of acrylamide (190 000 microgram/g of ammonia), suggesting that ammonia and acrolein play an important role in acrylamide formation in lipid-rich foods. Acrylamide can be formed from asparagine alone via thermal degradation, but carbonyl compounds, such as acrolein, promote its formation via a browning reaction. 相似文献
2.
The reactions of asparagine with methyl linoleate ( 1), methyl 13-hydroperoxyoctadeca-9,11-dienoate ( 2), methyl 13-hydroxyoctadeca-9,11-dienoate ( 3), methyl 13-oxooctadeca-9,11-dienoate ( 4), methyl 9,10-epoxy-13-hydroxy-11-octadecenoate ( 5), methyl 9,10-epoxy-13-oxo-11-octadecenoate ( 6), 2,4-decadienal ( 7), 2-octenal ( 8), 4,5-epoxy-2-decenal ( 9), and benzaldehyde ( 10) were studied to determine the potential contribution of lipid derivatives to acrylamide formation in heated foodstuffs. Reaction mixtures were heated in sealed tubes for 10 min at 180 degrees C under nitrogen. The reactivity of the assayed compounds was 7 > 9 > 4 > 2 > 8 approximately 6 > 10 approximately 5. The presence of compounds 1 and 3 did not result in the formation of acrylamide. These results suggested that alpha,beta,gamma,delta-diunsaturated carbonyl compounds were the most reactive compounds for this reaction followed by lipid hydroperoxides, more likely as a consequence of the thermal decomposition of these last compounds to produce alpha,beta,gamma,delta-diunsaturated carbonyl compounds. However, in the presence of glucose this reactivity changed, and compound 1/glucose mixtures showed a positive synergism (synergism factor = 1.6), which was observed neither in methyl stearate/glucose mixtures nor in the presence of antioxidants. This synergism is proposed to be a consequence of the formation of free radicals during the asparagine/glucose Maillard reaction, which oxidized the lipid and facilitated its reaction with the amino acid. These results suggest that both unoxidized and oxidized lipids are able to contribute to the conversion of asparagine into acrylamide, but unoxidized lipids need to be oxidized as a preliminary step. 相似文献
3.
De Vleeschouwer K Van der Plancken I Van Loey A Hendrickx ME 《Journal of agricultural and food chemistry》2006,54(20):7847-7855
The effect of pH on acrylamide formation and elimination kinetics was studied in an equimolar (0.1 M) asparagine-glucose model system in phosphate or citrate buffer, heated at temperatures between 120 and 200 degrees C. To describe the experimental data, a simplified kinetic model was proposed and kinetic parameters were estimated by combined nonlinear regression and numerical integration on the data obtained under nonisothermal conditions. The model was subsequently validated in a more realistic potato-based matrix with varying pH. By increasing acidity, the reaction rate constants at T(ref) (160 degrees C) for both acrylamide formation and elimination can significantly be reduced, whereas the temperature dependence of both reaction rate constants increases. The introduction of a lyophilized potato matrix (20%) did not affect the acrylamide formation reaction rate constant at reference temperature (160 degrees C) as compared to the asparagine-glucose model system; the elimination rate constant at T(ref), on the contrary, was almost doubled. 相似文献
4.
Mestdagh F De Meulenaer B Cucu T Van Peteghem C 《Journal of agricultural and food chemistry》2006,54(24):9092-9098
The moisture sorption isotherms of a commercial potato powder were investigated at 20 degrees C for water activities ranging from 0.11 to 0.97. The sorption isotherms were typical type-II sigmoidal curves, with a steep increase in moisture content for water activities above 0.9 and exhibiting hysteresis over the whole water activity range. On the basis of the isotherms, the influence of the initial water activity and moisture content on both Maillard browning and acrylamide formation was determined by heating oil containing potato powder mixtures in a closed stainless-steel tubular reactor. The Maillard browning, as determined spectrophotometrically, showed an optimum at intermediate water activities. The yields of acrylamide, expressed relatively to the molar amount of asparagine, remained constant below 0.8 aw and below moisture contents of about 20% (on a dry basis). For the more intense heat treatments, an increased acrylamide yield was however observed at higher moisture contents, with an optimum at water contents of about 100% (on a dry basis). However, this increase and optimum was not observed at less intense heat treatments. At moisture contents above 100%, a significant decrease in acrylamide yields was assessed, although the water activity increased only marginally in this area of the sorption isotherms. It was thus observed that the acrylamide content was rather dependent upon the moisture content than upon the water activity in the high-moisture potato powder model system. 相似文献
5.
The interaction of a haze-active protein (gliadin) and a haze-active polyphenol (tannic acid) was studied in a model beer system in order to investigate the principle mechanisms of haze formation at low temperatures. Low concentrations (g/L) of tannic acid, high concentrations of gliadin, and comparatively high temperatures lead to maximum haze values. When considered on a molar basis, the greatest haze levels are displayed at an approximate 1:1 equivalence of polyphenol and protein. The greater part of haze formation was completed within 0.5 h, irrespective of the concentration of gliadin, the concentration of tannic acid, and the temperature of the model solution. 相似文献
6.
Knol JJ van Loon WA Linssen JP Ruck AL van Boekel MA Voragen AG 《Journal of agricultural and food chemistry》2005,53(15):6133-6139
A kinetic model for the formation of acrylamide in a glucose-asparagine reaction system is pro-posed. Equimolar solutions (0.2 M) of glucose and asparagine were heated at different temperatures (120-200 degrees C) at pH 6.8. Besides the reactants, acrylamide, fructose, and melanoidins were quantified after predetermined heating times (0-45 min). Multiresponse modeling by use of nonlinear regression with the determinant criterion was used to estimate model parameters. The proposed model resulted in a reasonable estimation for the formation of acrylamide in an aqueous model system, although the behavior of glucose, fructose, and asparagine was slightly underestimated. The formation of acrylamide reached its maximum when the concentration of sugars was reduced to about 0. This supported previous research, showing that a carbonyl source is needed for the formation of acrylamide from asparagine. Furthermore, it is observed that acrylamide is an intermediate of the Maillard reaction rather than an end product, which implies that it is also subject to a degradation reaction. 相似文献
7.
Rydberg P Eriksson S Tareke E Karlsson P Ehrenberg L Törnqvist M 《Journal of agricultural and food chemistry》2003,51(24):7012-7018
The acrylamide content of heated foodstuffs should be considered to be the net result of complex reactions leading to the formation and elimination/degradation of this compound. The present study, involving primarily homogenized potato heated in an oven, was designed to characterize parameters that influence these reactions, including the heating temperature, duration of heating, pH, and concentrations of various components. Higher temperature (200 degrees C) combined with prolonged heating times produced reduced levels of acrylamide, due to elimination/degradation processes. At certain concentrations the presence of asparagine or monosaccharides (in particular, fructose and also glucose and glyceraldehyde) was found to increase the net content of acrylamide. Addition of other free amino acids or a protein-rich food component strongly reduced the acrylamide content, probably by promoting competing reactions and/or covalently binding acrylamide formed. The dependence on pH of the acrylamide content exhibited a maximum around pH 8; in particular, lower pH was shown to enhance elimination and decelerate formation of acrylamide. In contrast, the effects of additions of antioxidants or peroxides on acrylamide content were small or nonexistent. 相似文献
8.
Claeys WL De Vleeschouwer K Hendrickx ME 《Journal of agricultural and food chemistry》2005,53(26):9999-10005
The kinetics of acrylamide (AA) was analyzed by heating a simple model system consisting of asparagine and glucose, fructose, or sucrose (0.01 M, pH 6) at temperatures between 140 and 200 degrees C. The AA concentration appeared to be the net result of simultaneous formation and elimination. A general kinetic model describing the AA yield was identified, and kinetic parameters were obtained by nonlinear regression on the nonisothermally derived data. On the basis of kinetic parameters, the AA formation appeared to proceed faster and to be more temperature sensitive in the asparagine-glucose than in the asparagine-fructose model system. The AA elimination kinetics, on the other hand, was similar. Significantly less AA was formed in the asparagine-sucrose model system as compared to the model systems with glucose or fructose. 相似文献
9.
Viklund GA Olsson KM Sjöholm IM Skog KI 《Journal of agricultural and food chemistry》2008,56(15):6180-6184
Acrylamide is formed via the Maillard reaction between reducing sugars and asparagine in a number of carbohydrate-rich foods during heat treatment. High acrylamide levels have been found in potato products processed at high temperatures. To examine the impact of harvest year, information on weather conditions during growth, that is, temperature, precipitation, and light, was collected, together with analytical data on the concentrations of free amino acids and sugars in five potato clones and acrylamide contents in potato chips (commonly known as crisps in Europe). The study was conducted for 3 years (2004-2006). The contents of acrylamide precursors differed between the clones and the three harvest years; the levels of glucose were up to 4.2 times higher in 2006 than in 2004 and 2005, and the levels of fructose were 5.6 times higher, whereas the levels of asparagine varied to different extents. The high levels of sugars in 2006 were probably due to the extreme weather conditions during the growing season, and this was also reflected in acrylamide content that was approximately twice as high as in preceding years. The results indicate that acrylamide formation is dependent not only on the content and relative amounts of sugars and amino acids but also on other factors, for example, the food matrix, which may influence the availability of the reactants to participate in the Maillard reaction. 相似文献
10.
Changes in free amino acids and sugars in potatoes due to sulfate fertilization and the effect on acrylamide formation 总被引:1,自引:0,他引:1
Elmore JS Mottram DS Muttucumaru N Dodson AT Parry MA Halford NG 《Journal of agricultural and food chemistry》2007,55(13):5363-5366
To examine how sulfur deprivation may affect acrylamide formation in cooked potatoes, three varieties of potato were grown under conditions of either severe sulfur deprivation or an adequate supply of sulfur. In all three varieties sulfur deprivation led to a decrease in acrylamide formation, even though the levels of sugars, which are acrylamide precursors, were higher in tubers of the sulfur-deprived plants. In one variety the concentration of free asparagine, the other precursor for acrylamide, was also higher. There was a very close correlation between the concentration of asparagine in the tubers expressed as a proportion of the total free amino acid pool and the formation of acrylamide upon cooking, whereas sugars were poorly correlated with acrylamide. In potatoes, where concentrations of sugars are usually limiting, competition between asparagine and other amino acids participating in the Maillard reaction may be a key determinant of the amount of acrylamide that is formed during processing. 相似文献
11.
De Vleeschouwer K Van der Plancken I Van Loey A Hendrickx ME 《Journal of agricultural and food chemistry》2010,58(22):11740-11748
The effect of high pressure-high temperature (HPHT) processing on the formation of acrylamide and other Maillard-type reaction compounds was investigated in order to elucidate the impact of HPHT conditions on the different stages of the Maillard reaction. This study was performed in equimolar asparagine-glucose model systems that were treated at various HP/HT conditions (100-115 °C, 400-700 MPa, 0-60 min), and, for comparison, the model system was also heat-treated at ambient pressure. On the treated samples, the concentration of acrylamide, reactants, hydroxymethylfurfural, organic acids, and melanoidins was determined and the pH prior to and after treatment was measured. Based on the measured responses, the retarding effect of high pressure on the overall Maillard reaction was demonstrated; no or little differences were observed between 400 and 700 MPa. The study was conducted in two types of buffer, i.e. phosphate and MES buffer. In case of acrylamide, aspartic acid and browning, a higher concentration was generated in the MES buffer system, but these differences with the phosphate buffer system could be ascribed to pH changes resulting from the application of combined high pressure and high temperature. Based on the results, acrylamide formation is not expected to pose a major hazard to HPHT-treated products. 相似文献
12.
Measurement of acrylamide and its precursors in potato, wheat, and rye model systems 总被引:3,自引:0,他引:3
Elmore JS Koutsidis G Dodson AT Mottram DS Wedzicha BL 《Journal of agricultural and food chemistry》2005,53(4):1286-1293
The relationship between acrylamide and its precursors, namely, free asparagine and reducing sugars, was studied in cakes made from potato flake, wholemeal wheat, and wholemeal rye, cooked at 180 degrees C, from 5 to 60 min. Between 5 and 20 min, major losses of asparagine, water, and total reducing sugars were accompanied by large increases in acrylamide, which maximized in all three products between 25 and 30 min, followed by a slow linear reduction. Acrylamide formation did not occur to a large degree until the moisture contents of the cakes fell below 5%. Linear relationships were observed for acrylamide formation with the residual levels of asparagine and reducing sugars for all three food materials. 相似文献
13.
De Wilde T De Meulenaer B Mestdagh F Govaert Y Vandeburie S Ooghe W Fraselle S Demeulemeester K Van Peteghem C Calus A Degroodt JM Verhé R 《Journal of agricultural and food chemistry》2005,53(16):6550-6557
A number of parameters linked to storage of potatoes were evaluated with regard to their potential to influence the acrylamide formation in French fries. Acrylamide, which is a potential human carcinogen, is reported to be formed during the frying of potatoes as a result of the reactions between asparagine and reducing sugars. This study was conducted using three potato varieties (Bintje, Ramos, and Saturna) typically used in Belgium, The Netherlands, and the northern part of France for French fry and crisp production. Saturna, mainly used in crisp production, appeared to be the least susceptible for acrylamide formation during frying. Especially storage at low temperatures (4 degrees C) compared to storage at 8 degrees C seemed to enhance acrylamide formation due to a strong increase in reducing sugars caused by low-temperature storage. Because of the reversible nature of this physiological reaction, it was possible to achieve a significant reduction of the reducing sugars after a reconditioning of the cold-stored potatoes for 3 weeks at 15 degrees C. All changes in acrylamide concentrations could mainly be explained by the reducing sugar content of the potato (R2 = 0.84, n = 160). This means that, by ensuring a low reducing sugar content of the potato tuber, the risk for acrylamide formation will largely be reduced. Finally the use of a sprout inhibitor did not influence the composition of the potato, and thus acrylamide formation was not susceptible to this treatment. 相似文献
14.
Koutsidis G De la Fuente A Dimitriou C Kakoulli A Wedzicha BL Mottram DS 《Journal of agricultural and food chemistry》2008,56(15):6105-6112
The effect of different sugars and glyoxal on the formation of acrylamide in low-moisture starch-based model systems was studied, and kinetic data were obtained. Glucose was more effective than fructose, tagatose, or maltose in acrylamide formation, whereas the importance of glyoxal as a key sugar fragmentation intermediate was confirmed. Glyoxal formation was greater in model systems containing asparagine and glucose rather than fructose. A solid phase microextraction GC-MS method was employed to determine quantitatively the formation of pyrazines in model reaction systems. Substituted pyrazine formation was more evident in model systems containing fructose; however, the unsubstituted homologue, which was the only pyrazine identified in the headspace of glyoxal-asparagine systems, was formed at higher yields when aldoses were used as the reducing sugar. Highly significant correlations were obtained for the relationship between pyrazine and acrylamide formation. The importance of the tautomerization of the asparagine-carbonyl decarboxylated Schiff base in the relative yields of pyrazines and acrylamide is discussed. 相似文献
15.
Van Lancker F Adams A Owczarek-Fendor A De Meulenaer B De Kimpe N 《Journal of agricultural and food chemistry》2011,59(1):229-235
Furan has recently received considerable attention as a possibly carcinogenic compound occurring in thermally processed foods. Although several food constituents have been identified as furan precursors, multiple formation pathways remain unclear. Therefore, the mechanisms of furan formation in Maillard model systems were studied by means of the carbon module labeling (CAMOLA) technique. Under both roasting and pressure-cooking conditions, furan was formed from glucose via the intact skeleton, and its formation pathways from glucose alone were not amino acid-dependent. However, some amino acids, especially alanine and serine, did influence the furan production by providing an additional formation pathway. Furthermore, most amino acids enhanced the furan production from glucose. Roasting conditions produced 25-100 times higher amounts of furan as compared to pressure-cooking conditions. Surprisingly, in the alanine/glucose model systems, the relative importance of furan production from glucose alone and from the combination of a glucose-derived and an alanine-derived fragment changed completely over a limited time course of 60 min. 相似文献
16.
The relations between the formation of acrylamide and color, pyrazines, or antioxidants in an asparagine/d-glucose browning model system under various conditions were investigated. The highest level of acrylamide was produced in the asparagine/glucose (1:3) system heated at 170 degrees C for 30 min (2629 microg/g asparagine). Color intensity increased with temperature and heating time. The formation of pyrazines increased steadily with an increase of temperature (140-170 degrees C) and heating time (15-60 min). Antioxidant formation varied among the samples heated under different conditions. A clear correlation between formation of acrylamide and browning color was obtained. The formation of acrylamide was linearly correlated with the formation of total pyrazines during the initial stages of the Maillard reaction. No obvious correlation between formation of acrylamide and antioxidants was observed. However, excess amounts of asparagine increased the formation of antioxidants, whereas excess amounts of glucose reduced its formation. 相似文献
17.
Influence of processing parameters on acrylamide formation during frying of potatoes 总被引:5,自引:0,他引:5
Taubert D Harlfinger S Henkes L Berkels R Schömig E 《Journal of agricultural and food chemistry》2004,52(9):2735-2739
Consistent evidence suggests that the probable human carcinogen acrylamide is formed in starch-rich foodstuffs through heat-induced interaction of asparagine and reducing sugars during Maillard browning. However, information regarding the influence of processing parameters on acrylamide formation is scarce. We investigated the impact of temperature, heating time, browning level, and surface-to-volume ratio (SVR) on acrylamide generation in fried potatoes. Acrylamide content was determined by liquid chromatography (LC) and electrospray ionization tandem mass spectrometry (ESI-MS/MS). In potato shapes with low SVR, acrylamide content consistently increased with increasing temperature and processing times. By contrast, in shapes with intermediate to high SVR, maximal acrylamide formation occurred at 160-180 degrees C, while higher temperatures or prolonged processing times caused a decrease of acrylamide levels. Moreover, browning levels were not a reliable measure of acrylamide content in large-surface products. 相似文献
18.
On the basis of numerous studies on the mechanism of formation of acrylamide (AA) from asparagine and reducing sugars, the decarboxylated Schiff base [ N-( d-glucos-1-yl)-3'-aminopropionamide] and its corresponding Amadori product [ N-(1-deoxy- d-fructos-1-yl)-3'-aminopropionamide) are considered to be possible direct precursors in addition to 3-aminopropionamide (AP). Furthermore, the mechanism of decarboxylation of the initially formed N-( d-glucos-1-yl)asparagine to generate the above-mentioned precursors also remains to be confirmed. To identify the relative importance of AA precursors, the decarboxylated Amadori product (AP ARP) and the corresponding Schiff base were synthesized and their relative abilities to generate AA under dry and wet heating conditions were studied. Under both conditions, the N-( d-glucos-1-yl)-3'-aminopropionamide had the highest intrinsic ability to be converted into AA. In the dry model system, the increase was almost 4-fold higher than the corresponding AP ARP or AP; however, in the wet system, the increase was 2-fold higher relative to AP ARP but >20-fold higher relative to AP. In addition, to gain further insight into the decarboxylation step, the amino acid/sugar reactions were analyzed by FTIR to monitor the formation of the previously proposed 5-oxazolidinone intermediate known to exhibit a peak in the range of 1770-1810 cm (-1). Spectroscopic studies clearly indicated the formation of an intense peak in the indicated range, the precise wavelength being dependent on the amino acid and the sugar used. The identity of the peak was verified by observing a 40 cm (-1) shift when [(13)C-1]-labeled amino acid was used. 相似文献
19.
Influence of fertilization on acrylamide formation during frying of potatoes harvested in 2003 总被引:3,自引:0,他引:3
De Wilde T De Meulenaer B Mestdagh F Govaert Y Vandeburie S Ooghe W Fraselle S Demeulemeester K Van Peteghem C Calus A Degroodt JM Verhé R 《Journal of agricultural and food chemistry》2006,54(2):404-408
The quality of the potato has been found to vary, when grown under different agricultural and environmental conditions, such as the level of fertilization. Consequently these factors may influence the acrylamide formation during the preparation of French fries. These assumptions were studied on three varieties: Bintje, Ramos, and Saturna from the harvest of 2003. Decreasing N fertilization caused increases in the reducing sugar concentration from 60% up to 100% on DM for all varieties studied. Due to a high correlation between the reducing sugar content and the generation of acrylamide during frying, this resulted in a parallel increase in the acrylamide concentration of the French fries. Thus by lowering the amount of N fertilizer, an increase of 30-65% of the acrylamide generation during frying could be observed. It seems of extreme importance to find an appropriate balance between the level of N fertilizer in order to diminish acrylamide formation but on the other hand to obtain an acceptable tuber and to consider the environmental impact. All results reported should be seen in the perspective of the warm growing season of 2003. 相似文献
20.
Mestdagh F Castelein P Van Peteghem C De Meulenaer B 《Journal of agricultural and food chemistry》2008,56(15):6141-6144
This study investigates the importance of selected oil degradation components and some analogues in the formation of acrylamide. For this, a model system containing silica gel, PBS buffer, and oil was heated in a closed tubular reactor, under practically relevant heating conditions. Several probable acrylamide precursors were mixed together with free asparagine in the model system, such as partial glycerides, glycerol, acrolein, acrylic acid, and several aldehydes. Only the heated model system containing acrolein and asparagine showed a significantly higher acrylamide content compared to the control to which only asparagine was added. It was postulated that a nucleophilic 1,2-addition of the alpha-amino group of free asparagine to the carbonyl function of acrolein would lead to the formation of acrylamide. This hypothesis could partially be confirmed, replacing acrolein with other alpha,beta-unsaturated aldehydes. However, the contribution of acrolein to the overall formation of acrylamide appeared to be negligible in the presence of a reducing sugar, indicating that in foodstuffs the importance of acrolein and other oil degradation products is probably small. 相似文献