首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Three generations of a swine family produced by crossing a Japanese wild boar and three Large White female pigs were used to map QTL for various production traits. Here we report the results of QTL analyses for skeletal muscle fiber composition and meat quality traits based on phenotypic data of 353 F(2) animals and genotypic data of 225 markers covering almost the entire pig genome for all of the F(2) animals as well as their F(1) parents and F(0) grandparents. The results of a genome scan using least squares regression interval mapping provided evidence that QTL (<1% genome-wise error rate) affected the proportion of the number of type IIA muscle fibers on SSC2, the number of type IIB on SSC14, the relative area (RA) of type I on SSCX, the RA of type IIA on SSC6, the RA of type IIB on SSC6 and SSC14, the Minolta a* values of loin on SSC4 and SSC6, the Minolta b* value of loin on SSC15, and the hematin content of the LM on SSC6. Quantitative trait loci (<5% genome-wise error rate) were found for the number of type I on SSC1, SSC14, and SSCX, for the number of type IIA on SSC14, for the number of type IIB on SSC2, for the RA of type IIA on SSC2, for the Minolta b* value of loin on SSC3, for the pH of loin on SSC15, and for the i.m. fat content on SSC15. Twenty-four QTL were detected for 11 traits at the 5% genome-wise level. Some traits were associated with each other, so the 24 QTL were located on 11 genomic regions. In five QTL located on SSC2, SSC6, and SSC14, each wild boar allele had the effect of increasing types I and IIA muscle fibers and decreasing type IIB muscle fibers. These effects are expected to improve meat quality.  相似文献   

2.
A QTL study for carcass composition and meat quality traits was conducted on finisher pigs of a cross between a synthetic Piétrain/Large White boar line and a commercial sow cross. The mapping population comprised 715 individuals evaluated for a total of 30 traits related to growth and fatness (4 traits), carcass composition (11 traits), and meat quality (15 traits). Offspring of 8 sires (n = 715) were used for linkage analysis and genotyped for 73 microsatellite markers covering 14 chromosomal regions representing approximately 50% of the pig genome. The regions examined were selected based on previous studies suggesting the presence of QTL affecting carcass composition or meat quality traits. Thirty-two QTL exceeding the 5% chromosome-wise significance level were identified. Among these, 5 QTL affecting 5 different traits were significant at the 1% chromosome-wise level. The greatest significance levels were found for a QTL affecting loin weight on SSC11 and a QTL with an effect on the Japanese color scale score of the loin on SSC4. About one-third of the identified QTL were in agreement with QTL previously reported. Results showed that QTL affecting carcass composition and meat quality traits segregated within commercial lines. Use of these results for marker-assisted selection offers opportunities for improving pork quality by within-line selection.  相似文献   

3.
A QTL affecting leg muscle and fat traits has been identified within the New Zealand Texel population. The QTL maps to a region on OAR 2 with a two-marker haplotype test established at markers BULGE20 and BM81124. These markers encompass the likely position of Growth Differentiation Factor 8 (GDF8). The pleiotropic effects of this QTL on meat quality traits are tested. Objective measures of meat quality including pH, color (L*, a*, and b*), and tenderness (as assessed by Warner-Bratzler shear force measurements) were assessed on longissimus and semi-membranosus muscles of 540 progeny from six Texel sires. Four of these sires were subsequently identified as segregating for leg muscle and fat traits. For these segregating sires, comparison of progeny that had inherited the favorable haplotype from their sire with those that had received the alternate haplotype revealed no significant differences in the meat quality traits assessed. This finding suggests that the muscling QTL does not have pleiotropic effects on meat quality. A general scan for meat quality QTL was carried out using genotype data for eight markers from FCB128 to RM356 flanking 122cM of OAR 2 using Haley-Knott regression. This analysis revealed two QTL for a single sire. A QTL detected in the region of Marker INRA40 for color L* mapped to a site close to the muscling QTL, but there was evidence to suggest it is at a distinct locus. The QTL in the region of Marker RM356 might map distal to Marker RM356, as no peak was observed. This QTL, which seems to affect pH, color a*, color b*, and Warner-Bratzler shear measurements, requires further characterization.  相似文献   

4.
A three-generation resource family was created by crossing two Berkshire grandsires with nine Yorkshire granddams to identify QTL affecting growth, body composition, and meat quality. A total of 512 F2 offspring were evaluated for 11 traits related to growth and body composition and 28 traits related to meat quality. All animals were initially genotyped for 125 markers across the genome. The objectives of this advanced phase of the project were to further identify and characterize QTL after genotyping for another 33 markers in special regions of interest, and to develop and apply methods for detecting QTL with parent-of-origin effects. New marker linkage maps were derived and used in QTL analysis based on line-cross least squares regression-interval mapping. A decision tree for identifying QTL with parent-of-origin effects was developed based on tests against the Mendelian mode of expression. Empirical significance thresholds were derived at chromosomewise and genomewise levels using specialized permutation strategies to create data under the null hypothesis appropriate for each test. Significance thresholds derived by the permutation tests were validated based on simulation of a pedigree and data structure similar to the Berkshire-Yorkshire population. The addition of 33 markers resulted in the discovery of 29 new QTL at the 5% chromosomewise level using the Mendelian model of analysis. Thirteen of the original QTL were no longer significant at the 5% chromosomewise level. A total of 33 QTL with parent-of-origin effects were identified, including QTL with paternal expression for backfat and loin muscle area on chromosome 2, near IGF2, and QTL with maternal expression for drip loss and reflectance on chromosome 9. Tests for imprinting against Mendelian expression identified much fewer QTL with parent-of-origin effects than tests based on significance of paternal and maternal alleles, which have been used in other studies. The detected QTL and their identified mode of expression will allow further research in these QTL regions and their utilization in marker-assisted improvement of meat quality.  相似文献   

5.
Most QTL detection studies in pigs have been carried out in experimental F(2) populations. However, segregation of a QTL must be confirmed within a purebred population for successful implementation of marker-assisted selection. Previously, QTL for meat quality and carcass traits were detected on SSC 7 in a Duroc purebred population. The objectives of the present study were to carry out a whole-genome QTL analysis (except for SSC 7) for meat production, meat quality, and carcass traits and to confirm the presence of segregating QTL in a Duroc purebred population. One thousand and four Duroc pigs were studied from base to seventh generation; the pigs comprised 1 closed population of a complex multigenerational pedigree such that all individuals were related. The pigs were evaluated for 6 growth traits, 7 body size traits, 8 carcass traits, 2 physiological traits, and 11 meat quality traits, and the number of pigs with phenotypes ranged from 421 to 953. A total of 119 markers were genotyped and then used for QTL analysis. We utilized a pedigree-based, multipoint variance components approach to test for linkage between QTL and the phenotypic values using a maximum likelihood method; the logarithm of odds score and QTL genotypic heritability were estimated. A total of 42 QTL with suggestive linkages and 3 QTL with significant linkages for 26 traits were detected. These included selection traits such as daily BW gain, backfat thickness, loin eye muscle area, and intramuscular fat content as well as correlated traits such as body size and meat quality traits. The present study disclosed QTL affecting growth, body size, and carcass, physiological, and meat quality traits in a Duroc purebred population.  相似文献   

6.
An experimental F2 cross between Iberian and Landrace pig strains was performed to map quantitative trait loci (QTL) for diverse productive traits. Here we report results for meat quality traits from 369 F2 animals with records for pH 24 h postmortem (pH 24 h), muscle color Minolta measurements L* (lightness), a* (redness), and b* (yellowness), H* (hue angle), C* (chroma), intramuscular fat (IMF) and haematin pigment content measured in the longissimus thoracis. Pigs were genotyped for 92 markers covering the 18 porcine autosomes (SSC). Results of the genome scan show evidence for QTL for IMF (SSC6; F = 27.16), pH 24 h (SSC3; F = 7.73), haematin pigments (SSC4 and SSC7; F = 8.68 and 9.47 respectively) and Minolta color measurements L* (SSC4 and SSC7; F =16.42 and 7.17 respectively), and a* (SSC4 and SSC8; F = 8.05 and 7.36 respectively). No QTL were observed for the color measurements b*, H*, and C*. Alternative models fitting epistasis between QTL were also tested, but detected epistatic interactions were not significant at a genome-wise level. In this work we identify genomic regions related with meat quality traits. Improvement by traditional selection methods is complicated, and finer mapping would be required for their application in introgression programs.  相似文献   

7.
Pig chromosome 7 (SSC 7) has been shown to be rich in QTL affecting performance and quality traits. Most studies mapped the QTL close to the swine leukocyte antigens (SLA), which has a large effect on adaptability and natural selection. Previous comparative mapping studies suggested that the 15-cM region limited by markers LRA1 (mapped at 55 cM) and S0102 (mapped at 70 cM) contains hundreds of genes. To decrease the number of candidate genes, we improved the mapping resolution with a genetic chromosome dissection through a backcross recombinant progeny test program between Meishan (MS) and European (EU; i.e., Large White or Landrace) breeds. Three first-generation backcross--(EU x MS) x EU--and two second-generation backcross--([EU x MS] x EU) x EU--sires carrying a recombination in the QTL mapping interval were progeny-tested (i.e., measured for a total of 44 growth, fatness, carcass and meat quality traits). Progeny family size varied from 29 to 119 pigs. Animals were genotyped for markers covering the region of interest. Progeny-test results allowed the QTL interval to be decreased from 15 to 20 cM down to 10 cM, and even less than 6 cM if we assumed that the EU pigs used in this study share only one QTL allele. Except for a putative QTL affecting some carcass composition traits, the SLA is excluded as a candidate region, suggesting that it might be possible to apply a marker-assisted selection strategy for this QTL, while controlling SLA allele diversity. The strong QTL effects remaining in animals with only 12.5% (issued from first-generation backcross boars) and 6.25% (issued from second-generation back-cross boars) Meishan genetic background shows that epistatic interactions are likely to be limited. Finally, the QTL does not have strong effects on meat quality traits.  相似文献   

8.
Muscle fibre traits are related with meat quality in meat animals. In this study, a whole‐genome scan with 183 microsatellite markers covering the pig genome was performed to identify quantitative trait loci (QTL) for cross‐sectional area, numerical percentage and relative area of type I, IIA and IIB myofibres, fibre number per square centimetre and total fibre number in the longissimus muscle by using 120 F2 animals in a White Duroc × Erhualian intercross. In total, 20 QTL were mapped on pig chromosomes (SSC) 1, 2, 7, 8, 9, 11, 15, 16 and X, of which eight reached genome‐wide significance levels and explained large proportions (6.53–34.63%) of phenotypic variance. Five QTL detected in this study confirmed the previous QTL reports and the others were detected for the first time. Chinese Erhualian alleles are generally associated with muscle fibre traits favourable for meat quality.  相似文献   

9.
为寻找伊犁马肉质性能的分子标记,试验以38匹伊犁马为材料,测定肉质性状(失水率、熟肉率、剪切力)和肌纤维性状(肌纤维横截面积、肌纤维直径、肌纤维密度),利用PCR直接测序法检测肌细胞生成素(meyogenin,MyoG)基因外显子1在伊犁马群体中的多态性,并对MyoG基因SNPs不同基因型与肉质、肌纤维性状进行关联分析。结果表明,MyoG基因外显子1检测出5个突变位点,分别为SNP1(g.31187343 A>C)、SNP2(g.31187333 G>A)、SNP3(g.31187132 C>T)、SNP4(g.31187105 C>G)和SNP5(g.31187099 C>T),其中SNP1为错义突变,碱基A突变为C使得氨基酸由苏氨酸突变为脯氨酸,其他位点均为无义突变。SNP3和SNP4为中度多态位点,SNP1和SNP2为低度多态位点,这4个位点均处于Hardy-Weinberg平衡状态。MyoG基因外显子1中SNP1和SNP4不同基因型个体失水率、熟肉率、肌纤维横截面积、肌纤维直径、肌纤维密度差异显著(P<0.05);SNP3不同基因型个体熟肉率、肌纤维横截面积、肌纤维密度差异显著(P<0.05);SNP2不同基因型个体各指标差异均不显著(P>0.05)。综上,伊犁马MyoG基因外显子1检测到5个多态位点,其中SNP1(g.31187343 A>C)、SNP3(g.31187132 C>T)和SNP4(g.31187105 C>G)位点不同基因型对肉质及肌纤维性状有显著影响,这些位点可作为伊犁马肉质性能潜在分子标记。  相似文献   

10.
Three informative pig F2 families based on European Wild Boar (W), Meishan (M) and Pietrain (P) crosses have been used for genome‐wide linkage and quantitative trait loci (QTL) analysis. Altogether 129 microsatellites, 56 type I loci and 46 trait definitions (specific to growth, fattening, fat deposition, muscling, meat quality, stress resistance and body conformation) were included in the study. In the linkage maps of M × P, W × P and W × M families, average spacing of markers were 18.4, 19.7 and 18.8 cM, the numbers of informative meioses were 582, 534 and 625, and the total lengths of autosomes measured were 27.3, 26.0 and 26.2 Morgan units, respectively. Maternal maps were on average 1.3 times longer than paternal maps. QTLs contributing more than 3% of F2 phenotypic variance could be identified at p < 0.05 chromosome‐wide level. Differences in the numbers and positions of QTLs were observed between families. Genome‐wide significant QTL effects were mapped for growth and fattening traits on eight chromosomes (1, 2, 4, 13, 14, 17, 18 and X), for fat deposition traits on seven chromosomes (1, 2, 3, 4, 6, 7 and X), for muscling traits on 11 chromosomes (1, 2, 3, 4, 6, 7, 8, 12, 14, 15 and X), for meat quality and stress resistance traits on seven chromosomes (2, 3, 6, 13, 16, 18 and X), and QTLs for body‐conformation traits were detected on 14 chromosomes. Closely correlated traits showed similar QTL profiles within families. Major QTL effects for meat quality and stress resistance traits were found on SSC6 in the interval RYR1‐A1BG in the W × P and M × P families, and could be attributed to segregation of the RYR1 allele T derived from Pietrain, whereas no effect in the corresponding SSC6 interval was found in family W × M, where Wild Boar and Meishan both contributed the RYR1 allele C. QTL positions were mostly similar in two of the three families for body conformation traits and for growth, fattening, fat deposition and muscling traits, especially on SSC4 (interval SW1073‐NGFB). QTLs with large effects were also mapped on SSC7 in the major histocompatibility complex (MHC) (interval CYP21A2‐S0102) and affected body length, weight of head and many other traits. The identification of DNA variants in genes causative for the QTLs requires further fine mapping of QTL intervals and a positional cloning. However, for these subsequent steps, the genome‐wide QTL mapping in F2 families represents an essential starting point and is therefore significant for animal breeding.  相似文献   

11.
We constructed a pig F2 resource population by crossing a Meishan sow and a Duroc boar to locate economically important trait loci. The F2 generation was composed of 865 animals (450 males and 415 females) from four F1 males and 24 F1 females and was genotyped for 180 informative microsatellite markers spanning 2,263.6 cM of the whole pig genome. Results of the genome scan showed evidence for significant quantitative trait loci (<1% genomewise error rate) affecting weight at 30 d and average daily gain on Sus scrofa chromosome (SSC) 6, carcass yield on SSC 7, backfat thickness on SSC 7 and SSC X, vertebra number on SSC 1 and SSC 7, loin muscle area on SSC 1 and SSC 7, moisture on SSC 13, intramuscular fat content on SSC 7, and testicular weight on SSC 3 and SSC X. Moreover, 5% genomewise significant QTL were found for birth weight on SSC 7, average daily gain on SSC 4, carcass length on SSC 6, SSC 7, and SSC X and lightness (L value) on SSC 3. We identified 38 QTL for 28 traits at the 5% genomewise level. Of the 38 QTL, 24 QTL for 17 traits were significant at the 1% genomewise level. Analysis of marker genotypes supported the breed of origin results and provided further evidence that a suggestive QTL for circumference of cannon bone also was segregating within the Meishan parent. We identified genomic regions related with growth and meat quality traits. Fine mapping will be required for their application in introgression programs and gene cloning.  相似文献   

12.
A genome-wide scan for QTL affecting economically important traits in beef production was performed using an F(2) resource family from a Japanese Black x Limousin cross, where 186 F(2) animals were measured for growth, carcass, and meat-quality traits. All family members were genotyped for 313 informative microsatellite markers that spanned 2,382 cM of bovine autosomes. The centromeric region of BTA2 contained significant QTL (i.e., exceeding the genome-wide 5% threshold) for 5 carcass grading traits [LM area, beef marbling standards (BMS) number, luster, quality grade, and firmness), 8 computer image analysis (CIA) traits [LM lean area, ratio of fat area (RFA) to LM area, LM area, RFA to musculus (M.) trapezius area, M. trapezius lean area, M. semispinalis lean area, RFA to M. semispinalis area, and RFA to M. semispinalis capitis area], and 5 meat quality traits (contents of CP, crude fat, moisture, C16:1, and C18:2 of LM). A significant QTL for withers height was detected at 80.3 cM on BTA5. We detected significant QTL for the C14:0 content in backfat and C14:0 and C14:1 content in intermuscular fat around the 62.3 to 71.0 cM region on BTA19 and for C14:0, C14:1, C18:1, and C16:0 content and ratio of total unsaturated fatty acid content to total SFA content in intramuscular fat at 2 different regions on BTA19 (41.1 cM for C14:1 and 62.3 cM for the other 4 traits). Overall, we identified 9 significant QTL regions controlling 27 traits with genome-wide significance of 5%; of these, 22 traits exceeded the 1% genome-wide threshold. Some of the QTL affecting meat quality traits detected in this study might be the same QTL as previously reported. The QTL we identified need to be validated in commercial Japanese Black cattle populations.  相似文献   

13.
In the mouse, homozygous animals for the high growth mutation show a 30–50% increase in growth without becoming obese. This region is homologous to the distal part of pig chromosome 5 (SSC5). A previous genome scan detected several quantitative trait loci (QTL) in this region for body composition and meat quality using a three generation Berkshire × Yorkshire resource family. In this study, the effects on swine growth, fat and meat quality traits of three genes previously identified within the mouse high growth region were analysed. The genes studied were CASP2 and RIPKI domain containing adaptor with death domain ( CRADD ), suppressor of cytokine signalling 2 ( SOCS2 ) and plexinC1 ( PLXNC1 ). In addition, the influence of two other genes located very close to this region, namely the plasma membrane calcium-transporting ATPase 1 ( ATP2B1 ) and dual specificity phosphatase 6 ( DUSP6 ) genes, was also investigated. Single nucleotide polymorphisms were identified and used to map these genes to the QTL region on SSC5. Results indicate significant associations between these genes and several phenotypic traits, including fat deposition and growth in pigs. The present study suggests associations of these genes with swine fat and growth related traits, but further studies are needed in order to clearly identify the genes involved in the regulation of the QTL located on SSC5.  相似文献   

14.
In a previous study, QTL for carcass composition and meat quality were identified in a commercial finisher cross. The main objective of the current study was to confirm and fine map the QTL on SSC4 and SSC11 by genotyping an increased number of individuals and markers and to analyze the data using a combined linkage and linkage disequilibrium analysis method. A modified version of the method excludes linkage disequilibrium information from the analysis, enabling the comparison of results based on linkage information only or results based on combined linkage and linkage disequilibrium information. Nine additional paternal half-sib families were genotyped for 18 markers, resulting in a total of 1,855 animals genotyped for 15 and 13 markers on SSC4 and SSC11, respectively. The QTL affecting meat color on SSC4 was confirmed, whereas the QTL affecting LM weight could not be confirmed. The combined linkage and linkage disequilibrium analysis resulted in the identification of new significant effects for 14 traits on the 2 chromosomes. Heritabilities of the QTL effects ranged from 1.8 to 13.2%. The analysis contributed to a more accurate positioning of QTL and further characterized their phenotypic effect. However, results showed that even greater marker densities are required to take full advantage of linkage disequilibrium information and to identify haplotypes associated with favorable QTL alleles.  相似文献   

15.
The aim of this work was to estimate whether genetic dissection of QTL on chromosomes 1, 2, 4, and 7, detected in an F2 Meishan x Large White population, can be achieved with a recombinant back-cross progeny test approach. For this purpose, a first generation of backcross (BC1) was produced by using frozen semen of F1 Large White x Meishan boars with Large White females. Four BC1 boars were selected because of their heterozygosity for at least 1 of the 4 regions. The BC1 boars were crossed with Large White sows, and the resulting BC2 offspring were measured for several growth and body composition traits. Contrary to the F2 animals, BC2 animals were also measured for meat quality traits in adductor, gluteus superficialis (GS), longissimus dorsi, and biceps femoris (BF) muscles. Each BC1 boar was tested for a total of 39 traits and for the 4 regions with statistical interval mapping analyses. The QTL effects obtained in BC1 families showed some differences compared with those described in F1 families. However, we confirmed QTL effects for growth in the SW1301-SW2512 markers interval on chromosome 1 and also for body composition in the SW1828-SW2512 markers interval on chromosome 1, in the SW2443-SWR783 markers interval on chromosome 2, and in the SW1369-SW632 markers interval on chromosome 7. In addition, we detected new QTL for growth traits on chromosome 2 and for meat quality traits on chromosomes 1 and 2. Growth of animals from weaning to the end of the test was influenced by the IGF2 gene region on chromosome 2. Concerning meat quality, ultimate pH of adductor, longissimus dorsi, and BF were affected by the interval delimited by UMNP3000 and SW2512 markers on chromosome 1, and a* of GS, L* of BF, and water-holding capacity of GS were affected by QTL located between marker loci SW2443 and SWR783 on chromosome 2. Recombinant progeny testing appeared to be a suitable strategy for the genetic dissection of the QTL investigated.  相似文献   

16.
17.
旨在挖掘快大型黄羽肉鸡胸肌肉品质性状的重要候选区间和基因。本研究以1 923只快大型黄羽肉鸡为素材,于56日龄屠宰并测定屠宰和胸肌肉品质性状;利用“京芯一号”55K SNP芯片进行基因分型,利用传统最佳线性无偏预测(BLUP)、基因组最佳线性无偏预测(GBLUP)和全基因组关联分析(GWAS)等方法进行遗传参数估计和QTL区间/关键基因的检测。结果显示,胸肌pH、肉色L24 h*。同时发现,位于5号染色体上的2个单倍型对胸肌pH、肉色性状均有极显著影响。以上结果为黄羽肉鸡肉品质遗传选择方案优化和分子育种技术研发奠定了重要基础。  相似文献   

18.
The purpose of this study was to develop and implement least squares interval-mapping models for joint analysis of breed cross QTL mapping populations and to evaluate the effect of joint analysis on QTL detected for economic traits in data from two breed crosses in pigs. Data on 26 growth, carcass composition, and meat quality traits from F2 crosses between commercially relevant pig breeds were used: a Berkshire x Yorkshire cross at Iowa State University (ISU) and a Berkshire x Duroc cross at the University of Illinois (UOI). All animals were genotyped for a total of 39 (ISU) and 32 (UOI) markers on chromosomes 2, 6, 13, and 18. Marker linkage maps derived from the individual and joint data were similar with regard to order and relative position, but some differences in absolute distances existed. Maps from the joint data were used in all analyses. The individual and joint data sets were analyzed using several least squares interval-mapping models: line-cross (LC) models with Mendelian and parent-of-origin effects; halfsib models (HS); and combined models (CB) that included LC and HS effects. Lack-of-fit tests between the models were used to characterize QTL for mode of expression and to identify segregation of QTL within parental breeds. A total of 26 (8), 47 (18), and 53 (16) QTL were detected at the 5% chromosome (genome)-wise level in the ISU, UOI, and joint data for the 26 analyzed traits. Of the 53 QTL detected in the joint data, only six were detected in both populations and for many, allele effects differed between the two crosses. Despite the lack of overlap between the two populations, joint analysis resulted in an increase in significance for many QTL, including detection of ten QTL that did not reach significance in either population. Confidence intervals for position also were smaller for several QTL. In contrast, 24 QTL, most of which were detected at chromosome-wise levels in the ISU or UOI population, were not detected in the joint data. Presence of paternally expressed QTL near the IGF2 region of SSC2 was confirmed, with major effects on backfat and loin muscle area, particularly in the UOI population, as well as one or more QTL for carcass composition in the distal arm of Chromosome 6. Results of this study suggest that joint analysis using a range of QTL models increases the power of QTL mapping and QTL characterization, which helps to identify genes for subsequent marker-assisted selection.  相似文献   

19.
The pH values and temperatures at 45 min, and 3, 9, 15, and 24 h postmortem in the LM and semimembranosus muscle (SM) and glycolytic potential in LM were measured in 1,030 F(2) animals from a White Duroc x Erhualian resource population. A whole genome scan was performed with 183 microsatellites covering 19 porcine chromosomes to detect QTL for traits measured. A total of 73 QTL have been identified, including 1% genome-wise significant QTL for 24-h pH in LM and SM on SSC 15, and for glycolytic potential, total glycogen, and residual glycogen on SSC3, 6, and 7. Six 5% genome-wise significant QTL were detected for 9-h pH in SM on SSC3, pH decline from 3/9 h to 24 h in SM on SSC7, glycolytic potential on SSC1, and total glycogen on SSC1 and 6. This study confirmed QTL previously identified for pH except those on SSC1, 11, 12, and X, and found 11 new 5% genome-wise significant QTL for glycogen-related traits. This is the first time to report QTL for pH development during post-slaughter and for glycolytic potential at 5% genome-wise significance level. In addition, the observed different QTL for pH and pH decline at different times show that causal genes for pH postmortem play distinct roles at specific stages, in specific muscles, or both. These results provide a starting point for fine mapping of QTL for the traits measured and improve the understanding of the genetic basis of pH metabolism after slaughter.  相似文献   

20.
Broiler feed efficiency and meat quality are the primary factors considered by the poultry industry. This study was conducted to estimate heritability and genetic correlation coefficients for skeletal muscle fiber number, area and diameter and performance and meat quality traits of Pectoralis major in a single male broiler line. (Co) variance components were estimated by restricted maximum likelihood method, using the software MTDFREML. The numerator relationship matrix was composed by 77,474 individuals. Heritability coefficient estimates ranged from moderate to high for juvenile BW, breast weight, ultrasound record of pectoral muscle, lightness and thawing meat loss. Genetic correlation estimates for performance and skeletal muscle fiber traits indicated that selection for higher breast weight and juvenile BW could reduce muscle fiber number and increase muscle fiber diameter and area, which could prejudice the meat quality of this line. Selection for muscle fiber number and against muscle fiber diameter and area might improve meat water retention ability and tenderness in this broiler line, and selection programs could consider those traits as selection criteria, although this may be costly. We recommend the evaluation of the indirect selection caused by the use of the performance traits as selection criteria especially for juvenile BW and breast weight. Direct, intense selection for both traits might be unfavorable for most of the meat quality traits analyzed, which could lead to losses to both the chicken meat processing industry and consumers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号