首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mammalian innate immune system retains from Drosophila a family of homologous Toll-like receptors (TLRs) that mediate responses to microbial ligands. Here, we show that TLR2 activation leads to killing of intracellular Mycobacterium tuberculosis in both mouse and human macrophages, through distinct mechanisms. In mouse macrophages, bacterial lipoprotein activation of TLR2 leads to a nitric oxide-dependent killing of intracellular tubercle bacilli, but in human monocytes and alveolar macrophages, this pathway was nitric oxide-independent. Thus, mammalian TLRs respond (as Drosophila Toll receptors do) to microbial ligands and also have the ability to activate antimicrobial effector pathways at the site of infection.  相似文献   

2.
3.
Toll样受体(toll like receptors, TLRs)作为模式识别受体,不仅能够对机体特异性配体进行识别,并通过多种信号传导通路(由髓样分化蛋白88或由β-干扰素TLR结构域衔接蛋白介导)启动信号传导继而引发特异性的免疫应答,同时还在一些由支原体、病毒、细菌等感染引起的免疫应答过程中发挥了重要的调控功能。因为其重要的免疫调控作用,Toll样受体家族已成为近些年研究的热点,对畜禽抗病育种工作也具有重要的科学意义和应用前景。文章综述了猪源TLRs的种类、功能、遗传变异以及介导的信号通路,并重点介绍了猪源TLRs在抗病育种中的应用,旨在为猪Toll样受体家族基因功能研究及有效遗传标记的筛选提供参考依据。  相似文献   

4.
接头分子在Toll样受体(Toll like receptors,TLRs)识别病原相关分子模式或损伤相关分子模式、发动和调节先天与后天免疫反应的信号传导网络中发挥着重要的生物学作用,与Toll样受体相结合后,其下游激酶和转录因子传导信号,激活细胞内核转录因子调控作用元件。TLRs接头分子的共同特征是含有TIR结构域,不同TLRs家族成员可依赖于一个或多个接头分子传导信号。对目前已确认的MyD88、MAL/TIRAP、TRIF、TRAM和SARM 5种接头分子在TLRs信号传导途径中的调控作用进行综述,以期为研究接头分子在TLRs信号传导中的作用机制提供参考。  相似文献   

5.
Innate immune signals mediated by Toll-like receptors (TLRs) have been thought to contribute considerably to the antibody-enhancing effects of vaccine adjuvants. However, we report here that mice deficient in the critical signaling components for TLR mount robust antibody responses to T cell-dependent antigen given in four typical adjuvants: alum, Freund's complete adjuvant, Freund's incomplete adjuvant, and monophosphoryl-lipid A/trehalose dicorynomycolate adjuvant. We conclude that TLR signaling does not account for the action of classical adjuvants and does not fully explain the action of a strong adjuvant containing a TLR ligand. This may have important implications in the use and development of vaccine adjuvants.  相似文献   

6.
Mucosal surfaces constantly encounter microbes. Toll-like receptors (TLRs) mediate recognition of microbial patterns to eliminate pathogens. By contrast, we demonstrate that the prominent gut commensal Bacteroides fragilis activates the TLR pathway to establish host-microbial symbiosis. TLR2 on CD4(+) T cells is required for B. fragilis colonization of a unique mucosal niche in mice during homeostasis. A symbiosis factor (PSA, polysaccharide A) of B. fragilis signals through TLR2 directly on Foxp3(+) regulatory T cells to promote immunologic tolerance. B. fragilis lacking PSA is unable to restrain T helper 17 cell responses and is defective in niche-specific mucosal colonization. Therefore, commensal bacteria exploit the TLR pathway to actively suppress immunity. We propose that the immune system can discriminate between pathogens and the microbiota through recognition of symbiotic bacterial molecules in a process that engenders commensal colonization.  相似文献   

7.
In innate immune responses, activation of Toll-like receptors (TLRs) triggers direct antimicrobial activity against intracellular bacteria, which in murine, but not human, monocytes and macrophages is mediated principally by nitric oxide. We report here that TLR activation of human macrophages up-regulated expression of the vitamin D receptor and the vitamin D-1-hydroxylase genes, leading to induction of the antimicrobial peptide cathelicidin and killing of intracellular Mycobacterium tuberculosis. We also observed that sera from African-American individuals, known to have increased susceptibility to tuberculosis, had low 25-hydroxyvitamin D and were inefficient in supporting cathelicidin messenger RNA induction. These data support a link between TLRs and vitamin D-mediated innate immunity and suggest that differences in ability of human populations to produce vitamin D may contribute to susceptibility to microbial infection.  相似文献   

8.
Toll-like receptors (TLRs) control activation of adaptive immune responses by antigen-presenting cells (APCs). However, initiation of adaptive immune responses is also controlled by regulatory T cells (TR cells), which act to prevent activation of autoreactive T cells. Here we describe a second mechanism of immune induction by TLRs, which is independent of effects on costimulation. Microbial induction of the Toll pathway blocked the suppressive effect of CD4+CD25+ TR cells, allowing activation of pathogen-specific adaptive immune responses. This block of suppressor activity was dependent in part on interleukin-6, which was induced by TLRs upon recognition of microbial products.  相似文献   

9.
Microbial products are sensed through Toll-like receptors (TLRs) and trigger a program of dendritic cell (DC) maturation that enables DCs to activate T cells. Although an accepted hallmark of this response is eventual down-regulation of DC endocytic capacity, we show that TLR ligands first acutely stimulate antigen macropinocytosis, leading to enhanced presentation on class I and class II major histocompatibility complex molecules. Simultaneously, actin-rich podosomes disappear, which suggests a coordinated redeployment of actin to fuel endocytosis. These reciprocal changes are transient and require p38 and extracellular signal-regulated kinase activation. Thus, the DC actin cytoskeleton can be rapidly mobilized in response to innate immune stimuli to enhance antigen capture and presentation.  相似文献   

10.
11.
Crystal structure of human toll-like receptor 3 (TLR3) ectodomain   总被引:1,自引:0,他引:1  
Toll-like receptors (TLRs) play key roles in activating immune responses during infection. The human TLR3 ectodomain structure at 2.1 angstroms reveals a large horseshoe-shaped solenoid assembled from 23 leucine-rich repeats (LRRs). Asparagines conserved in the 24-residue LRR motif contribute extensive hydrogen-bonding networks for solenoid stabilization. TLR3 is largely masked by carbohydrate, but one face is glycosylation-free, which suggests its potential role in ligand binding and oligomerization. Highly conserved surface residues and a TLR3-specific LRR insertion form a homodimer interface in the crystal, whereas two patches of positively charged residues and a second insertion would provide an appropriate binding site for double-stranded RNA.  相似文献   

12.
Mucocutaneous leishmaniasis is caused by infections with intracellular parasites of the Leishmania Viannia subgenus, including Leishmania guyanensis. The pathology develops after parasite dissemination to nasopharyngeal tissues, where destructive metastatic lesions form with chronic inflammation. Currently, the mechanisms involved in lesion development are poorly understood. Here we show that metastasizing parasites have a high Leishmania RNA virus-1 (LRV1) burden that is recognized by the host Toll-like receptor 3 (TLR3) to induce proinflammatory cytokines and chemokines. Paradoxically, these TLR3-mediated immune responses rendered mice more susceptible to infection, and the animals developed an increased footpad swelling and parasitemia. Thus, LRV1 in the metastasizing parasites subverted the host immune response to Leishmania and promoted parasite persistence.  相似文献   

13.
Host protection from infection relies on the recognition of pathogens by innate pattern-recognition receptors such as Toll-like receptors (TLRs). Here, we show that the orphan receptor TLR13 in mice recognizes a conserved 23S ribosomal RNA (rRNA) sequence that is the binding site of macrolide, lincosamide, and streptogramin group (MLS) antibiotics (including erythromycin) in bacteria. Notably, 23S rRNA from clinical isolates of erythromycin-resistant Staphylococcus aureus and synthetic oligoribonucleotides carrying methylated adenosine or a guanosine mimicking a MLS resistance-causing modification failed to stimulate TLR13. Thus, our results reveal both a natural TLR13 ligand and specific mechanisms of antibiotic resistance as potent bacterial immune evasion strategy, avoiding recognition via TLR13.  相似文献   

14.
Stimulation of Toll-like receptors (TLRs) triggers activation of a common MyD88-dependent signaling pathway as well as a MyD88-independent pathway that is unique to TLR3 and TLR4 signaling pathways leading to interferon (IFN)-beta production. Here we disrupted the gene encoding a Toll/IL-1 receptor (TIR) domain-containing adaptor, TRIF. TRIF-deficient mice were defective in both TLR3- and TLR4-mediated expression of IFN-beta and activation of IRF-3. Furthermore, inflammatory cytokine production in response to the TLR4 ligand, but not to other TLR ligands, was severely impaired in TRIF-deficient macrophages. Mice deficient in both MyD88 and TRIF showed complete loss of nuclear factor kappa B activation in response to TLR4 stimulation. These findings demonstrate that TRIF is essential for TLR3- and TLR4-mediated signaling pathways facilitating mammalian antiviral host defense.  相似文献   

15.
Interferons (IFNs) are critical for protection from viral infection, but the pathways linking virus recognition to IFN induction remain poorly understood. Plasmacytoid dendritic cells produce vast amounts of IFN-alpha in response to the wild-type influenza virus. Here, we show that this requires endosomal recognition of influenza genomic RNA and signaling by means of Toll-like receptor 7 (TLR7) and MyD88. Single-stranded RNA (ssRNA) molecules of nonviral origin also induce TLR7-dependent production of inflammatory cytokines. These results identify ssRNA as a ligand for TLR7 and suggest that cells of the innate immune system sense endosomal ssRNA to detect infection by RNA viruses.  相似文献   

16.
Toll-like receptors(TLRs) are the critical superfamily homologues that initiate sensing of the invasion of pathogens by the Toll pathway. As one of several intracellular nucleic acid-sensing TLRs, TLR13 is activated by an unmethylated motif present in the large ribosomal subunit of bacterial RNA. However, little attention has been paid to the function of TLR13 gene homologue from Laodelphax striatellus(designated as LsToll-13) in the immune response to rice stripe virus(RSV). Herein, LsToll-13 was cloned and characterized using RACE-PCR. Phylogenetic analysis showed that LsToll-13 was clustered with the TLR13 from six insects. Real-time PCR analysis demonstrated that the expression level of LsToll-13 was significantly reduced in L. striatellus with RSV infection compared with that in the naive strain. When the expression of LsToll-13 was significantly up-regulated at 6 h after bacterial infection, the expression of ribonucleoprotein(RNP) indicated that the RSV titer in the host insect was significantly suppressed. Upon knockdown of LsToll-13, using RNA interference(RNAi) in L. striatellus, the expression level of RNP was significantly increased with enhanced RSV accumulation, suggesting that LsToll-13 potentially protects L. striatellus from RSV infection. Taken together, our results indicated that LsToll-13 might be involved in the immune response of L. striatellus to RSV infection, and provided a new insight into further elucidating the molecular mechanisms of complex pathogen-host interactions and integrative pest management.  相似文献   

17.
Plasmacytoid dendritic cells (pDCs) detect viruses in the acidified endosomes by means of Toll-like receptors (TLRs). Yet, pDC responses to certain single-stranded RNA (ssRNA) viruses occur only after live viral infection. We present evidence here that the recognition of such viruses by TLR7 requires transport of cytosolic viral replication intermediates into the lysosome by the process of autophagy. In addition, autophagy was found to be required for the production of interferon-alpha by pDCs. These results support a key role for autophagy in mediating ssRNA virus detection and interferon-alpha secretion by pDCs and suggest that cytosolic replication intermediates of viruses serve as pathogen signatures recognized by TLR7.  相似文献   

18.
Toll-like receptor 8-mediated reversal of CD4+ regulatory T cell function   总被引:1,自引:0,他引:1  
Peng G  Guo Z  Kiniwa Y  Voo KS  Peng W  Fu T  Wang DY  Li Y  Wang HY  Wang RF 《Science (New York, N.Y.)》2005,309(5739):1380-1384
CD4+ regulatory T (Treg) cells have a profound ability to suppress host immune responses, yet little is understood about how these cells are regulated. We describe a mechanism linking Toll-like receptor (TLR) 8 signaling to the control of Treg cell function, in which synthetic and natural ligands for human TLR8 can reverse Treg cell function. This effect was independent of dendritic cells but required functional TLR8-MyD88-IRAK4 signaling in Treg cells. Adoptive transfer of TLR8 ligand-stimulated Treg cells into tumor-bearing mice enhanced anti-tumor immunity. These results suggest that TLR8 signaling could play a critical role in controlling immune responses to cancer and other diseases.  相似文献   

19.
唐沙  陈静  岳筠  李涛  李梅  文明  张双翔  程振涛 《南方农业学报》2021,52(11):3130-3138
【目的】分析不同品种羊Toll样受体(TLRs)基因转录水平的差异性,为揭示TLRs基因转录水平与羊疫病间的关联性提供参考依据。【方法】选取贵州省主要饲养的贵州黑山羊、贵州白山羊、黔北麻羊、波尔山羊和湖羊为研究对象,根据GenBank已公布的TLRs基因序列设计荧光定量PCR特异性扩增引物及TaqMan探针引物,利用TaqMan探针荧光定量PCR检测不同品种羊血液和肺脏中TLR1~TLR10基因转录水平差异。【结果】 TLR1~TLR10基因在不同品种羊血液和肺脏中均有转录表达。不同品种羊血液和肺脏中的TLRs基因转录水平均存在差异性,在波尔山羊血液中TLR2、TLR4和TLR5基因转录水平均极显著低于其他4种羊(P<0.01,下同),TLR7和TLR8基因转录水平则极显著低于除黑山羊外的其他3种羊;在白山羊血液中TLR4、TLR7、TLR8和TLR9基因转录水平极显著高于其他4种羊;在湖羊肺脏中TLR2、TLR3、TLR4、TLR5和TLR8基因转录水平极显著低于其他4种羊,而在黔北麻羊肺脏中TLR5和TLR8基因转录水平极显著高于其他4种羊。此外,在5种羊血液中TLR2、TLR4、TLR7和TLR8基因转录水平均极显著高于其他TLRs基因转录水平;羊肺脏中TLR2、TLR3、TLR4、TLR5和TLR8基因转录水平相对较高,在贵州白山羊、贵州黑山羊和波尔山羊均表现为极显著高于其他TLRs基因转录水平。【结论】不同品种羊血液和肺脏中TLRs基因转录水平具有差异性,以TLR2、TLR3、TLR4、TLR5和TLR8基因转录水平相对较高,提示TLRs在不同品种羊机体中发挥着清除病原体及维持机体稳态的作用,而TLRs基因转录水平差异可能是造成不同品种羊对疫病易感差异的原因之一。  相似文献   

20.
Natural killer (NK) cells are lymphocytes of the innate immune system that are involved in the early defenses against foreign cells, as well as autologous cells undergoing various forms of stress, such as microbial infection or tumor transformation. NK cell activation is controlled by a dynamic balance between complementary and antagonistic pathways that are initiated upon interaction with potential target cells. NK cells express an array of activating cell surface receptors that can trigger cytolytic programs, as well as cytokine or chemokine secretion. Some of these activating cell surface receptors initiate protein tyrosine kinase (PTK)-dependent pathways through noncovalent associations with transmembrane signaling adaptors that harbor intracytoplasmic ITAMs (immunoreceptor tyrosine-based activation motifs). Additional cell surface receptors that are not directly coupled to ITAMs also participate in NK cell activation. These include NKG2D, which is noncovalently associated to the DAP10 transmembrane signaling adaptor, as well as integrins and cytokine receptors. NK cells also express cell surface inhibitory receptors that antagonize activating pathways through protein tyrosine phosphatases (PTPs). These inhibitory cell surface receptors are characterized by intracytoplasmic ITIMs (immunoreceptor tyrosine-based inhibition motifs). The tyrosine-phosphorylation status of several signaling components that are substrates for both PTKs and PTPs is thus key to the propagation of the NK cell effector pathways. Understanding the integration of these multiple signals is central to the understanding and manipulation of NK cell effector signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号