首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
二氯喹啉酸在不同水体中光降解研究   总被引:1,自引:0,他引:1  
采用HPLC法研究二氯喹啉酸在不同缓冲溶液及不同自然水体中光化学降解情况。研究表明,在高压汞灯下,二氯喹啉酸在不同缓冲溶液中的光解半衰期是pH3〉pH5〉pH7〉pH9〉pH11,半衰期分别为82.51、69.31、31.50、13.48、8.45 min;在不同自然水体中的光解半衰期是稻田水〉珠江水〉重蒸水〉水库水〉地表水〉湖水,半衰期分别为35.72、31.50、27.84、11.29、10.45和8.64 min。  相似文献   

2.
为探讨新型杀虫剂氯虫苯甲酰胺、氟苯虫酰胺在不同水体中的降解特性,研究了氯虫苯甲酰胺、氟苯虫酰胺在不同缓冲溶液及不同自然水体中光化学降解情况。表明氯虫苯甲酰胺在p H值为4.00、6.86、9.18的不同缓冲溶液中的光解半衰期分别为7.53,7.12,3.89 d;氟苯虫酰胺在p H值为4.00、6.86、9.18的不同缓冲溶液中的光解半衰期分别为6.92,6.11,3.46 d。高压汞灯照射下,氯虫苯甲酰胺在重蒸水、稻田水、水库水、地表水、湖水等5种不同自然水体中的光解半衰期分别为4.46,4.07,3.95,3.85,3.55 d;氟苯虫酰胺在重蒸水、稻田水、水库水、地表水、湖水等5种不同自然水体中的光解半衰期分别为3.95、3.74、3.30,3.05,2.96 d。研究发现氯虫苯甲酰胺、氟苯虫酰胺在水溶液中的降解动态均遵循一级动力学规律,且降解速率随溶液p H值的变化而变化,光解率随p H值的增加而增大;在高压汞灯照射下,氯虫苯甲酰胺、氟苯虫酰胺在5种不同自然水体中的光解半衰期由长到短依次重蒸水、稻田水、水库水、地表水和湖水。  相似文献   

3.
2,4-D的水解、光解及在土壤中的降解特性研究   总被引:2,自引:0,他引:2  
[目的]研究2,4-D在环境中的降解特性。[方法]采用室内模拟试验方法,测定2,4-D在水体中光解、水解及其在3种土壤中的降解特性,并对其降解特性进行评价。[结果]在常温(25℃)下,2,4-D在pH 5和9时的水解半衰期分别为117.5和79.7 d,较易水解;在pH 7时的水解半衰期为138.6 d,具有中等程度的水解特性。在人工光源氙灯条件下,其光解半衰期仅为4.63 h,较易光解。常温(25℃)下,2,4-D在江西红壤和东北黑土中的降解半衰期分别为86.6和53.3 d,易于土壤降解;而在太湖水稻土中的降解半衰期为20.2 d,易于土壤快速降解。[结论]2,4-D在环境中具有一定的稳定性,对水体和土壤环境存在一定的风险,应严格掌握其使用量和使用时期,加强对2,4-D在环境中的跟踪监测。  相似文献   

4.
碘甲磺隆钠盐在水溶液中的光解研究   总被引:1,自引:0,他引:1  
为了解碘甲磺隆钠盐在水溶液中的光降解特性,评价其环境安全性,以太阳光和高压汞灯为光源,进行光解试验,研究了碘甲磺隆钠盐在不同水溶液中的光解行为及水体pH值对其光解的影响.结果表明,碘甲磺隆钠盐在所有试验水体中的降解均符合一级动力学方程,不同水体中碘甲磺隆钠盐的半衰期分别为14.29~21.26 h(太阳光)与2.29~3.76 min(高压汞灯),两种光源下碘甲磺隆钠盐在各自然水体中的降解速率依次为井水>河水>池塘水>稻田水.不同pH值水体中的光解实验表明,碘甲磺隆钠盐在酸性介质中的光解比在碱性介质中快,顺序为pH5>pH7>pH9>pH11.  相似文献   

5.
为科学评价吡唑草胺的环境风险,参照“化学农药环境安全评价试验准则”,研究了吡唑草胺在土壤中的主要环境行为——光解、挥发、吸附、移动及降解的特性。结果表明:光解、挥发不是吡唑草胺在土表降解的主要因素;吡唑草胺在土壤中具中等移动或可移动特性,难被土壤吸附;吡唑草胺在土壤中的降解受土壤类型以及环境条件(好氧、积水厌氧)的影响,其降解半衰期为4~96 d。由于吡唑草胺在粘土中移动性较强、降解半衰期较长,因此当在该种土壤上使用吡唑草胺时,可能会对地下水、地表水造成污染。  相似文献   

6.
为研究烯效唑在在环境中的降解特性,采用室内模拟试验方法,测定了烯效唑在水体中光解、水解及其在3种不同类型土壤中的降解特性,并对其降解特性进行了评价.结果表明,常温(25℃)下,烯效唑在pH值分别为5.0、7.0和9.0 3种缓冲溶液中的210d内未发生显著的水解作用,其水解半衰期均大于1 a,属难水解性化合物;在人工光源氙灯条件下,该农药的光解半衰期仅为2.07 h,这说明烯效唑较易光解;烯效唑在江西红壤、河南二合土与东北黑土中的降解较慢,降解半衰期均大于3个月.烯效唑在土壤中较难降解.综上所述,烯效唑在环境中具有较强的稳定性,尤其在避光条件难以降解.因此应严格掌握其使用量和使用时期:同时建议加强对烯效唑残留的跟踪监测.  相似文献   

7.
以紫外灯为光源,研究了八氯二丙醚在土壤表面的光化学降解动态以及不同因子对其光解的影响。结果表明,八氯二丙醚在土壤表面的光解动态符合化学反应一级动力学方程。八氯二丙醚在不同类型土壤中的光解速率为红壤>潮土>水稻土,光解半衰期分别为11.44、14.00h和20.63h。八氯二丙醚在中性土壤中光解速率最快,在偏酸或偏碱性土壤中光解半衰期均明显延长。土壤含水量增加,有利于八氯二丙醚的光解,干燥土壤(含水量为2%)中八氯二丙醚的光解半衰期是潮湿土壤的1.3~2.6倍。当土壤中八氯二丙醚添加浓度为0.2~10mg·kg-1时,其光解速率与添加浓度呈负相关关系;不同添加剂量的催化剂TiO2对八氯二丙醚的光解均表现出明显的光敏化作用,光解速率常数提高1.6~2.4倍。研究结果将为明确八氯二丙醚在土壤中的环境行为及其环境安全性评价提供科学依据。  相似文献   

8.
为预测和评价双氟磺草胺对水资源及土壤环境的潜在风险提供依据,采用室内模拟试验方法,研究双氟磺草胺在不同土壤(黑土、红壤和水稻土)环境中的降解、吸附、淋溶以及在土壤表面的挥发性和光解性等归趋特征。结果表明:双氟磺草胺在吉林黑土、云南红壤与贵州水稻土中的降解符合一级动力学方程,其在3种土壤中的降解半衰期分别为12.8d、15.0d和12.6d,属于易降解农药;双氟磺草胺在3种土壤中的吸附符合Freundlich方程,Kd值(吸附常数)分别为1.83、1.14和0.537,3种土壤中均难吸附。经土壤薄层层析试验,当溶剂展开18cm时,双氟磺草胺在吉林黑土、云南红壤与贵州水稻土中主要分布在12~18cm、9~18cm和9~18cm土层中,其Rf值(比移值)均为0.917,极易移动。双氟磺草胺在土壤表面光解遵循一级动力学方程,Ct=4.355 8e-0.002 t,光解半衰期为346.5h,属于难光解农药。在(25±2)℃,气体流速为500mL/min的条件下,双氟磺草胺在土壤表面的挥发速率小于0.04%,属于难挥发农药。双氟磺草胺在土壤中难挥发、难光解、难吸附、易移动,但其在土壤中降解较快,对土壤环境的风险性小。  相似文献   

9.
研究恶唑菌酮在甲醇、乙腈、异丙醇及水溶液中,以及不同光源下和不同pH缓冲溶液中的光化学降解.结果表明,在太阳光下,恶唑菌酮水溶液光解缓慢,半衰期为51.7h;在甲醇、乙腈、异丙醇溶液中恶唑菌酮降解效应显著,高压汞灯下的半衰期分别为1.70、1.36和1.83min;此外,溶液体系pH值越高,光解越迅速.  相似文献   

10.
为了明确阿维菌素在水介质中的光化学降解特性及其影响因素,通过模拟试验对其在水介质中的消解动态进行了研究。结果表明,阿维菌素在纯净水介质中的光解半衰期为30.09 min;溶解氧含量、不同添加物及有机溶剂对阿维菌素的光解有一定的影响;在不同水体中阿维菌素的光解速率大小为河水>纯净水>池塘水>自来水;腐植酸对阿维菌素的光解速率则表现出一定的光猝灭作用。  相似文献   

11.
吴锋  李学德  花日茂 《安徽农业科学》2008,36(5):1944-1945,1948
[目的]寻求治理水中胺菊酯污染的光化学降解途径。[方法]研究了3种光源、2种浓度腐殖酸、3种色素和3种表面活性剂对水中胺菊酯农药光化学降解的影响。[结果]不同光源对胺菊酯在水中光解的影响有较大差异,高压汞灯下胺菊酯降解最快,紫外光次之,太阳光最慢,光解半衰期分别为93.6、95.2和200.0 min。腐殖酸对胺菊酯光敏化作用显著,并随腐殖酸浓度的增加而迅速增强。高压汞灯照射下,核黄素、亚甲基蓝和甲基绿3种色素对胺菊酯均有一定程度的光敏化作用,其中核黄素作用最显著,随着核黄素浓度的增加,胺菊酯的光解率呈先上升后趋于平缓的趋势。非离子型表面活性剂Span-20对胺菊酯的光化学降解有很明显的光敏化作用。[结论]该研究为水中胺菊酯农药的污染治理提供参考依据。  相似文献   

12.
采用室内模拟实验方法 ,研究了叶青双DMF液、叶青双晶态在紫外光(300nm)和日光下的光解动态。叶青双在溶液体系(DMF、甲醇、丙酮)中的光解比晶态快得多 ,其光解半衰期分别为47.39min(DMF ,紫外光)、22.37h(晶态 ,紫外光)、15.73min(DMF ,日光)、53.52h(晶态 ,日光)。  相似文献   

13.
苏丹III作为一种偶氮染料不溶于水,微溶于乙醇,易溶于氯仿、油脂、矿物油、丙酮和苯等,属于难挥发、难生物降解性有机物.以纳米TiO_2为催化剂,考察了苏丹III在3种不同光源2种不同溶剂条件下的光催化降解,讨论了光源种类、溶剂体系和催化剂时间对其降解的影响,并利用紫外吸收光谱等和质谱的手段,考察了苏丹III的光解动态和光解产物.结果表明,苏丹III的光催化降解符合一级动力学方程,在乙醇溶液中的光解半衰期为58 min,在三氯甲烷/乙醇中的半衰期约为17.2 min.  相似文献   

14.
苏丹Ⅲ作为一种偶氮染料不溶于水,微溶于乙醇,易溶于氯仿、油脂、矿物油、丙酮和苯等,属于难挥发、难生物降解性有机物。以纳米TiO2为催化剂,考察了苏丹Ⅲ在3种不同光源2种不同溶剂条件下的光催化降解,讨论了光源种类、溶剂体系和催化剂时间对其降解的影响,并利用紫外吸收光谱等和质谱的手段,考察了苏丹Ⅲ的光解动态和光解产物。结果表明,苏丹Ⅲ的光催化降解符合一级动力学方程,在乙醇溶液中的光解半衰期为58 min,在三氯甲烷/乙醇中的半衰期约为17.2 min。  相似文献   

15.
毒死蜱在土壤中的光催化降解   总被引:20,自引:0,他引:20  
以500W氙灯为光源,研究了毒死蜱在2种不同土壤中的光化学降解以及土壤湿度、TiO2、Fe3+对其光解的影响.结果表明,毒死蜱在土壤中光解较快,其半衰期为19.56~25.89 h;TiO2、Fe3+对其光解有显著的促进作用,光解半衰期分别缩短了14.98%和26.29%;土壤水分对于毒死蜱光解的影响与土壤质地有关.  相似文献   

16.
用连续化学浸提法将施用了不同量氯化汞的盆栽土壤中的汞,按其形态分为水溶态及交换态、酸溶态、碱溶态、元素态、残渣态等五个组分,实验结果表明,氯化汞进入不同类型和质地的土壤后,一半以上转化为残渣态,而水溶态和交换态以及酸溶态的甲基态都很少,其他形态在土壤中也占有一定的比例。在不同的土壤中,各种形态汞的分布有所不同;但对同一种土壤来说,汞的形态分布顺序与施汞量无关。  相似文献   

17.
叶青双在水中的光降解非常迅速,降解半衰期为1.20~2.22h,叶青双的降解物2-氨基-5-巯基-1,3,4-噻二唑在水中的光降解也非常迅速,其降解半衰期为2.25~2.34 h。  相似文献   

18.
采用土壤掩埋试验,研究了生物降解高分子PHBV(生物代谢合成的3-羟基丁酸酯和3-羟基戊酸酯的无规共聚物)薄膜在环境中的降解行为及其影响因素。研究表明,PHBV薄膜在土壤中的降解率要高于在水体中的降解率。PHBV薄膜在江西红壤中降解最快,60d时其失重率达80%,其次为吉林黑土、北京菜园土和垃圾土。PHBV薄膜在垃圾渗滤液中的失重率要大于农田水和自来水。影响PHBV薄膜在环境介质中降解的主要因素为微生物的数量和土壤特性。PHBV薄膜在水相中的降解行为包括微生物降解和水解反应,好氧菌和厌氧菌均能促进薄膜的降解。  相似文献   

19.
本文研究了乐果在环境水中消解和淋失的情况。试验结果表明:在稻田水、河塘水、井水中乐果消解的平均半衰期分别为1.3d、2.6d和6.6d,药后2d内,尤其是药后当天遇暴雨,其流失会造成径流污染;渗漏流失大于丁草胺和氰戊菊酯。建议稻田慎用、少用水溶性农药,以减少对自然环境水和地下水的污染。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号