首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A core collection of Japanese wheat varieties (JWC) consisting of 96 accessions was established based on their passport data and breeding pedigrees. To clarify the molecular basis of the JWC collection, genome-wide single-nucleotide polymorphism (SNP) genotyping was performed using the genotyping-by-sequencing (GBS) approach. Phylogenetic tree and population structure analyses using these SNP data revealed the genetic diversity and relationships among the JWC accessions, classifying them into four groups; “varieties in the Hokkaido area”, “modern varieties in the northeast part of Japan”, “modern varieties in the southwest part of Japan” and “classical varieties including landraces”. This clustering closely reflected the history of wheat breeding in Japan. Furthermore, to demonstrate the utility of the JWC collection, we performed a genome-wide association study (GWAS) for three traits, namely, “days to heading in autumn sowing”, “days to heading in spring sowing” and “culm length”. We found significantly associated SNP markers with each trait, and some of these were closely linked to known major genes for heading date or culm length on the genetic map. Our study indicates that this JWC collection is a useful set of germplasm for basic and applied research aimed at understanding and utilizing the genetic diversity among Japanese wheat varieties.  相似文献   

2.
Based on a recent hypothesis, “Five same genomes of endosperm are essential for its development in Lilium”, it is expected that allotriploid lily (OTO) can be hybridized with diploid Oriental lily (OO) for introgression breeding in Lilium L.. To test the hypothesis, OTO lilies, ‘Belladonna’, ‘Candy Club’ and ‘Travatore’, were used as the maternal parents and crossed with two diploid OO cultivars, ‘Siberia’ and ‘Sorbonne’, and the species L. regale Wilson (TT). Results showed that capsules of all OTO × OO hybridizations developed well and 0.8~3.3 viable seedlings per ovary were obtained through normal pollination and embryo rescue; however, all OTO × TT crosses failed. Genomic in situ hybridization showed that the progenies of the OTO × OO hybridizations were aneuploid and a variable number of T-genome chromosomes were introduced into the progenies through the allotriploid lilies. The present results not only demonstrate that allotriploid OTO lilies, although male sterile, can be used as maternal parents to produce aneuploid progenies, but also strongly support the new hypothesis in lily breeding.  相似文献   

3.
Insertion-deletion (indel) polymorphisms, such as simple sequence repeats, have been widely used as DNA markers to identify QTLs and genes and to facilitate rice breeding. Recently, next-generation sequencing has produced deep sequences that allow genome-wide detection of indels. These polymorphisms can potentially be used to develop high-accuracy polymerase chain reaction (PCR)-based markers. Here, re-sequencing of 5 indica, 2 aus, and 3 tropical japonica cultivars and Japanese elite cultivar ‘Koshihikari’ was performed to extract regions containing large indels (10–51 bp) shared by diverse cultivars. To design indel markers for the discrimination of genomic regions between ‘Koshihikari’ and other diverse cultivars, we subtracted the indel regions detected in ‘Koshihikari’ from those shared in other cultivars. Two sets of indel markers, KNJ8-indel (shared in eight or more cultivars, including ‘Khao Nam Jen’ as a representative tropical japonica cultivar) and C5-indel (shared in five to eight cultivars), were established, with 915 and 9,899 indel regions, respectively. Validation of the two marker sets by using 23 diverse cultivars showed a high PCR success rate (≥95%) for 83.3% of the KNJ8-indel markers and 73.9% of the C5-indel markers. The marker sets will therefore be useful for the effective breeding of Japanese rice cultivars.  相似文献   

4.
Transgenic photo-thermo sensitive genic male sterility Oryza sativa L. cv. “261S” plants with the anti-Waxy gene were successfully obtained using an Agrobacterium tumefaciens-mediated co-transformation method. Marker-free homozygous transgenic lines with the anti-Waxy gene were obtained. The setting seed rates of the transgenic plants via self-pollination or via crossing with the restorer line WX99075 rice and the 1000-grain weight of the transgenic plants and the F2 hybrid seeds obtained by crossing the transgenic or non-transgenic plants with the restorer line WX99075 rice, and the number of panicles of the transgenic plants and yields of the F2 hybrid rice, were analysed. Quality indexes of the transgenic plants and of the F2 hybrid seeds were analysed. Our researches results indicate that hybrid female and hybrid descendant edibility could be improved via the introduction of the anti-Waxy gene, but the grain yields of the reserve seeds via self-pollination of the transgenic photo-thermo sensitive genic sterile lines and of the hybrid rice were not affected.  相似文献   

5.
The objective of the National BioResource Project (NBRP) in Japan is to collect, conserve and distribute biological materials for life sciences research. The project consists of twenty-eight bioresources, including animal, plant, microorganism and DNA resources. NBRP Lotus and Glycine aims to support the development of legume research through the collection, conservation, and distribution of these bioresources. Lotus japonicus is a perennial legume that grows naturally throughout Japan and is widely used as a model plant for legumes because of such advantages as its small genome size and short life cycle. Soybean (Glycine max) has been cultivated as an important crop since ancient times, and numerous research programs have generated a large amount of basic research information and valuable bioresources for this crop. We have also developed a “LegumeBase” a specialized database for the genera Lotus and Glycine, and are maintaining this database as a part of the NBRP. In this paper we will provide an overview of the resources available from the NBRP Lotus and Glycine database site, called “LegumeBase”.  相似文献   

6.
Phytophthora stem and root rot, caused by Phytophthora sojae, is one of the most destructive diseases of soybean [Glycine max (L.) Merr.], and the incidence of this disease has been increasing in several soybean-producing areas around the world. This presents serious limitations for soybean production, with yield losses from 4 to 100%. The most effective method to reduce damage would be to grow Phytophthora-resistant soybean cultivars, and two types of host resistance have been described. Race-specific resistance conditioned by single dominant Rps (“resistance to Phytophthora sojae”) genes and quantitatively inherited partial resistance conferred by multiple genes could both provide protection from the pathogen. Molecular markers linked to Rps genes or quantitative trait loci (QTLs) underlying partial resistance have been identified on several molecular linkage groups corresponding to chromosomes. These markers can be used to screen for Phytophthora-resistant plants rapidly and efficiently, and to combine multiple resistance genes in the same background. This paper reviews what is currently known about pathogenic races of P. sojae in the USA and Japan, selection of sources of Rps genes or minor genes providing partial resistance, and the current state and future scope of breeding Phytophthora-resistant soybean cultivars.  相似文献   

7.
To understand the genetic diversity and differentiation of Vietnamese melon (Cucumis melo L.), we collected 64 landraces from the central and southern parts of the country and assessed molecular polymorphism using simple sequence repeat and random amplified polymorphic DNA markers. The Vietnamese melon was divided into seven cultivar groups, namely “Dua le”, “Dua vang”, “Dua bo”, “Dua gang-andromonoecious”, “Dua gang-monoecious”, “Dua thom”, “Montok”, and the weedy-type melon “Dua dai”. Among these, Dua le, Dua vang, Dua bo, and Dua gang-andromonoecious are cultivated on plains and they formed cluster II along with the reference accessions of Conomon and Makuwa. Based on genetic distance, Dua le and Dua vang were regarded as Makuwa and Dua bo and Dua gang-andromonoecious as Conomon. In contrast, Dua thom and Montok are cultivated in highlands, and they formed cluster III along with landraces from the southern and eastern foot of the Himalayas. Dua gang-monoecious which is commonly cultivated in the southern parts of Vietnam, exhibited the greatest genetic diversity, as explained by its possible origin through the hybridization between Dua gang-andromonoecious and Montok. Genetic differences in melon landraces between plains and highlands and hybridization between these two geographical groups have contributed to the enhancement of genetic diversity in Vietnamese melon.  相似文献   

8.
Resistance to soybean mosaic virus (SMV) is imperative for soybean (Glycine max (L.) Merr.) production in the Tohoku region. Molecular markers for SMV resistance were previously reported for U.S. SMV strains, but they cannot be applied because of the differences in strain classification between Japan and the U.S. A U.S. variety ‘Harosoy’ has been used mainly as a donor of resistance to SMV strains C and D in a Japanese breeding program, resulting in resistant varieties such as ‘Fukuibuki.’ Because ‘Harosoy’ harbors the Rsv3 gene conferring resistance to the virulent SMV strain groups, G5 through G7, it appears that the Rsv3 gene confers resistance to strains C and D. In this study, we introduced resistance to the two strains from ‘Fukuibuki’ into a leading variety ‘Ohsuzu’ by recurrent backcrossing with marker-assisted selection. All lines selected with markers near Rsv3 showed resistance to the strains, suggesting that the Rsv3 locus is responsible for the resistance. Three years of trials showed that one of the breeding lines, ‘Tohoku 169,’ was equivalent to ‘Ohsuzu’ with respect to agricultural characteristics such as seed size, maturity date, and seed yield, except for the SMV resistance.  相似文献   

9.
Brown spot is a devastating rice disease. Quantitative resistance has been observed in local varieties (e.g., ‘Tadukan’), but no economically useful resistant variety has been bred. Using quantitative trait locus (QTL) analysis of recombinant inbred lines (RILs) from ‘Tadukan’ (resistant) × ‘Hinohikari’ (susceptible), we previously found three QTLs (qBS2, qBS9, and qBS11) that conferred resistance in seedlings in a greenhouse. To confirm their effect, the parents and later generations of RILs were transplanted into paddy fields where brown spot severely occurred. Three new resistance QTLs (qBSfR1, qBSfR4, and qBSfR11) were detected on chromosomes 1, 4, and 11, respectively. The ‘Tadukan’ alleles at qBSfR1 and qBSfR11 and the ‘Hinohikari’ allele at qBSfR4 increased resistance. The major QTL qBSfR11 coincided with qBS11 from the previous study, whereas qBSfR1 and qBSfR4 were new but neither qBS2 nor qBS9 were detected. To verify the qBSfR1 and qBSfR11 ‘Tadukan’ resistance alleles, near-isogenic lines (NILs) with one or both QTLs in a susceptible background (‘Koshihikari’) were evaluated under field conditions. NILs with qBSfR11 acquired significant field resistance; those with qBSfR1 did not. This confirms the effectiveness of qBSfR11. Genetic markers flanking qBSfR11 will be powerful tools for marker-assisted selection to improve brown spot resistance.  相似文献   

10.
The yellowing strain of Soybean dwarf virus (SbDV-YS) causes yellowing and yield loss in common bean (Phaseolus vulgaris). The most effective control is achieved through breeding for resistance. An indeterminate climbing cultivar with a white seed coat, ‘Oofuku’, is resistant to SbDV-YS in inoculation tests. We crossed ‘Oofuku’ with an elite cultivar, ‘Taisho-Kintoki’, which is SbDV-YS-susceptible, determinate dwarf with a red-purple seed coat, and performed amplified-fragment-length polymorphism analysis of F3 lines. From nucleotide sequences of the resistant-specific fragments and their flanking regions, we developed five DNA markers, of which DV86, DV386, and DV398 were closely linked to Sdvy-1, a resistance gene. Using the markers, we developed ‘Toiku-B79’ and ‘Toiku-B80’, the near-isogenic lines (NILs) incorporating Sdvy-1 in the background of ‘Taisho-Kintoki’. The NILs had similar growth habit, maturity date and seed shape to those of ‘Taisho-Kintoki’. The quality of boiled beans was also similar, except that the NILs had more seed coat cracking than ‘Taisho-Kintoki’. The NILs showed no SbDV-YS infection in inoculation tests. We suggest that Sdvy-1 is a useful source of SbDV-YS resistance in common bean.  相似文献   

11.
Imported genetically modified (GM) canola (Brassica napus) is approved by Japanese law. Some GM canola varieties have been found around importation sites, and there is public concern that these may have any harmful effects on related species such as reduction of wild relatives. Because B. juncea is distributed throughout Japan and is known to be high crossability with B. napus, it is assumed to be a recipient of B. napus. However, there are few reports for introgression of cross-combination in B. juncea × B. napus. To assess crossability, we artificially pollinated B. juncea with B. napus. After harvesting a large number of progeny seeds, we observed false hybrids and metaxenia of seed coats. Seed coat color was classified into four categories and false hybrids were confirmed by morphological characteristics and random amplified polymorphic DNA (RAPD) markers. Furthermore, the occurrence of false hybrids was affected by varietal differences in B. napus, whereas that of metaxenia was related to hybridity. Therefore, we suggest that metaxenia can be used as a marker for hybrid identification in B. juncea L. cv. Kikarashina × B. napus. Our results suggest that hybrid productivity in B. juncea × B. napus should not be evaluated by only seed productivity, crossability ought to be assessed the detection of true hybrids.  相似文献   

12.
Roots are essential organs for capturing water and nutrients from the soil. In particular, root system architecture (RSA) determines the extent of the region of the soil where water and nutrients can be gathered. As global climate change accelerates, it will be important to improve belowground plant parts, as well as aboveground ones, because roots are front-line organs in the response to abiotic stresses such as drought, flooding, and salinity stress. However, using conventional breeding based on phenotypic selection, it is difficult to select breeding lines possessing promising RSAs to adapted to abiotic stress because roots remain hidden underground. Therefore, new breeding strategies that do not require phenotypic selection are necessary. Recent advances in molecular biology and biotechnology can be applied to the design-oriented breeding of RSA without phenotypic selection. Here I summarize recent progress in RSA ideotypes as “design” and RSA-related gene resources as “materials” that will be needed in leveraging these technologies for the RSA breeding. I also highlight the future challenges to design-oriented breeding of RSA and explore solutions to these challenges.  相似文献   

13.
Genetic improvement of soybean varieties released in India from 1969 to 1993   总被引:11,自引:0,他引:11  
Summary Soybean is an important oilseed crop in India and varieties with high yield potential are being developed since 1969. This study was conducted to assess the impact of breeding on yield and plant characteristics during the last 25 years. A 3-year field experiment was conducted to evaluate forty three soybean varieties belonging to two different selection cycles and representing most of the varieties developed in the domestic breeding programme of India from 1969 to 1993. Varieties resulting from selection cycle 1 showed 4 times higher seed yield and harvest index as compared to the farm traditional variety Kalitur. This yield increase was due to an increase in biomass, pods plant–1, mean seed weight and longer seed filling duration, but a reduced plant height and improved lodging tolerance, less seeds pod–1 and early flowering and maturity dates. The varieties of selection cycle 2 showed 19% higher seed yields and 16% increase in harvest index over selection cycle 1 accompanied by longer seed filling duration, more seeds pod–1 and reduced plant height. The annual genetic gain in seed yield of soybean varieties released in India from 1969 to 1993 was approximately 22 kg ha–1.  相似文献   

14.
Brassica napus is a leading oilseed crop throughout many parts of the world. It is well adapted to long day photoperiods, however, it does not adapt well to short day subtropical regions. Short duration B. napus plants were resynthesized through ovary culture from interspecific crosses in which B. rapa cultivars were reciprocally crossed with B. oleracea. From five different combinations, 17 hybrid plants were obtained in both directions. By self-pollinating the F1 hybrids or introgressing them with cultivated B. napus, resynthesized (RS) F3 and semi-resynthesized (SRS) F2 generations were produced, respectively. In field trial in Bangladesh, the RS B. napus plants demonstrated variation in days to first flowering ranging from 29 to 73 days; some of which were similar to cultivated short duration B. napus, but not cultivated short duration B. rapa. The RS and SRS B. napus lines produced 2–4.6 and 1.6–3.7 times higher yields, respectively, as compared to cultivated short duration B. napus. Our developed RS lines may be useful for rapeseed breeding not only for subtropical regions, but also for areas such as Canada and Europe where spring rapeseed production can suffer from late spring frosts. Yield and earliness in RS lines are discussed.  相似文献   

15.
水稻光温敏核不育系开颖与雌蕊受精障碍是高温胁迫导致其制种产量降低的主要原因,阐明其机理并探究提高水稻光温敏核不育系耐热性的途径,对于减轻其高温伤害具有重要意义。本文综述了高温胁迫对水稻光温敏核不育系开颖、雌蕊受精以及影响抽穗的生理机制研究进展;并综述了激素与渗透调节和抗氧化系统的内在关系及其对高温胁迫下水稻光温敏核不育系开颖与雌蕊受精障碍的调控作用,展望了进一步探究高温胁迫导致水稻光温敏核不育系开颖与雌蕊受精障碍机理的研究方向,为提高两系杂交稻制种产量和指导水稻抗高温育种和栽培提供一定的理论依据。  相似文献   

16.
水稻种子休眠性是关系到稻米品质和稻种质量的一个重要农艺性状。研究水稻种子休眠性遗传及分子机制对培育具有适度休眠性的优良水稻品种具有重要意义。本研究以籼稻品种9311为受体、普通野生稻为供体的染色体片段置换系群体为材料,在后熟不同时间检测群体种子休眠性,对控制种子休眠性的QTL进行定位分析,共定位到14个QTL,分布在第3、第4、第5、第6、第7、第10、第11、第12染色体上。筛选休眠性显著强于背景亲本9311的家系,分析这些家系携带的QTL数目,表明携带的位点越多,休眠性越强。进一步利用家系Q14与9311的F2群体验证了第7染色体标记RM180和RM21323之间存在一个效应较大的QTL qSD-7-2,该位点LOD值为18.49,可解释的表型变异率为33.53%,表明该位点是一个控制普通野生稻种子休眠性的主效QTL,且能稳定遗传。本研究为野生稻种子休眠基因的精细定位及克隆奠定了基础,且为培育强休眠性籼稻品种提供了育种材料。  相似文献   

17.
Plant breeding programs in local regions may generate genetic variations that are desirable to local populations and shape adaptability during the establishment of local populations. To elucidate genetic bases for this process, we proposed a new approach for identifying the genetic bases for the traits improved during rice breeding programs; association mapping focusing on a local population. In the present study, we performed association mapping focusing on a local rice population, consisting of 63 varieties, in Hokkaido, the northernmost region of Japan and one of the northern limits of rice cultivation worldwide. Six and seventeen QTLs were identified for heading date and low temperature germinability, respectively. Of these, 13 were novel QTLs in this population and 10 corresponded to the QTLs previously reported based on QTL mapping. The identification of QTLs for traits in local populations including elite varieties may lead to a better understanding of the genetic bases of elite traits. This is of direct relevance for plant breeding programs in local regions.  相似文献   

18.
White rust caused by Puccinia horiana Henn. adversely affects chrysanthemum (Chrysanthemum morifolium Ramat.) production. The breeding of resistant varieties is effective in controlling the disease. Here we aimed to develop DNA markers for the strong resistance to P. horiana. We conducted a linkage analysis based on the genome-wide association study (GWAS) method. We employed a biparental population for the GWAS, wherein the single nucleotide polymorphism (SNP) allele frequency could be predicted. The population was derived from crosses between a strong resistant “Southern Pegasus” and a susceptible line. The GWAS used simplex and double-simplex SNP markers selected out of SNP candidates mined from ddRAD-Seq data of an F1 biparental population. These F1 individuals segregated in a 1:1 ratio of resistant to susceptible. Twenty-one simplex SNPs were significantly associated with P. horiana resistance in “Southern Pegasus” and generated one linkage group. These results show the presence of a single resistance gene in “Southern Pegasus”. We identified the nearest SNP marker located 2.2 cM from P. horiana resistance locus and demonstrated this SNP marker-resistance link using an independent population. This is the first report of an effective DNA marker linked to a gene for P. horiana resistance in chrysanthemum.  相似文献   

19.
韩丽君  薛张逸  谢昊  顾骏飞 《作物杂志》2022,38(2):222-2126
探明干湿交替灌溉与硝化抑制剂对水稻产量以及土壤性状的影响,以期为水稻高效栽培提供理论依据和技术参考。采取干湿交替灌溉方式,以“金香玉1号”和“扬稻6号”为试验材料,设置4个处理,分别为尿素(CK)、尿素+双氰胺(DCD)、尿素+3,4-二甲基吡唑磷酸盐(DMPP)、尿素+DCD+DMPP。DCD和DMPP为硝化抑制剂。结果表明,在相同灌溉方式下,与CK处理相比,硝化抑制剂的添加有利于获得较高的产量,提高了穗粒数和结实率。与CK处理相比,添加DCD、DMPP以及DCD与DMPP配施,均提高了水稻生育时期的土壤脲酶和蔗糖酶活性,降低了水稻生育时期土壤硝酸还原酶活性。另外,各硝化抑制剂处理均显著提高了水稻生育时期土壤铵态氮含量,降低了硝态氮含量,在此基础上增加了土壤有效态氮含量。其中DMPP抑制效果优于DCD,且2种抑制剂同时配施作用效果优于其单独施用。在干湿交替灌溉方式下,硝化抑制剂处理在水稻关键生育期有利于产生较高土壤养分,能进一步增加水稻产量。  相似文献   

20.
Oriental persimmon (Diospyros kaki) originated in Eastern Asia, and many indigenous cultivars have been developed in China, Japan, and Korea. These cultivars are classified into four groups based on their natural astringency loss on the tree and seed formation: pollination-constant non-astringent (PCNA), pollination-variant non-astringent (PVNA), pollination-constant astringent (PCA), and pollination-variant astringent (PVA). PCNA is the most desirable type because the fruit can be eaten without any postharvest treatment; therefore, one of the goals of our persimmon breeding programs is to release superior PCNA cultivars. The PCNA genotype is recessive to the other three non-PCNA genotypes, and PCNA-type F1 offspring are obtained exclusively from crosses among PCNA genotypes. Moreover, the number of superior PCNA cross-parents have been limited. In the late 1980s, inbreeding depression became obvious, especially in terms of fruit size, tree vigor, and productivity. To mitigate the inbreeding, a backcross program using PCNA [(non-PCNA × PCNA) × PCNA] was started in 1990. This process, however, was inefficient because only 15% of the offspring were PCNA, and all offspring had to be grown to the fruiting stage. Therefore, molecular markers linked to the PCNA locus were developed for discriminating PCNA offspring. A molecular marker linked to Chinese PCNA has also been developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号