首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exotic plant invasions alter ecosystem structure and function above- and below-ground through plant–soil feedbacks. The resistance of ecosystems to invasion can be measured by the degree of change in microbial communities and soil chemical pools and fluxes, whereas their resilience can be measured by the ability to recover following restoration. Coastal sage scrub (CSS) is one of the most highly invaded ecosystems in the US but the response of CSS soils to exotic plant invasion is little known. We examined resistance and resilience of CSS soil chemical and biological characteristics following invasion of exotic annual grasses and forbs and restoration of the native plant community. We hypothesized that invasion of exotic plant species would change biological and chemical characteristics of CSS soils by altering soil nutrient inputs. Additionally, we expected that if exotic plants were controlled and native plants were restored, native soil characteristics would recover. We sampled two locations with invaded, restored and native CSS for plant community composition, soil chemistry and microbial communities, and phospholipid fatty acid (PLFA) profiles. Communities invaded by exotic annuals were resistant to some measured parameters but not others. Extractable nitrogen pools decreased, nitrogen cycling rates increased, and microbial biomass and fungal:bacterial ratios were altered in invaded soils, and these effects were mediated by the phenological stage of the dominant plant species. The largest impact of invasion on soils was an overall reduction of spatial heterogeneity in soil nutrients, nutrient cycling and microbial communities. Restored plots tended to recover in most biotic and chemical parameters including increased resource heterogeneity compared to invaded plots, suggesting that CSS soils are resilient but not resistant to invasion.  相似文献   

2.
We studied the effect of sowing low-diversity seed mixtures (containing 2-3 competitive grass species) on the regeneration of vegetation on croplands previously used as alfalfa fields. In four permanent plots in 10 restored fields (four with alkali and six with loess seed mixture) the cover of flowering plants was recorded and phytomass was measured between 2006 and 2008. We asked three questions: (i) How fast will weedy, short-lived species decrease in abundance during secondary succession enhanced by sowing low-diversity seed mixtures? (ii) Can weeds be suppressed by sowing competitive native grasses, followed up by management by mowing? (iii) Can succession towards the target native grasslands be accelerated by sowing only low-diversity seed mixtures compared to set-aside old field succession? Our results showed that in just two years a vegetation dominated by perennial grasses has developed, which successfully prevented the establishment of weed species. These results suggested that sowing seeds of two or three competitive grass species is an effective tool to eliminate weed domination and to lead towards the restoration of species poor grasslands with grass domination such as alkali grasslands. However, the developed dense perennial grass cover and the accumulated litter may hamper the immigration of specialist species characteristic to reference grasslands. Therefore, the restoration of species-rich grasslands requires the facilitation of the immigration of grassland specialist species by further management (grazing, mowing and/or hay-transport).  相似文献   

3.
Exotic annual brome invasion has been well studied in western North American rangelands, particularly for Bromus tectorum L. invasion in sagebrush (Artemisia tridentata) grasslands. We examined both aboveground and belowground properties in native sagebrush grassland and adjacent areas dominated by exotic annual bromes (B. tectorum L. and Bromus japonicus Thunb.) to better understand the fundamental ecological differences between native and invaded areas. Field sites were located in north central Wyoming, USA, and plots were established in areas that had been historically subject to wildfire and either (1) recolonized by native sagebrush grassland vegetation or (2) invaded by exotic annual bromes. We employed measures of vegetation community structure as well as soil physical, chemical, and microbiological properties. Plots with greater than 20 % exotic annual brome cover had significantly less cover of all native vegetation functional groups resulting in lower richness and evenness than native plots. Invaded plots also had low diversity plant communities that were continuous and uniform across space. Soils beneath invaded plant communities had higher infiltration rates, higher levels of total nitrogen, and a lower C/N ratio than the native soils. Invaded soils also had 90–96 % lower abundance of all soil microbial groups measured by phospholipid fatty acid. We conclude that areas dominated by exotic annual bromes display different aboveground and belowground properties compared to the native community, and these changes possibly include spatial and temporal shifts in soil resources and organic matter processing.  相似文献   

4.
Decline of leafy spurge (Euphorbia esula) in the northern Great Plains of the US is generally viewed as a success story for biological control, but quality of the vegetation that survived the infestation is key to recovery of ecosystem function. In addition, effects of other invasive species, notably cool-season exotic grasses, must be taken into account. Objectives of this study were (1) to evaluate direction and significance of changes in biomass of native and exotic grasses, forbs, and leafy spurge and in plant species composition following control of leafy spurge by flea beetles and (2) to evaluate the relative effects of leafy spurge and exotic grasses on biomass of native grasses, biomass of forbs, and richness of native species. We monitored species composition (1998-2003 and 2008) and biomass (2000, 2002, 2003 and 2008) of these groups on spurge-infested and noninfested permanent plots at three sites with unbroken prairie sod in North Dakota, USA. We found little evidence, in terms of species richness or biomass of native grasses or forbs, that leafy spurge was being replaced by desirable native species, although desirable as well as weedy and exotic species were characteristic of 2008 vegetation at all three sites. Structural equation models revealed that leafy spurge had temporally intermittent negative effects on forb biomass and species richness, but no effects on native grasses. In contrast, exotic grass had consistently strong, negative effects on native grass biomass, as well as stronger negative effects than leafy spurge on native species richness. Although substantial native plant diversity remains at these sites, exotic grasses pose an important threat to these crucial building blocks of native prairie ecosystems.  相似文献   

5.
Tallgrass prairie restoration has been practiced for more than 75 years, yet few studies have systematically tested restoration methods over large geographic regions with the intent of refining methodology. In this study, we used three planting methods (dormant-season broadcast, growing-season broadcast and growing-season drill) fully crossed with three levels of seed species richness (10, 20, and 34 spp). We replicated the study on nine former agricultural fields located from east-central Iowa (Neal Smith National Wildlife Refuge) to northwestern Minnesota (Litchfield, Fergus Falls and Morris Wetland Management Districts), USA, within the northern tallgrass prairie biome. Objectives were to evaluate the relative influences of planting method, seed mix richness, and their interactions, on (1) planted cover (both total and by guild) and richness, (2) exotic species cover, and (3) non-planted native species cover. Optimal techniques varied between the two study areas: the dormant broadcast method produced greater cover of planted species at the Minnesota sites and the growing-season drill method produced greater cover of planted species at Iowa sites. The dormant broadcast method strongly favored establishment of perennial forbs while the growing-season drill favored warm-season grasses. Although increasing richness of the seed mix produced greater planted species richness, this did not result in greater resistance to exotic invasion. We conclude that, if planting during the growing season, drilling seed is preferable to broadcasting, but if the choice is between broadcasting seed in the dormant or growing season, the dormant season is preferred.  相似文献   

6.
《Applied soil ecology》2007,35(3):622-634
Rocky Mountain National Park (RMNP), Colorado, USA, contains a diversity of plant species. However, many exotic plant species have become established, potentially impacting the structure and function of native plant communities. Our goal was to quantify patterns of exotic plant species in relation to native plant species, soil characteristics, and other abiotic factors that may indicate or predict their establishment and success. Our research approach for field data collection was based on a field plot design called the pixel nested plot. The pixel nested plot provides a link to multi-phase and multi-scale spatial modeling-mapping techniques that can be used to estimate total species richness and patterns of plant diversity at finer landscape scales. Within the eastern region of RMNP, in an area of approximately 35,000 ha, we established a total of 60 pixel nested plots in 9 vegetation types. We used canonical correspondence analysis (CCA) and multiple linear regressions to quantify relationships between soil characteristics and native and exotic plant species richness and cover. We also used linear correlation, spatial autocorrelation and cross correlation statistics to test for the spatial patterns of variables of interest. CCA showed that exotic species were significantly (P < 0.05) associated with photosynthetically active radiation (r = 0.55), soil nitrogen (r = 0.58) and bare ground (r = −0.66). Pearson's correlation statistic showed significant linear relationships between exotic species, organic carbon, soil nitrogen, and bare ground. While spatial autocorrelations indicated that our 60 pixel nested plots were spatially independent, the cross correlation statistics indicated that exotic plant species were spatially associated with bare ground, in general, exotic plant species were most abundant in areas of high native species richness. This indicates that resource managers should focus on the protection of relatively rare native rich sites with little canopy cover, and fertile soils. Using the pixel nested plot approach for data collection can facilitate the ecological monitoring of these vulnerable areas at the landscape scale in a time- and cost-effective manner.  相似文献   

7.
Revegetation has been the primary management approach for solving the problems caused by severe soil erosion in the Loess Plateau. The objectives of this work were to explore the successional trajectory of the different types of restoration and discuss their potential effectiveness for the control of soil erosion. The presence and coverage of plants in 40 permanent plots were investigated during two periods (2003–2006 and 2013). The naturally and artificially revegetated communities studied in the two surveys were classified using two‐way indicator species analysis, and their relationships were analyzed using detrended correspondence analysis. Under natural revegetation, the communities succeed in the following order: annual plants → perennial plants → short rhizome tufts and subshrubs. Under artificial revegetation, succession was interrupted by artificial planting, and a Gramineae herb layer persisted through the years with few changes in species composition. Additionally, species richness, diversity, and evenness increased, while ecological dominance decreased during succession in both revegetation types. Succession rate was rapid at the initial stage and then slowed down gradually. Succession followed different trajectories under natural and artificial revegetation, and based on the potential effects of the two approaches on soil erosion and soil desiccation, we suggest that natural revegetation is preferable over artificial revegetation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
Invasion of natural ecosystems by exotic species is a major threat to biodiversity globally. We assessed two alternative (but not exclusive) hypotheses to explain the success of exotic species in urban bushland on low fertility sandstone-derived soils in Sydney, Australia. These were that success of exotic species is promoted by: (1) plant attributes in particular disturbance types; and (2) freedom from herbivores. We tested these at sites subject to different types of disturbance: nutrient and water enrichment (below stormwater outlets), nutrient enrichment (riparian zones of creeks with an urban catchment) and physical disturbance (tracks), and control sites. At each site we estimated percentage cover of all species and surveyed leaves for damage by herbivores. Species were classified as native, non-invasive exotic or invasive exotic. We found that sites without any disturbance did not support exotic plants. Physically disturbed sites on low fertility soils supported only one exotic species, suggesting that nutrient enrichment is a critical prerequisite for exotic species invasion on low fertility soils. Exotic species cover was highest and native species richness most reduced in areas of highest nutrient enrichment. Both invasive exotic and non-invasive exotic species had significantly lower levels of leaf herbivory than native species, implying that release from pests alone cannot account for the success of invasive species. Specific leaf area of invasive exotic species was consistently higher than specific leaf area of non-invasive exotic and native species, regardless of disturbance type. In physically disturbed sites of higher soil fertility, exotic species were small herbs and grasses of long flowering duration and with small unassisted or wind-dispersed seeds. In sites subject to nutrient-enrichment, exotic species were more likely to be climbers, able to propagate vegetatively, and with seeds dispersed by vertebrates. Thus different plant attributes contribute to exotic species success under different disturbance types. The clearest consistent difference we found between invasive exotic and non-invasive exotic species was in specific leaf area, suggesting that large specific leaf area facilitates invasiveness.  相似文献   

9.
《Applied soil ecology》2003,22(1):67-77
The Grand Staircase—Escalante National Monument (GSENM) contains a rich diversity of native plant communities. However, many exotic plant species have become established, potentially threatening native plant diversity. We sought to quantify patterns of native and exotic plant species and cryptobiotic crusts (mats of lichens, algae, and mosses on the soil surface), and to examine soil characteristics that may indicate or predict exotic species establishment and success. We established 97 modified-Whittaker vegetation plots in 11 vegetation types over a 29,000 ha area in the Monument. Canonical correspondence analysis (CCA) and multiple linear regressions were used to quantify relationships between soil characteristics and associated native and exotic plant species richness and cover. CCA showed that exotic species richness was significantly (P<0.05) associated with soil P (r=0.84), percentage bare ground (r=0.71), and elevation (r=0.67). Soil characteristics alone were able to predict 41 and 46% of the variation in exotic species richness and cover, respectively. In general, exotic species invasions tend to occur in fertile soils relatively high in C, N and P. These areas are represented by rare mesic high-elevation habitats that are rich in native plant diversity. This suggests that management should focus on the protection of the rare but important vegetation types with fertile soils.  相似文献   

10.
Recent empirical and theoretical studies have shown that magnitude and direction of biodiversity effects on ecosystem functioning can shifts over time. Here, we used species richness and plant abundance (total individual plant stem density) as proxies for species diversity and aboveground biomass for productivity. We used an analytical approach combining both chronosequence and 6 year of vegetation monitoring in a subalpine ecosystem as a model system to assess temporal species richness–abundance–aboveground biomass relationships at different successional stages and spatial scales. We observed that both species richness and plant aboveground biomass increased rapidly early in succession after land abandonment, then after 10 years of abandonment reached a steady state. We found that the relationship between species richness and plant abundance with aboveground biomass was strengthening over successional time. In all successional stages, species richness had stronger positive effects as compared with plant abundance on plant aboveground biomass. Species richness was linearly correlated with aboveground biomass, whereas plant abundance showed a humped‐back relationship with aboveground biomass across all successional stages. Our results showed an increase in the effect of plant diversity over time, and a combination of both plant species richness and abundance is correlated with plant productivity throughout successional time, knowledge that maybe important to managing ecological restoration and conservation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
[目的]阐明草地植被演替过程中植被生产力、植物多样性等生态学特征与土壤储水量的关系,为探明黄土高原地区植被恢复的生态环境效应提供一定的科学依据。[方法]采用时空互代的方法对宁夏回族自治区固原市云雾山保护区自然恢复3,8,13,46,66,89a的样地进行取样,分析0—100cm土层土壤储水量的分布及其与地上地下植物生物量、物种多样性的关系。[结果]随着草地演替的进行,植被群落盖度、生物量和物种多样性指数在恢复13a之前显著增加,之后渐趋稳定;土壤含水量逐渐增加,容重逐渐降低。植被群落演替对0—40cm土层土壤储水量没有显著影响,但演替后期对40cm以下土层水分有明显消耗。植被群落生物量及物种多样性指标与表层0—10cm水分呈显著正相关。[结论]草地演替过程中,植被群落生物量和物种多样性的增加与表层土壤储水能力的提升密切相关,但深层根系生物量的增加对下层土壤储水的消耗也逐渐增大。  相似文献   

12.
As part of the restoration of biodiversity on former agricultural land there has been focused on methods to enhance the rate of transition from agricultural land towards natural grasslands or forest ecosystems. Management practices such as sowing seed mixtures and inoculating soil of later successional stages have been used. The aim of this study was to determine the effects of a managed plant community on the diversity of soil fungi in a newly abandoned agricultural land. A field site was set up consisting of 20 plots where the plant diversity was managed by either sowing 15 plant species, or natural colonization was allowed to occur. The plant mixture contained five species each of grasses, legumes and forbs that all were expected to occur at the site. A subset of the plots (five from each treatment) was inoculated with soil cores from a late successional stage. The plant community composition was subject to a principal component analysis based on the coverage of each species. Five years after abandonment, soil samples were taken from the plots, DNA was extracted and the ITS region of the rDNA gene was amplified using fluorescently labelled fungal specific primers (ITS 1F/ITS 4). The PCR products were digested using HinfI and TaqI and sequenced. Results from both restriction enzymes were combined and a principal component analysis performed on the presence/absence of fragments. Also the fungal diversity expressed as number of restriction fragments were analysed. There was significantly higher fungal species richness in the experimental plots compared to the forest and field soils, but no differences between sown and naturally colonized plots. The different plant treatments did not influence the below ground fungal community composition. Soil water content on the other hand had an impact on the fungal community composition.  相似文献   

13.
Many exotic species negatively affect native species and alter ecosystem function. Erodium cicutarium, an exotic annual plant, can attain high densities, but little is known about its effects on native plant communities. We first examined patterns of abundance of E. cicutarium and native annuals over a 16-year period at a long-term study site in southeastern Arizona. In years of high E. cicutarium abundance, the correlations between the abundance of E. cicutarium and native annuals in small-scale local communities were typically negative, suggesting a competitive interaction. To further examine the interaction between E cicutarium and native annuals, we conducted a short-term field experiment at the same location using plots that contained pairs of quadrats. One quadrat in each pair was subjected to E. cicutarium removal during the winter of 2003-2004 while the other served as a control. At the end of the growing season, E. cicutarium removal quadrats contained significantly higher abundance and richness of native annual plants. However, control plots contained significantly higher abundance of all annuals due to the presence of E. cicutarium. Thus, in the single growing season examined, while E. cicutarium appears to suppress the diversity and abundance of native species, its presence significantly increases community productivity.  相似文献   

14.
Rangeland management can affect plant diversity and plant functional groups of native grassland communities. To improve pasture for livestock grazing from the existing poisonous and ruderal vegetation in the ‘black soil land’ grassland in the headwaters of the Yangtze and the Yellow Rivers (HAYYR) of the Qinghai‐Tibetan Plateau, three treatments (fencing‐FT, artificial seeding with local grasses‐ST and abandonment‐AT) were applied during a 5‐year period (2000–2005). Plant diversity and groups (sedges, grasses and dwarf shrubs) in the treated plots were compared with non‐treated control plots. Results showed that (1) FT promoted an increase in forbs species, but there was no change in the other plant functional groups; (2) with ST, species richness of forbs decreased but grass species increased indicating that sowing local grasses could change plant composition of black soil land in the short‐term, and increase the proportion of grasses and, thus, forage for grazing and (3) AT, after plowing, was similar to CK plots, with forbs being the dominant plant functional group for the 5 years. In conclusion, the goal to alter black soil land cover from poisonous and ruderal plants to more useful plants for livestock grazing by either fencing, artificial seeding or abandonment was not successful in the long term. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
The presence and activity of individual plants can affect soil resource availability and microbial processes, and can influence the spatial scale over which soil properties vary. While soils have been found to differ under plants of differing growth form (i.e. grasses vs. trees), few studies have focused on small-scale soil differences under comparably-sized species. Here we investigate how two types of C-3 grasses influence patterns in soil properties and processes at scales of less than one meter in a California grassland. To understand how native perennial grasses differ from invasive annual grasses in their effects on soils, we used cross-semivariogram analysis to quantify the degree and scale of spatial heterogeneity in soil properties and processes in experimentally-seeded grasslands. We then used mapping techniques to correlate spatial patterns of soil properties and processes with the cover of annual and perennial grasses aboveground. We found that many soil properties and processes belowground were spatially-correlated with the aboveground presence of annuals or perennials. Soil moisture became more heterogeneous with increasing amounts of perennial cover, suggesting that perennial bunchgrass individuals take up more water and produce zones of resource depletion in comparison with soils directly under annual grasses. The association of belowground resources and activity with the two types of grass suggests that the historical shift from perennial to annual dominance in California grasslands led to changes in the small-scale spatial structure of soil properties and processes in these systems. These changes may alter ecosystem function and could potentially perpetuate invasive annual grass dominance.  相似文献   

16.
The spread of invasive plant species and their impacts on plant communities have received international attention as global trade and global environmental change enhance the colonization and establishment of introduced species and threaten the integrity of native ecosystems. Because introduced species vary in their impact, studying the relationship between invasion and native communities is necessary to guide allocation of finite management resources. By studying adjacent pairs of invaded and uninvaded plots across an eastern United States forested landscape, we demonstrate Microstegium vimineum was associated with local declines in species richness and cover of native species. Negative impacts of M. vimineum on species richness did not emerge until August when M. vimineum cover and height were greatest, highlighting the value of following study subjects through the growing season. In contrast, native species cover was already lower in invaded plots early in the growing season. M. vimineum invasion was not the only important driver of species richness and community composition within the study region; abiotic environmental gradients, such as soil nitrate concentration and pH, across the six study sites were also important in affecting species richness and cover, but lessened in explanatory power through the growing season. We conclude that M. vimineum has effects on community structure that may have long-term consequences for biodiversity. Studies which track sites through time and consider multiple scales are required as invaders impact multiple biotic and abiotic factors operating at different spatial and temporal scales.  相似文献   

17.
The efficiency of revegetation of burnt areas was put to the test with two different mixes of grasses, one comprising native species and the other, including Lolium multiflorum, sown by hand. Runoff generation and soil loss were studied over the first 20 months after the fire in seeded plots (two plots for each seed mix) and in an unseeded plot (considered as the control). The seeded plots showed a marked increase in vegetation, and 6 months after the fire ground cover was about 60 per cent in the plots seeded with native species. This ground cover value (considered to be the cover necessary for good protection against soil erosion) was reached in plots seeded with the commercial mix after 8 months and in the control plot after 14 months. Runoff volume was similar in all plots, but the soil erosion was reduced in both seeded plots by a factor of 6·5. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
Relationships between fire history, vegetation structure and composition, and invasion by introduced plant species have received limited attention in Australian woodlands. A study in a Mediterranean, fire adapted urban Banksia woodland remnant in the biodiversity hotspot of southwest Australia investigated: (1) Have significant changes occurred in the woodland tree canopy between 1963 and 2000? (2) Do correlations exist between fire frequency and canopy cover? (3) If there is a difference in the vegetation composition of Banksia woodland invaded by the South African Ehrharta calycina (PCe) and Pelargonium capitatum (PCp) compared to largely intact remnants (GC)? and (4) Do correlations exist between vegetation condition, composition, fire frequency and invasion? Aerial photography, processed in a Geographical Information System, was used to establish fire history and changes in canopy cover over time (1963–2000). PCe and PCp sites experienced the greatest number of fires, with a net reduction in canopy cover in all areas experiencing four or more fires (60% of all woodlands). Frequent fire corresponded with a decline in native cover, richness and diversity, a shift from native to introduced species, changes in the relative importance of fire response categories, and loss of native resprouting shrub cover. Life forms of introduced species, which included no trees, shrubs and perennial sedges, contrasted strongly with those of native species, which had poor representation of annual and perennial grasses. Clear ecological and conservation consequences due to the loss of species diversity, changes in fire ecology and invasion have occurred in the Banksia woodlands. This study provides an understanding of the invasion process, enhancing conservation knowledge to improve the adaptive management of the key threatening process of invasion in biodiverse communities.  相似文献   

19.
One of the management operations in rangeland ecosystems for pastures restoration and improvement is fertilizer application. This study was designed to investigate the effect of fertilizer (50 kg/ha urea and ammonium phosphate fertilizers) on species diversity changes in a 100-ha experimental field of Salmechal Rangeland, Golestan Province. Plant species mean canopy cover was recorded using a 50-m2 sampling plot. Statistical analysis was performed using Excel 2007 and PAST software. Fertilizer application increased the number of species present in the region from 21 to 51 and the plant families from 11 to 23. The forbs had the highest proportion (54.91%) and bushes and shrubs had the lowest percentage in the region. Fertilizer application increased plant diversity, uniformity, and coverage of the grasses. There was a significant difference (p < 0.01) between the grass and forbs coverage before and after fertilizer treatments. The results showed that the biological and physiological growth periods of the annual and perennial plants were significantly different before and after fertilizer application (p < 0.01). Also, their proportion in rangeland plant species composition significantly increased after fertilizer application.  相似文献   

20.
To test if native perennial bunchgrasses cultivate the same microbial community composition across a gradient in land-use intensification, soils were sampled in fall, winter and spring in areas under bunchgrasses (‘plant’) and in bare soils (‘removal’) in which plots were cleared of living plants adjacent to native perennial bunchgrasses (Nassella pulchra). The gradient in land-use intensification was represented by a relict perennial grassland, a restored perennial grassland, and a perennial grass agriculture site on the same soil type. An exotic annual grassland site was also included because perennial bunchgrasses often exist within a matrix of annual grasses in California. Differences in soil resource pools between ‘plant’ and ‘removal’ soils were observed mainly in the relict perennial grassland and perennial grass agriculture site. Seasonal responses occurred in all sites. Microbial biomass carbon (C) and dissolved organic C were greater under perennial bunchgrasses in the relict perennial grassland and perennial grass agriculture site when comparing treatment means of ‘plant’ vs. ‘removal’ soil. In general, soil moisture, microbial respiration, and nitrate decreased from fall to spring in ‘plant’ and ‘removal’ soils, while soil ammonium and net mineralizable nitrogen (N) increased only in ‘plant’ soils. A canonical correspondence analysis (CCA) of phospholipid fatty acid (PLFA) profiles from all sites showed that land-use history limits the similarity of microbial community composition as do soil C and N dynamics among sites. When PLFA profiles from individual sites were analyzed by CCA, different microbial PLFA markers were associated with N. pulchra in each site, indicating that the same plant species does not retain a unique microbial fingerprint across the gradient of land-use intensification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号