首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent declines in North American honeybee populations have highlighted the importance of native bee conservation, and the need for research on the ecological requirements of native bees in farmland. In this study, we investigated the value of hedgerows as foraging habitat for native bees in mosaics of small-scale agriculture and natural vegetation in two riparian landscapes in southeast Arizona, USA. In the summers of 2002 and 2003, we surveyed bees and flowers in four habitats: hedgerows, agricultural fields, woodlots, and native woodland. We asked: (1) How do hedgerows compare to other available habitats in bee abundance and species richness? (2) How does bee species composition in hedgerows compare to species composition in agricultural fields and woodland? (3) How do flower resources in hedgerows compare to those in fields and woodland?We found that hedgerows were attractive foraging habitat for native bees, especially in early summer, when hedgerows tended to have higher species richness than other agricultural or natural habitats. Cumulative species richness was highest in agricultural fields, although cumulative species richness did not significantly differ among fields, hedgerows, and woodland. While bee faunas overlapped among habitats, bee assemblages in hedgerows were more similar to those in woodland than to those in fields. The hedgerow herbaceous flora was roughly intermediate to that of fields and woodland; hedgerows also supported high densities of woodland-characteristic shrubs. These flowering shrubs were important in attracting bees that were otherwise uncommon in the landscape, including some species that are potentially valuable pollinators of agricultural crops.  相似文献   

2.
Marginal habitats such as hedgerows or roadsides become especially important for the conservation of biodiversity in highly modified landscapes. With concerns of a global pollination crisis, there is a need for improving pollinator habitat. Roadsides restored to native prairie vegetation may provide valuable habitat to bees, the most important group of pollinators. Such roadsides support a variety of pollen and nectar sources and unlike agricultural fields, are unplowed, and therefore can provide potential nesting sites for ground-nesting bees. To examine potential effects of roadside restoration, bee communities were sampled via aerial netting and pan trapping along roadside prairie restorations as well as roadsides dominated by non-native plants. Management of roadside vegetation via the planting of native species profoundly affected bee communities. Restored roadsides supported significantly greater bee abundances as well as higher species richness compared to weedy roadsides. Floral species richness, floral abundance, and percentage of bare ground were the factors that led to greater bee abundance and bee species richness along restored roadsides. Traffic and width of roadside did not significantly influence bees, suggesting that even relatively narrow verges near heavy traffic could provide valuable habitat to bees. Restored and weedy roadside bee communities were similar to the prairie remnant, but the prairie remnant was more similar in bee richness and abundance to restored roadsides. Restoring additional roadsides to native vegetation could benefit pollinator conservation efforts by improving habitat on the millions of acres of land devoted to roadsides worldwide, land that is already set aside from further development.  相似文献   

3.
Local habitat structure and resource availability appear to be of great importance for the diversity, abundance, and community structure of bees. We examined the contribution of three different habitat types (farmland, forest edge, forest understory) to bee diversity in a tropical forest-agriculture mosaic in Western Kenya and analysed differences and overlap in plant-bee community interactions between nearby habitats. We used network properties (network size and specialization indices) and bee species turnover to examine temporal and spatial variation of flower-visitation interaction networks in general and in bee species composition in detail across habitats. In total we found 121 bee and 89 plant species involved in the interactions. Results suggest that bees were limited by floral resources because the largest networks, highest diversity, and largest abundances were found at the forest edge and in the farmland which hosted higher amounts of flowers and a more homogeneous distribution of resources in space and time. Forest in the study area is characterized by (1) lower flower density and (2) more humid conditions relative to the farmland. We therefore suggest that the species-rich and structurally diverse farmland acts as a “pollinator rescue” which supports bee communities in the natural forest. We advise conservation managers and politicians to conserve the structural richness of the farmland to (1) preserve bee diversity within the farmland and (2) conserve positive effects of the farmland on bee activity in the forest remnant.  相似文献   

4.
北京昌平区农业景观野生蜂多样性的时空动态分布   总被引:1,自引:0,他引:1  
近年来,由于生境质量的下降和生境丧失,野生蜂多样性急剧下降,严重威胁传粉服务和农业的可持续发展。为揭示野生蜂在农业景观镶嵌体中的时空分布格局及不同生境对野生蜂保护的重要性,本研究于2016年4—9月采用网捕法调查了北京昌平农业景观4种主要生境类型(人工林、自然灌木林、荒草地和桃园)中的野生蜂,分析不同生境类型中野生蜂多样性及其时间动态变化特征。结果表明:野生蜂及其中的大体长蜂和独居蜂的物种数和个体数,以及中体长蜂的个体数均在自然灌木林中最高,人工林中小体长蜂个体数最多,野生蜂总个体数和总物种数均在桃园中最低。在不同月份,所有功能群野生蜂均在自然或半自然生境中最高,5月桃园中最低,原因可能与桃园中对地表杂草的集约化管理有关。多度最大的4个优势物种依次为黄胸彩带蜂、铜色隧蜂、黄芦蜂和隧淡脉隧蜂,其在生境间的时间动态特征不同。调查的4种生境均为野生蜂提供了可利用资源,但自然生境和半自然生境的作用更大;其中,自然灌木林维持了较多具有较高潜在传粉效率的中体长和大体长野生蜂,具有更高的保护价值。为了促进该地区农业景观中不同功能群野生蜂多样性及传粉服务,需提高生境类型的多样性,同时在野生蜂活动高峰季节采取低集约化的生境管理方式。  相似文献   

5.
Despite the loss of 83% of native forests in the Philippines, little is known on the effects of this massive habitat loss and degradation on its forest biotas. This is a cause for concern because of the threat posed to the country’s large number of endemic taxa. To investigate the impacts of anthropogenic disturbance, forest birds and butterflies were surveyed in closed and open canopy forests, as well as suburban, rural and urban areas within the Subic Bay Watershed Reserve and Olongapo City in western Luzon. Measures of forest species richness and population densities for both taxa were similar in the two forest types, but showed different patterns in the other habitats. Indirect gradient analysis showed that forest bird species were positively correlated with vegetation variables (i.e., canopy cover, tree density, height to inversion and ground cover), while forest butterflies were not strongly correlated to any of the measured habitat variables. Community composition of birds in forests was distinct from those in modified habitats, while butterfly communities were more similar. A simulation showed that canopy cover of 60% or higher was required by 24 of the 26 bird species that were sensitive to canopy loss. Endemicity and nesting strata were the significant predictors of vulnerability to habitat disturbance for birds, while endemicity and larval hostplant specificity were significant for butterflies. Both taxa were negatively affected by anthropogenic disturbance but may respond to different components in the habitat (i.e., structure and resources), and thus cannot be used as surrogates of each other. Conservation of forests with contiguous canopy cover should be prioritized, and more ecological research is needed to improve the knowledge on the effects of disturbance on Philippine biodiversity.  相似文献   

6.
Over the past few decades, the montane forests of Peninsula Malaysia have been severely impacted by the cultivation of exotic crops and urban sprawl. To guide conservation initiatives, montane bird communities were studied to determine their response along a disturbance gradient with the aim of identifying key factors influencing their distribution. Habitat types surveyed included primary and secondary montane forests, a tea plantation, rural, and urban areas in Cameron Highlands and Fraser’s Hill. Response variables included species richness and density quantified via point counts and mistnet surveys. Explanatory variables measured were related to vegetation structure, food abundance and land-use cover. Estimated ‘true’ species richness was higher for pristine and minimally disturbed sites, lower in tea plantation and lowest in heavily developed town centres. Nonmetric multidimensional scaling revealed that both vegetation structure (e.g. canopy density) and land-use cover (e.g. proportion of forest cover) influence species distribution; certain invasive lowland birds were tolerant of extreme development and native montane birds, in general, endured only slight habitat disturbances. A simulation indicated that montane forest dependant species richness started to decline when more than 20% of the canopy cover was lost. Less than a third of the species richness remained when more than 40% of the canopy cover was cleared. The logistic regression model suggested that sensitive species nested lower, were restricted to montane habitats and foraged in mid or high canopy. The dominance of lowland invasives in highly developed urban sites reveals that homogenisation of bird communities can occur even at higher altitudes (>1400 m a.s.l.). The results indicated that native montane birds communities are sensitive to habitat loss and degradation. Thus, any development in the highlands must proceed with minimal disturbance to montane forests, of which, keeping the canopy cover intact should be a crucial consideration.  相似文献   

7.
Studies of the interspecific relationships between alien and native pollinator species can help forecast the success of alien species as well as assess the extent of disturbance to native plant-pollinator interactions. We examined the habitat and flower resource occupancy by the invasive introduced bumble bee Bombus terrestris and three dominant native bumble bees in central Hokkaido, northern Japan, in relation to a landscape factor (forest cover ratio) and flower morphology with respect to the proboscis length of bees. Three years of monitoring the invasive boundary of B. terrestris indicated that this species, which dominates open agricultural areas, probably will not invade the forests in which the native species dominate. This habitat partitioning likely followed the displacement of the natives by the invader in open agricultural lands. In forested areas, the native species partitioned flower resources on the basis of the relationship between proboscis length and the lengths of the corolla tubes of flowers. However, in open agricultural areas, both the long- and short-tubed flowers were primarily visited by the exotic short-tongued B. terrestris, which foraged illegitimately (by nectar robbing) on long-tubed flowers (Trifolium pratense L.) and legitimately on short-tubed flowers (T. repens L. and Lavandula angustifolia Mill.). The invasion of B. terrestris into open natural vegetation, in addition to open agricultural areas, has recently been reported in Hokkaido. Even though the exotic and dominant native bumble bees partition their habitat according to landscape factors, the invasive bee has the potential to alter the overall interactions within plant-pollinator systems in the regions of open vegetation on Hokkaido Island.  相似文献   

8.
Riparian zones are a characteristic component of many landscapes throughout the world and increasingly are recognised as key areas for biodiversity conservation. Their importance for bird communities has been well recognised in semi-arid environments and in modified landscapes where there is a marked contrast between riparian and adjacent upslope vegetation. The value of riparian zones in largely intact landscapes with continuous vegetation cover is less well understood. In this study, birds were surveyed at 30 pairs of riparian and adjacent non-riparian sites in extensive mesic forests of the Victorian Highlands, Australia. Riparian sites were floristically distinct from non-riparian sites and had a more complex vegetation structure, including a mid-storey tree layer mostly absent from non-riparian sites. Bird assemblages at riparian sites had significantly greater richness, abundance and diversity of species than was recorded at adjacent non-riparian sites. Species composition also differed significantly between these habitat types. Compositional differences in assemblages were due to a suite of distinctive species in each habitat and to significant contrasts in the densities of species that occurred in both habitat types. Many species (36%) attained a significantly greater abundance in riparian habitats. The distinctiveness and richness of the riparian avifauna contribute to the diversity of continuous forest landscapes. The spatial patterning of the avifauna, the occurrence of complementary assemblages, the presence of rare species and the potential for riparian habitats to serve as refuges, all point to the value of riparian zones and highlight the importance of landscape-level planning and management for avifaunal conservation.  相似文献   

9.
Mediterranean landscapes comprise a complex mosaic of different habitats that vary in the diversity of their floral communities, pollinator communities and pollination services. Using the Greek Island of Lesvos as a model system, we assess the biodiversity value of six common habitats and measure ecosystemic ‘health’ using pollen grain deposition in three core flowering plants as a measure of pollination services. Three fire-driven habitats were assessed: freshly burnt areas, fully regenerated pine forests and intermediate age scrub; in addition we examined oak woodlands, actively managed olive groves and groves that had been abandoned from agriculture. Oak woodlands, pine forests and managed olive groves had the highest diversity of bees. The habitat characteristics responsible for structuring bee communities were: floral diversity, floral abundance, nectar energy availability and the variety of nectar resources present. Pollination services in two of our plant species, which were pollinated by a limited sub-set of the pollinator community, indicated that pollination levels were highest in the burnt and mature pine habitats. The third species, which was open to all flower visitors, indicated that oak woodlands had the highest levels of pollination from generalist species. Pollination was always more effective in managed olive groves than in abandoned groves. However, the two most common species of bee, the honeybee and a bumblebee, were not the primary pollinators within these habitats. We conclude that the three habitats of greatest overall value for plant-pollinator communities and provision of the healthiest pollination services are pine forests, oak woodland and managed olive groves. We indicate how the highest value habitats may be maintained in a complex landscape to safeguard and enhance pollination function within these habitats and potentially in adjoining agricultural areas.  相似文献   

10.
With recent emphasis on sustainable agriculture, conservation of native biota within agricultural systems has become a priority. Remnant trees have been hypothesized to increase biological diversity in agro-ecosystems. We investigated how remnant Oregon white oak (Quercus garryana) trees contribute to conserving bird diversity in the agro-ecosystem of the Willamette Valley, Oregon, USA. We compared bird use of isolated oak trees in three landscape contexts - croplands, pastures, and oak savanna reserves - and ranked the relative importance of four factors thought to influence bird use of individual trees: (i) tree architecture; (ii) tree isolation; (iii) tree cover in the surrounding landscape; and (iv) landscape context, defined as the surrounding land use. We evaluated species-specific responses and four community-level responses: (i) total species richness; (ii) richness of oak savanna-associates; (iii) tree forager richness; and (iv) aerial and ground forager richness. We documented 47 species using remnant oaks, including 16 species typically occurring in oak savanna. Surprisingly, landscape context was unimportant in predicting frequency of use of individual trees. Tree architecture, in particular tree size, and tree cover in the surrounding landscape were the best predictors of bird use of remnant trees. Our findings demonstrate that individual remnant trees contribute to landscape-level conservation of bird diversity, acting as keystone habitat structures by providing critical resources for species that could not persist in otherwise treeless agricultural fields. Because remnant trees are rarely retained in contemporary agricultural landscapes in the United States, retention of existing trees and recruitment of replacement trees will contribute to regional conservation goals.  相似文献   

11.
Secondary forests and exotic tree plantations are rapidly expanding across tropical landscapes, yet we currently have a very poor understanding of the value of these human-dominated forest landscapes for biodiversity conservation. Mist netting, point counts and transect walks were used to compare the bird communities of these habitats and neighboring primary forest in north-east Brazilian Amazonia. The extensive spatial scale of plantations and second-growth in our study area enabled us to implement a robust replicated design, with survey plots approximately two to three orders of magnitude larger than most previous studies of land-use change in the tropics, thus minimising the influence of the surrounding landscape. Species richness was highest in primary forest and lowest in Eucalyptus plantations, and community turnover between habitats was very high whether based upon matrices of relative abundance or species presence-absence data, and for both point count and mist net data. Monthly line-transect censuses conducted over an annual cycle showed an increase in the detection of canopy frugivores and seed predators during the peak of flower and fruit availability in primary forest, but failed to suggest that second-growth or Eucalyptus stands provide suitable foraging habitat at any time of the year. The conservation value of both secondary forest and plantations was low compared to conclusions from previous studies. Our results indicate that while large-scale reforestation of degraded land can increase regional levels of diversity, it is unlikely to conserve most primary forest species, such as understorey insectivores and canopy frugivores.  相似文献   

12.
North American beavers (Castor canadensis) were introduced into southern South America in 1946. Since that time, their populations have greatly expanded. In their native range, beavers shape riparian ecosystems by selectively feeding on particular plant species, increasing herbaceous richness and creating a distinct plant community. To test their effects as exotic engineers on sub-Antarctic vegetation, we quantified beaver impacts on tree canopy cover and seedling abundance and composition, as well as their impacts on herbaceous species richness, abundance and composition on Navarino Island, Cape Horn County, Chile (55°S). Beavers significantly reduced forest canopy up to 30 m away from streams, essentially eliminating riparian forests. The tree seedling bank was greatly reduced and seedling species composition was changed by suppressing Nothofagus betuloides and Nothofagus pumilio, but allowing Nothofagus antarctica. Herbaceous richness and abundance almost doubled in meadows. However, unlike beaver effects on North American herbaceous plant communities, much of this richness was due to invasion by exotic plants, and beaver modifications of the meadow vegetation assemblage did not result in a significantly different community, compared to forests. Overall, 42% of plant species were shared between both habitat types. Our results indicate that, as predicted from North American studies, beaver-engineering increased local herbaceous richness. Unlike in their native range, though, they did not create a unique plant community in sub-Antarctic landscapes. Plus, the elimination of Nothofagus forests and their seedling bank and the creation of invasion pathways for exotic plants together threaten one of the world’s most pristine temperate forest ecosystems.  相似文献   

13.
We evaluate the alpha (within patch species richness), beta (spatial turnover among patches) and gamma (landscape) diversity of frogs in a tropical montane cloud forest (TMCF) in central Veracruz, Mexico in order to assess (1) the influence of forest fragmentation on frog assemblages, (2) the importance to diversity of the various elements of the landscape matrix, including the shaded coffee plantations and cattle pastures that surround TMCF and (3) to identify the frog guilds most affected by habitat transformation. We sampled ten sites between May 1998 and November 2000: five TMCF fragments and five anthropogenic habitats. For the entire landscape, we registered 21 species belonging to six families. 100% of these were found in the TMCF fragments and 62% in the surrounding mosaic of anthropogenic habitats. Gamma diversity (γ) is determined to a greater extent by species exchange (β) than by local species richness (α). Elevational variation, the degree of conservation of the vegetation canopy and fragment size appear to determine the species diversity of this landscape. Large species, terrestrial species, those whose eggs develop outside water, and those whose larvae develop in the water seemed to be most affected by habitat transformation. On its own, even the largest and most species-rich cloud forest fragment is not capable of preserving the current anuran diversity. Neither are the shaded coffee plantations that are interspersed among and link the patches of TMCF. However together they form a diverse system of habitats crucial to species conservation in this landscape.  相似文献   

14.
The maintenance of connecting habitats such as hedgerows in production landscapes could become increasingly critical as species migration is expected to accelerate with climate change. Species of particular conservation interest that could benefit from connecting habitats especially in agroecosystems are native forest herbs. It is still unclear, however, which hedgerow habitats have the best potential of supporting diverse forest herb communities, making it hard to target particular structures for conservation. Our objective was to identify the local and landscape characteristics of hedgerows that could help predict their potential at maximizing the richness, abundance, and diversity of native forest herbs of temperate deciduous forests of North-East America. We used multiple regression, Moran’I correlograms, and conditional autoregressive models to assess the effect of landscape and historical variables (hedgerow age, amount of adjacent forest cover, connection to forests and other hedgerows) and of local variables (hedgerow width, canopy cover, cover of other species) on the response variables. The results show an increase in forest herb diversity and abundance in hedgerows with time and with increasing nearby forest cover. Local factors such as greater width and reduced cover of other species also relate to a greater abundance and diversity of forest herbs in linear habitats. The fact that forest herb communities can reassemble in hedgerow corridors with time implies that there could be long-term benefits in maintaining and even creating linear habitats where there is a pool of dispersing forest herbs.  相似文献   

15.
The Chaco Serrano Woodland from central Argentina has been dramatically reduced during the past 30 years, and is currently confined to several isolates of different size. In this study, we evaluated the effects of forest size, isolation and edge formation on plant species richness. Furthermore, we tested whether plants species with particular ecological traits were differentially affected by habitat fragmentation. Habitat area showed the highest explanatory value for plant species richness in stepwise multiple regressions. The effect of area was most pronounced for rare species, suggesting that large forests are necessary to preserve species with low local or regional abundance. Differences between edge and interior of Chaco Serrano were more pronounced for native and shrub species richness. The analysis of individual species cover revealed that native and biotically pollinated plants were less abundant in woodland edges. Our results showed that forest transformation into smaller remnants has lead to an impoverishment of plant communities, with particular subsets of species defined by ecological traits (rarity, origin and pollination mode) being more susceptible.  相似文献   

16.
The long-term dynamics of plant communities remain poorly understood in isolated tropical forest fragments. Here we test the hypothesis that tropical tree assemblages in both small forest fragments and along forest edges of very large fragments are functionally much more similar to stands of secondary growth (5-65-yr old) than to core primary forest patches. The study was carried out in a severely fragmented landscape of the Brazilian Atlantic forest. Nine functional attributes of tree assemblages were quantified by sampling all trees (DBH ? 10 cm) within 75 plots of 0.1 ha distributed in four forest habitats: small forest fragments (3.4-79.6 ha), forest edges, second-growth patches, and primary forest interior areas within a large forest fragment (3500 ha). These habitats were markedly different in terms of tree species richness, and in the proportion of pioneer, large-seeded, and emergent species. Age of second-growth stands explained between 31.4% and 88.2% of the variation in the functional attributes of tree assemblages in this habitat. As expected, most traits associated with forest edges and small forest fragments fell within the range shown by early (<25-yr old) and intermediate-aged secondary forest stands (25-45-yr old). In contrast to habitat type, tree assemblage attributes were not affected by vegetation type, soil type and the spatial location of plots. An ordination analysis documented a striking floristic drift in edge-affected habitats. Our results suggest that conservation policy guidelines will fail to protect aging, hyper-fragmented landscapes from drastic impoverishment if the remaining forest patches are heavily dominated by edge habitat.  相似文献   

17.
Remaining patches of semi-natural grasslands are hot spots for biodiversity in modern agricultural landscapes. In Sweden semi-natural pastures cover approximately 500,000 ha. However, power-line corridors, road verges and clear-cuts cover larger areas (in total about 2,000,000 ha), and these open, less intensively managed habitats are potentially important for species associated with taller vegetation and flower resources (e.g. pollinating insects). The aim of the present study was to evaluate the relative importance of semi-natural pastures and the other three open habitats for butterflies in 12 forest-farmland mosaic landscapes in south central Sweden. Species composition differed significantly between habitats in multivariate analyses. Power-line corridors and semi-natural pastures harbored several species that were disproportionally abundant in these habitats (13 and 8 species, respectively), and power-line corridors also harbored several species that were classified as typical in indicator species analyses. There were more butterfly species, higher abundances and a tendency for more individuals of red-listed species in power-line corridors than in the other three habitats. Effects of the surrounding landscape composition seemed to be weaker than that of the local habitat. However, species composition was significantly associated with landscape composition and species with intermediate and low mobility were more abundant in forested landscapes than in landscapes dominated by arable fields. Analyses of flying time and host plants for larvae suggest that early flying species and species associated with dwarf shrubs were more common in power-line corridors than in the other habitats. A landscape perspective, which takes several habitats into account, is needed for conservation of butterfly communities in forest-farmland landscapes. Power-line corridors and road verges offer possibilities for creating habitats that are suitable for pollinating insects through conservation-oriented management.  相似文献   

18.
Changes to land use and disturbance frequency threaten disturbance-dependent Lepidoptera within sandplain habitats of the northeastern United States. The frosted elfin (Callophrys irus) is a rare and declining monophagous butterfly that is found in xeric open habitats maintained by disturbance. We surveyed potential habitat for adult frosted elfins at four sites containing frosted elfin populations in southeastern Massachusetts, United States. Based on the survey data, we used kernel density estimation to establish separate adult frosted elfin density classes, and then used regression tree analysis to describe the relationship between density and habitat features. Adult frosted elfin density was greatest when the host plant, wild indigo (Baptisia tinctoria), density was >2.6 plants/m2 and tree canopy cover was <29%. Frosted elfin density was inversely related to tree cover and declined when the density of wild indigo was <2.6 plants/m2 and shrub cover was ?16%. Even small quantities of non-native shrub cover negatively affected elfin densities. This effect was more pronounced when native herbaceous cover was <36%. Our results indicate that management for frosted elfins should aim to increase both wild indigo density and native herbaceous cover and limit native tree and shrub cover in open sandplain habitats. Elimination of non-native shrub cover is also recommended because of the negative effects of even low non-native shrub cover on frosted elfin densities. The maintenance of patches of early successional sandplain habitat with the combination of low tree and shrub cover, high host plant densities, and the absence of non-native shrubs appears essential for frosted elfin persistence, but may also be beneficial for a number of other rare sandplain insects and plant species.  相似文献   

19.
A critical handicap to tropical biodiversity conservation efforts in agroecosystems is the unknowns regarding the influence of landscape-scale factors on the persistence of species. To address these uncertainties, we explored two essential landscape-scale questions, within India’s biologically-rich Western Ghats, examining two nearby human-dominated landscapes that dramatically differed in their pattern of land cover. First, how does the proximity of intact forest patches affect bird community composition within agricultural landscapes? Second, can simple remote sensing-derived measures (brightness, wetness, and NDVI) be used to estimate native bird species composition within those landscapes? In both landscapes, as distance to intact forest decreased, the similarity in bird community composition between agricultural areas and intact forest increased. This suggests that the retention of tropical forest bird communities within human-dominated landscapes critically depends on the maintenance of nearby intact forest. In an answer to the second question, the remote sensing measures correlated with forest-affiliated avian species richness in only one of the two landscapes, reflecting an ecological difference between the two in the response of forest bird species to local agricultural conditions. In the landscape where a correlation was found, there was high variation in vegetative structure, which strongly impacted both the remote sensing measures and forest bird species richness. In the other landscape, forest species richness strongly correlated with changes in tree species composition in the agriculture, a factor that could not be detected by the remote sensing metrics. In order to successfully conserve biodiversity in tropical agricultural landscapes, our findings show that it is essential to conserve intact forest within those landscapes and to understand the effect of local agricultural practices on species.  相似文献   

20.
We evaluated the relationship between amphibian and reptile diversity and microhabitat dynamics along pasture-edge-interior ecotones in a tropical rainforest in Veracruz, Mexico. To evaluate the main correlation patterns among microhabitat variables and species composition and richness, 14 ecotones were each divided into three habitats (pasture, forest edge and forest interior) with three transects per habitat, and sampled four times between June 2003 and May 2004 using equal day and night efforts. We measured 12 environmental variables describing the microclimate, vegetation structure, topography and distance to forest edge and streams.After sampling 126 transects (672 man-hours effort) we recorded 1256 amphibians belonging to 21 species (pasture: 12, edge: 14, and interior: 13 species), and 623 reptiles belonging to 33 species (pasture: 11, edge: 25, and interior: 22 species). There was a difference in species composition between pasture and both forest edge and interior habitats. A high correlation between distance to forest edge and temperature, understorey density, canopy cover, leaf litter cover, and leaf litter depth was found. There was also a strong relationship between the composition of amphibian and reptile ensembles and the measured environmental variables. The most important variables related to amphibian and reptile ensembles were canopy cover, understorey density, leaf litter cover and temperature.Based on amphibian and reptile affinity for the habitats along the ecotone, species were classified into five ensembles (generalist, pasture, forest, forest edge and forest interior species). We detected six species that could indicate good habitat quality of forest interior and their disappearance may be an indication of habitat degradation within a fragment, or that a fragment is not large enough to exclude edge effects. Different responses to spatial and environmental gradients and different degrees of tolerance to microclimatic changes indicated that each ensemble requires a different conservation strategy. We propose to maintain in the Los Tuxtlas Biosphere Reserve the forest remnants in the lowlands that have gentler slopes and a deep cover of leaf litter, a dense understorey, and high relative humidity and low temperature, to buffer the effects of edge related environmental changes and the invasion of species from the matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号