首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Summary. Absorption and translocation of 14C-labelled herbicides applied in culture solutions lo the roots and in concentrated drops to mature leaves of 'Thompson Seedless' (Sultanina) cuttings were studied. Neither 2,4-D nor paraquat, and only traces of 2,4,5-T translocated from the roots to the shoot. Dicamba, amitrole, diuron, monuron, simazine and atrazine readily moved from the roots to the shoots. The substituted ureas and s -triazines were mobile only in the xylem or cell walls (apoplast), while dicamba and amitrole were mobile in the apoplast and symplast (living protoplasm). Both 2,4-D and 2,4,5-T moved almost entirely in the symplast. Paraquat moved only slightly in either apoplast or symplast. Stability of the herbicides in the plants varied, as judged by the detection of label in ethanol-insoluble products. Dicamba was considerably more stable than 2,4,5-T which, in turn, was more stable than 2,4-D. Diuron was more stable than either atrazine or simazine. Amitrole largely was converted into ethanol-insoluble products in 30 days. Paraquat was not extractable with ethanol.
Absorption et migration d'herbicides chez une vigne: Thompson Seedless (Sultanina), Vitis vinifera L.  相似文献   

2.
Despite being lipophilic, morpholine fungicides are systemic in plants. Such transport may be explicable by their protonation (pKa∽7·5) at the pH of plant compartments to yield the more polar cation. This behaviour might be a useful attribute to be incorporated into other classes of lipophilic pesticides. To understand quantitatively the behaviour of the morpholine fungicides, the uptake by roots and transport to shoots in barley of two such 14C-labelled compounds, dodemorph and tridemorph, were investigated using bathing solutions of differing pH. At pH 5, uptake and transport were small, but increased by approximately two orders of magnitude at pH 8. Tridemorph, the more lipophilic of the two compounds, was highly accumulated by roots at pH 8 and moderately translocated to shoots. In contrast, dodemorph was translocated to shoots at pH 8 with remarkable efficiency, moving into the xylem across the endodermis at 23 times the efficiency of water, though accumulation in roots was less than that of tridemorph. Behaviour at 24 h was largely similar to that at 48 h for both compounds, indicating that uptake and translocation are equilibrium processes maintained over time. Transport to shoots for each compound was directly proportional to the concentrations accumulated in the roots, except at low pH where partitioning into root solids became proportionately more important with such material not being directly available for transport to the xylem across the endodermis. Uptake and transport of these basic fungicides are explained in terms of their partitioning and of their accumulation in acidic plant compartments by ion trapping as the protonated form; this behaviour is discussed in relation to the pKa and lipophilicity of these compounds. © 1998 Society of Chemical Industry  相似文献   

3.
Absorption, translocation and distribution of 14C-glyphosate were examined in Agropyron repens (L.) Beauv. plants growing under field conditions in the autumn. Glyphosate absorption did not increase beyond 3 days after application, whereas translocation to the rhizomes continued up to 7 days after application. The translocated glyphosate accumulated more in new rhizomes than in older parts of the rhizomes. Ten per cent of the glyphosate translocated out of the treated shoot was recovered in younger shoots 7 days after application. Plants harvested the following spring contained less than 20% of the glyphosate originally applied. Although a growth cabinet experiment indicated that 34% of the glyphosate in the rhizomes of treated plants could be remobi-lized into new aerial shoots, considerably less was recovered in new, aerial shoots in the spring in the field-grown plants. Freezing experiments showed that glyphosate translocation to the rhizomes was only prevented when cold treatment caused visible damage to A. repens foliage.  相似文献   

4.
Summary. Evidence is presented that blackcurrants show a considerable tolerance to simazine when the entire root system is exposed to a uniform concentration of the herbicide in sand and water culture. The tolerance of this species under field conditions does not therefore seem to be primarily due to root development being limited in the surface soil to which simazine is applied. Accordingly, experiments were carried out using simazine, labelled in the ring with 14C, to determine whether there were restrictions to the uptake of the herbicide by the roots and its translocation to the xylem sap and leaves, and whether there was extensive breakdown of simazine in the plant. The results of these experiments are compared with those on two susceptible species, barley and marrow.
Although simazine appeared to be metabolized to a greater extent in blackcurrants, and was less readily translocated from the roots, than in the susceptible species, a substantial proportion of the labelled material in the leaves was present as unchanged simazine. Studies on the effects of simazine on the rate of transpiration of detached leaves of the three species suggested that in blackcurrants there was a restriction to movement of the herbicide from the conducting tissue in the leaves to the mesophyll; this was confirmed by autoradiographs. It is suggested that this restriction, combined with partial breakdown of the herbicide in the leaves, may be responsible for the tolerance of blackcurrants to simazine.
Résistance du cassissier à la simazine  相似文献   

5.
The kinetics of dissolution of atrazine, propazine and simazine in water The solubaility and kinetics of solubilization of atrazine, propazine and simazine in water were studied at different temperatures. The apparent order of the dissolution reactions is 1 for atrazine and propazine and 2 for simazine. The solubility and rate constants are Increasing functions of the temperature. Activation energies of solubilization are of the order of 41 to 4–8 kcal/mole; they correspond to a 30% decrease in the time of a 50% solubilization when temperature increases by 10°C. It seems therefore that the effectiveness of a treatment can depend in part on the amount of rain and the soil temperature.  相似文献   

6.
BACKGROUND: Enhanced atrazine degradation has been observed in agricultural soils from around the globe. Soils exhibiting enhanced atrazine degradation may be cross-adapted with other s-triazine herbicides, thereby reducing their control of sensitive weed species. The aims of this study were (1) to determine the field persistence of simazine in atrazine-adapted and non-adapted soils, (2) to compare mineralization of ring-labeled (14)C-simazine and (14)C-atrazine between atrazine-adapted and non-adapted soils and (3) to evaluate prickly sida control with simazine in atrazine-adapted and non-adapted soils.RESULTS: Pooled over two pre-emergent (PRE) application dates, simazine field persistence was 1.4-fold lower in atrazine-adapted than in non-adapted soils. For both simazine and atrazine, the mineralization lag phase was 4.3-fold shorter and the mineralization rate constant was 3.5-fold higher in atrazine-adapted than in non-adapted soils. Collectively, the persistence and mineralization data confirm cross-adaptation between these s-triazine herbicides. In non-adapted soils, simazine PRE at the 15 March and 17 April planting dates reduced prickly sida density at least 5.4-fold compared with the no simazine PRE treatment. Conversely, in atrazine-adapted soils, prickly sida densities were not statistically different between simazine PRE and no simazine PRE at either planting date, thereby indicating reduced simazine efficacy in atrazine-adapted soils.CONCLUSIONS: Results demonstrate the potential for cross-adaptation among s-triazine herbicides and the subsequent reduction in the control of otherwise sensitive weed species. Copyright (c) 2008 Society of Chemical Industry.  相似文献   

7.
Hydrolysis and photolysis experiments have been undertaken to investigate the abiotic persistence of atrazine and simazine in a variety of waters. Hydrolysis only occurs to a significant extent at pH values at the lower limit of those found in the natural aquatic environment (pH 4.0 or less). Photolysis was initiated by a wide range of wavelengths in waters at pH 4.0, but only by more energetic wavelengths of less than 300 nm at higher pH values (pH 6 to 8). Based on these data, the aquatic half-life of atrazine and simazine in well-lit acidic upland waters will be typically six days. In lowland rivers with higher pH (7 to 8.5), these triazines are likely to exhibit half-lives of months rather than days. In groundwaters, atrazine and simazine will have half-lives in the order of years, due to the exceedingly slow rate of hydrolysis. © 1999 Society of Chemical Industry  相似文献   

8.
Summary. The effects of localized herbicide placement at different internodes of pea ( Pisum sativum L. cv. Alaska) shoots below the soil surface after plant emergence were studied by removing the soil from around the shoots and replacing with herbicide-treated soil. The first internode proved insensitive to linuron, diuron, atrazine and simazine at 4·5 kg/ha, while treatment of the second and third internodes markedly reduced plant growth 4–6 days after treatment. Separate exposure of the first internode alone, and the second and part of the third together to 14C-labelled atrazine indicated no difference in herbicide metabolism. However, a two- to threefold increase in 14C uptake and movement to the foliar parts occurred when the second and part of the third internode was treated, as compared to first internode treatment. Thus the differential sensitivity of the internodes to atrazine, and possibly to the other herbicides, may be because the more mature first internode allows less uptake and subsequent movement to the foliar parts.
Absorption dans la zone des tiges des herbicides appliqués dans le sol chez Pisum sativum L.  相似文献   

9.
The surface run-off of a number of pesticides (diuron, isoproturon, atrazine, alachlor, aclonifen, trifluralin, lindane and simazine), chosen for their range of adsorption behaviours, was studied using simulated rainfall applied to small plots over a short time (one hour). Pesticides were applied together onto bare soil using two different sandy loam soils from Jaillière and Coet Dan sites. The surface run-off samples were collected throughout the running of the event and concentrations of pesticides were measured in both liquid and solid phases. Sorption isotherms for isoproturon and diuron on Jaillière soil as well as eroded particles were measured under equilibrium conditions and compared to their partitioning during surface run-off. At the rainfall intensity used, both soils generated a large load of eroded particles. The average run-off flow rate increased with time for the Jalliére soil, while it remained relatively constant at a higher level for the Coet Dan soil. The concentrations of each pesticide in the run-off samples decreased as the experiments proceeded. The pesticides were classified into two types by their partitioning between the solid and liquid phases. Atrazine, simazine, diuron, isoproturon and alachlor were mainly transported in surface run-off water. By contrast, 90% of trifluralin and aclonifen was adsorbed onto eroded particles. Lindane was intermediate, with a 37% adsorption level. When the contribution of eroded particles was minor, the agrochemical concentrations were inversely proportional to the water flow rate. We have proposed a model that describes the mass of chemicals extracted from soil into surface water during a surface run-off event of a given average duration and flow rate. This model takes into account the dilution of the soil solution and the desorption of chemicals through two parameters called, respectively, the dilution factor and the extraction retardation factor. The desorption kinetic was the limiting step in the surface run-off of weakly sorbed chemicals, such as isoproturon. © 1999 Society of Chemical Industry  相似文献   

10.
建立了表面活性剂辅助-凝固-漂浮分散液-液微萃取-高效液相色谱(SA-DLLME-SFO-HPLC)法检测葡萄酒中西玛津、莠去津、特丁津和扑草净4种三嗪类除草剂残留的分析方法。考察了萃取剂的类型、萃取剂和表面活性剂的体积、萃取时间和盐效应等对萃取效率的影响,确定最佳萃取条件为:20 μL十一醇作为萃取剂,2 μL 0.25 g/L的Tween-20水溶液作为分散剂,萃取时间10 min,氯化钠的质量浓度为250 g/L。结果表明:西玛津、莠去津、特丁津和扑草净的线性范围为0.008~5 mg/L,检出限分别为2.4、1.8、2.0和2.8 μg/L,富集倍数在24.5~32.4之间。在0.008、0.08和2.4 mg/L添加水平下,西玛津、莠去津、特丁津和扑草净在葡萄酒中的回收率在84%~102%之间,相对标准偏差(n=5)在2.1%~6.9%之间。该方法可用于葡萄酒中西玛津、莠去津、特丁津和扑草净残留量的测定。  相似文献   

11.
Abstract

Maize cultivation in Nigeria has increased rapidly in the last few years as fertilizers have become more readily available to farmers. Without the use of herbicides however, the area of land that can be brought under maize production will be limited. The following herbicides were evaluated in three ecological zones of Nigeria: atrazine and mixtures of atrazine and simazine, atrazine and metolachlor and atrazine and cyanazine. All herbicide treatments were applied at the rate of either 1.0 or 2.0 kg a.i./ha. The plots that received 1.0 kg a.i./ha also received one supplementary hand weeding. All treatments gave yields comparable to the weed free control, with the exception of the unweeded higher rate of the atrazine and cyanazine treatment which gave the lowest grain yield as a result of poor weed control.  相似文献   

12.
W. MERSIE 《Weed Research》1995,35(1):15-18
Witloof chicory (Cichorium intybus L.) is tolerant to propyzamide and common amaranth (Amaranthus retroflexus L.) is sensitive. The absorption, translocation, and metabolism of propyzamide was studied in seedlings of witloof chicory and common amaranth to determine if differences in these processes cause the differential sensitivity. At 24,48, and 72 h after root treatment, there was no difference in the concentration of 14C (g?1 plant dry wt) in com-mon amaranth and witloof chicory. Approximately 50% of the absorbed 14C was translocated out of the roots to shoots of both species at 24 and 48 h after treatment. After 72 h about 55 and 74% of the absorbed 14C was translocated to shoots of witloof chicory and common amaranth, respectively. Distribution of 14C (g?1 plant dry wt) in plant parts of witloof chicory and common amaranth seedlings was similar. Roots of both species accumulated the highest concentration of total 14C, whereas shoots contained the lowest. Thin layer chromatography revealed that the herbicide was metabolized in neither species 48 h after treatment. No differences were found in absorption, translocation, or metabolism between witloof chicory and common amaranth with regard to propyzamide.  相似文献   

13.
Summary. A method of exposing seedlings of Norway spruce (Picea abies (L.) Karst.) to 14CO2 is described. Within the 1st hr alter 14CO2 exposure, no translocation of the 14C out of the treated branch could be observed. After a 24-hr period, however, the 14C in dormant seedlings had been translocated basipetally to part of the root system only, with no lateral diffusion of the 14C-compounds in the stem. About a week after exposure, both symplastic and apoplastic patterns of translocation had caused a more uniform distribution of 14C. In seedlings at active internode elongation, the translocation patterns were fundamentally identical to those in dormant seedlings, but the active shoot growth had led to a more uniform distribution of the 14C.
Simazine at 20 ppm had apparently stimulated both the photofixation of 14CO2 and the rate of translocation of the 14C-assimilates. At 30 ppm, however, simazine had blocked the translocation of nutrients to the roots. On the other hand, the 14CO2 uptake was not influenced. The simazine incubation had apparently no influence on the synthesis of cationic photosynthate.  相似文献   

14.
Summary. Pre-emergence application of 2–5 kg/ha (a.i.) of atrazine or simazine was the most effective treatment for control of broad-leaved weeds in maize. Other triazines injured maize at all rates tested. Among the crops following maize treated with atrazine or simazine at 2–5 kg/ha, sugar beet was injured whereas wheat, oats, vetch, onions and soybeans were not. Post-emergence application of triazine herbicides was not effective and did not increase maize yields significantly over those of the unweeded plots. Wheat, oats, vetch and sugar beet were injured when following maize treated with post-emergence sprays; onions and soybeans showed no visible injury except from atrazine or simazine at 5 kg/ha or more, and from mixtures of atrazine+prometryne or atrazine+ametryne at 12–5 kg/ha. Les triazines herbicides sur le mais et leurs arrière-effets sur les cultures suivantes  相似文献   

15.
Residual effects of chlorotriazine herbicides in soil at three Rumanian sites. I. Prediction of the persistence of simazine and atrazine Persistence of simazine and atrazine in the top 10 cm soil was measured at three sites in Rumania with variations in climate and soil conditions. Both herbicides were applied at 1 and 3 kg ai ha?1 to uncropped plots and to plots cropped with maize (Zea mays L.). Rates of residue decline were independent of application rate and crop cover but varied between sites. The time for 50% loss of atrazine varied from 36 to 68 days and that of simazine from 48 to 70 days. Laboratory studies were made with atrazine to characterize degradation rates under standard conditions and to measure adsorption and leaching behaviour in the different soils. Weather records for the periods of the field experiments were used in conjunction with appropriate constants derived from the laboratory results, or from data in the literature, in a computer program to simulate persistence in the field. Results from the model were in reasonable agreement with the observed soil residues although there was a tendency to overestimate rates of loss on some occasions. The results suggest that the model of persistence was sufficiently accurate for practical purposes, and that its use could preclude the need for extensive analytical measurements of residues.  相似文献   

16.
The soluble fraction (105 000g) from goose, pig and sheep liver-homogenates was found to contain an enzyme which metabolised a mixture of atrazine and simazine in in-vitro incubations by a combination of hydrolysis and partial N-dealkylation. Complete dealkylation was not observed as shown by the removal of only one alkyl group, but not both, from the compounds containing chlorine or hydroxyl-groups attached to the triazine ring.  相似文献   

17.
Localized placement of prometryne, linuron and diuron in the soil at the first or second shoot internodes of dwarf broad bean (Vicia faba L.) equally reduced aerial plant growth, whereas simazine and atrazine had no effect. Growth reduction also occurred when the first shoot internode of scarlet runner bean (Phaseolus multiflorus L.) in the soil was treated with all five herbicides, especially with diuron. Localized placement of these herbicides at the first or second shoot internodes of vetch (Vicia sativa L.) in the soil equally reduced aerial plant growth. Foliar injury to vetch due to placement of these herbicides in the shoot zone of the soil was markedly reduced by simultaneous treatment with trifluraiin or nitralin which prevented adventitious root development on the shoot without otherwise affecting plant growth. This lack of root development on the shoots treated with trifluraiin was associated with a marked decrease in 14C-labelled atrazine uptake, which probably accounted for the reduction in atrazine phytotoxicity. A similar explanation may account for the reduced phytotoxicity of the other herbicides in the presence of trifluraiin or nitralin.  相似文献   

18.
The uptake by roots from solution, and subsequent translocation to shoots in barley, of two series of non-ionised chemicals, O-methylcarbamoyloximes and substituted phenylureas, were measured, Uptake of the chemicals by roots was greater the more lipophilic the chemical, and fell to a lower limiting value for polar chemicals. Translocation to the shoots was a passive process, and was most efficient for compounds of intermediate polarity. Both processes had reached equilibrium within 24h of treatment. The reported behaviour of many pesticides in various plant species agrees with the derived relationships, but the detailed mechanisms of these processes are unknown.  相似文献   

19.
Experiments were conducted in a growth cabinet to investigate the absorption and translocation of 14C-3, 6-dichloropicolinic acid by Cirsium arvense (L.) Scop. (Canada thistle, creeping thistle), a sensitive species. Applications were made, either to the middle four leaves of 12-cm-tall vegetative plants grown under low (40%) and/or high (>95%) relative humidity (r.h.), or to four upper or lower leaves of 30-cm-tall flowering plants grown under low r.h. Following application to vegetative plants, absorption and translocation of 14C-3,6-dichloropicolinic acid was rapid and was approximately doubled by high r.h. High r.h. increased the amount of radioactivity retained by the treated leaves or translocated to the shoots but did not affect greatly the amount retained in the roots. The herbicide was highly mobile, with over half of that absorbed, translocated out of the treated leaves after two days. The apex accumulated most of the radioactivity, while approximately 8% was recovered from the roots. The absorption and translocation patterns were similar to those reported in the literature for picloram in C. arvense. Absorption of 3,6-dichloropicolinic acid was greater in vegetative than in flowering C. arvense plants, and placement of herbicide on lower leaves tended to decrease the amount of radioactivity recovered from shoot apex and increase the amount recovered from the roots. Approximately 15% of the applied radioactivity could not be recovered from treated plants by 2 days after treatment.  相似文献   

20.
Summary. 3,4,3',4'-Tetrachloroazobenzene (TCAB) and TCAB-14C were supplied to the roots of rice ( Oryza sativa L.) plants in nutrient solution. An analysis of the shoots indicated that the TCAB was absorbed and translocated to the shoots. The translocated material was characterized by gas-liquid chromatography and mass spectrometry. Roots were exposed to saturation concentrations of TCAB-14C in liquid culture to determine the translocation and distribution of the compound. Only 5'6% of the total azobenzene present in the nutrient solution was absorbed by the intact rice plants and only 3'2% of the absorbed TCAB-14C was translocated to the shoots after 12 days of treatment. No TGAB was isolated from plants treated with propanil or 3,4-dichloroaniline after 14 days of treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号