首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Molecular markers (RAPD, AFLP and microsatellites) were used to generate a linkage map and to identify QTLs associated to witches' broom (Crinipellis perniciosa) resistance in cacao (Theobroma cacao), using 82 individuals of an F2 population derived from the clones ICS-1 (susceptible) and Scavina-6 (resistant). Fifteen evaluations of the number of brooms have been carried out in six years (1997–2002). In order to increase the precision and accuracy in the measures of resistance, each F2 plant was cloned in three replications in a randomized block design with single-tree plots and evaluated over 2 years. Three hundred and forty-two markers were obtained, being 33 microsatellites, 77 AFLPs and 232 RAPDs. The distribution of the number of brooms in the F2 population was skewed to resistance, suggesting the involvement of major genes controlling resistance and the repeatability estimated for resistance was 44%. A strong putative QTL was detected as being related to witches' broom resistance. Associated to this QTL, the microsatellite mTcCIR35 explained 35.5% of the phenotypic variation in resistance. This marker is being used for marker-assisted selection in Scavina-6 progenies, including those selected in private plantations, as an auxiliary tool to the phenotypic selection.  相似文献   

2.
Witches’ broom is a severe disease of Theobroma cacao L. (cacao), caused by the basidiomycete Moniliophthora perniciosa. The use of resistant cultivars is the ultimate method of control, but there are limited sources of resistance. Further, resistance from the most widely used source (‘Scavina 6’) has been overcome after a few years of deployment. New sources of resistance have been intensively searched for in the Amazon basin. Here, we evaluated for witches’ broom resistance, cacao accessions from various natural cacao populations originally collected in the Brazilian Amazon. Resistance of 43 families was evaluated under nursery and/or field conditions by artificial or natural infection, respectively, based on disease incidence. Screening for resistance by artificial inoculation under nursery conditions appeared to be efficient in identifying these novel resistance sources, confirmed by natural field evaluation over a nine-year period. The increase in natural field infection of ‘Scavina 6’ was clearly demonstrated. Among the evaluated families with the least witches’ broom incidence, there were accessions originally collected from distinct river basins, including the Jamari river (‘CAB 0371’; ‘CAB 0388’; ‘CAB 0392’; and ‘CAB 0410’); Acre (‘CAB 0169’); Javari (‘CAB 0352’); Solimões (‘CAB 0270’); and from the Purus river basin, the two most outstanding resistant accessions, ‘CAB 0208’ and ‘CAB 0214’. The large genetic diversity found in cacao populations occurring at river basins from Acre and Amazonas states, Brazil, increased the chance that the selected resistant accessions would be genetically more dissimilar, and represent distinct sources of resistance to M. perniciosa from ‘Scavina 6’.  相似文献   

3.
Fusarium head blight (FHB) is a devastating disease that reduces the yield, quality and economic value of wheat. For quantitative trait loci (QTL) analysis of resistance to FHB, F3 plants and F3:5 lines, derived from a ‘Wangshuibai’ (resistant)/‘Seri82’(susceptible) cross, were spray inoculated during 2001 and 2002, respectively. Artificial inoculation was carried out under field conditions. Of 420 markers, 258 amplified fragment length polymorphism and 39 simple sequence repeat (SSR) markers were mapped and yielded 44 linkage groups covering a total genetic distance of 2554 cM. QTL analysis was based on the constructed linkage map and area under the disease progress curve. The analyses revealed a QTL in the map interval Xgwm533‐Xs18/m12 on chromosome 3BS accounting for up to 17% of the phenotypic variation. In addition, a QTL was detected in the map interval Xgwm539‐Xs15/m24 on chromosome 2DL explaining up to 11% of the phenotypic variation. The QTL alleles originated from ‘Wangshuibai’ and were tagged with SSR markers. Using these SSR markers would facilitate marker‐assisted selection to improve FHB resistance in wheat.  相似文献   

4.
N. Mutlu    P. Miklas    J. Reiser  D. Coyne 《Plant Breeding》2005,124(3):282-287
Common bacterial blight (CBB) caused by Xanthomonas campestris pv. phaseoli reduces common bean (Phaseolus vulgaris L.) yield and quality worldwide. Genetic resistance provides effective disease control; however. a high level of resistance is difficult to attain and does not exist in pinto bean, the most important dry bean market class in North America. Our objective was to determine if a backcross breeding approach with the aid of molecular markers linked to quantitative trait loci (QTL) for resistance to CBB in a donor parent could be used to attain higher levels of resistance to CBB in pinto bean. QTL conditioning CBB resistance from the donor parent XAN 159 were introgressed into the recurrent parent‘Chase’using classical backcross breeding and intermittent marker‐assisted selection.‘Chase’pinto bean is moderately resistant and the breeding line XAN 159 is highly resistant to Xanthomonas campestris. Marker assays confirmed the presence of independent QTL from GN no. 1 Sel 27 and XAN 159 in advanced backcross‐derived pinto bean lines with improved CBB resistance. Agronomic characteristics of‘Chase’were fully recovered in the backcross‐derived lines. An important QTL for CBB resistance from XAN 159 on linkage group B6 was not introgressed because tight linkage between this QTL and the dominant V allele that causes an unacceptable black‐mottled seed coat colour pattern in pinto bean could not be broken.  相似文献   

5.
Z. Lin    D. He    X. Zhang    Y. Nie    X. Guo    C. Feng  J. McD. STEWART 《Plant Breeding》2005,124(2):180-187
Tetraploid cotton is one of the most extensively cultivated species. Two tetraploid species, Gossypium hirsutum L. and G. barbadense L., dominate the world's cotton production. To better understand the genetic basis of cotton fibre traits for the improvement of fibre quality, a genetic linkage map of tetraploid cotton was constructed using sequence‐related amplified polymorphisms (SRAPs), simple sequence repeats (SSRs) and random amplified polymorphic DNAs (RAPDs). A total of 238 SRAP primer combinations, 368 SSR primer pairs and 600 RAPD primers were used to screen polymorphisms between G. hirsutum cv. Handan208 and G. barbadense cv. Pima90 which revealed 749 polymorphic loci in total (205 SSRs, 107 RAPDs and 437 SRAPs). Sixty‐nine F2 progeny from the interspecific cross of ‘Handan208’בPima90’ were genotyped with the 749 polymorphic markers. A total of 566 loci were assembled into 41 linkage groups with at least three loci in each group. Twenty‐eight linkage groups were assigned to corresponding chromosomes by SSR markers with known chromosome locations. The map covered 5141.8 cM with a mean interlocus space of 9.08 cM. A × test for significance of deviations from the expected ratio (1: 2: 1 or 3: 1) identified 135 loci (18.0%) with skewed segregation, most of which had an excess of maternal parental alleles. In total, 13 QTL associated with fibre traits were detected, among which two QTL were for fibre strength, four for fibre length and seven for micronaire value. These QTL were on nine linkage groups explaining 16.18‐28.92% of the trait variation. Six QTL were located in the A subgenome, six QTL in the D subgenome and one QTL in an unassigned linkage group. There were three QTL for micronaire value clustered on LG1, which would be very useful for improving this trait by molecular marker‐assisted selection.  相似文献   

6.
Mapping QTL involved in powdery mildew resistance of the apple clone U 211   总被引:1,自引:0,他引:1  
Scab and powdery mildew, caused by Venturia inaequalis (Cke.) Wint. and Podosphaera leucotricha (Ellis et Ev.) Salm. are the most important apple diseases. The apple clone U 211 is resistant to scab and is also highly resistant to powdery mildew under field conditions. The interval mapping method was applied for the identification of genomic regions conferring U 211 resistance to powdery mildew. The genetic maps of the ‘Idared’ and U 211 genome sectors were constructed using amplified fragment lenght polymorphism and simple sequence repeat markers and 98 individuals from the progeny of the cross ‘Idared’× U 211. On the basis of the phenotypic and molecular marker data 10 powdery mildew resistance quantitative trait loci (QTL) were identified in U 211 and ‘Idared’. One of the QTL in the clone U 211 explained 48‐72% of the phenotypic variation and its effect was stable over years.  相似文献   

7.
Soybean pod borer (SPB) (Leguminivora glycinivorella (Mats.) Obraztsov) causes severe loss of soybean (Glycine max L. Merr.) seed yield and quality in some regions of the world, especially in north‐eastern China, Japan and Russia. Isoflavones in soybean seed play a crucial role in plant resistance to diseases and pests. The aim of this study was to find whether SPB resistance QTL are associated with soybean seed isoflavone content. A cross was made between ‘Zhongdou 27’ (higher isoflavone content) and ‘Jiunong 20’ (lower isoflavone content). One hundred and twelve F5:10 recombinant inbred lines were derived through single‐seed descent. A plastic‐net cabinet was used to cover the plants in early August, and thirty SPB moths per square metre were put in to infest the soybean green pods. The results indicated that the percentage of seeds damaged by SPB was positively correlated with glycitein content (GC), whereas it was negatively correlated with genistein (GT), daidzein (DZ) and total isoflavone content (TI). Four QTL underlying SPB damage to seeds were identified and the phenotypic variation for SPB resistance explained by the four QTL ranged from 2% to 14% on chromosomes Gm7, 10, 13 and 17. Moreover, eleven QTL underlying isoflavone content were identified, and ten of them were encompassed within the same four marker intervals as the SPB QTL (BARC‐Satt208‐Sat292, Satt144‐Sat074, Satt540‐Sat244 and Satt345‐Satt592). These QTL could be useful in marker‐assisted selection for breeding soybean cultivars with both SPB resistance and high seed isoflavone content.  相似文献   

8.
Molecular and physical mapping of genes affecting awning in wheat   总被引:5,自引:0,他引:5  
P. Sourdille    T. Cadalen    G. Gay    B. Gill  M. Bernard 《Plant Breeding》2002,121(4):320-324
Quantitative trait loci (QTL) for three traits related to awning (awn length at the base, the middle and the top of the ear) in wheat were mapped in a doubled‐haploid line (DH) population derived from the cross between the cultivars ‘Courtot’ (awned) and ‘Chinese Spring’ (awnless) and grown in Clermont‐Ferrand, France, under natural field conditions. A molecular marker linkage map of this cross that was previously constructed based on 187 DH lines and 550 markers was used for the QTL mapping. The genome was well covered (more than 95%) and a set of anchor loci regularly spaced (one marker every 20.8 cM) was chosen for marker regression analysis. For each trait, only two consistent QTL were identified with individual effects ranging from 8.5 to 45.9% of the total phenotypic variation. These two QTL cosegregated with the genes Hd on chromosome 4A and B2 on chromosome 6B, which are known to inhibit awning. The results were confirmed using ‘Chinese Spring’ deletion lines of these two chromosomes, which have awned spikes, while ‘Chinese Spring’ is usually awnless. No quantitative trait locus was detected on chromosome 5A where the B1 awn‐inhibitor gene is located, suggesting that both ‘Courtot’ and ‘Chinese Spring’ have the same allelic constitution at this locus. The occurrence of awned speltoid spikes on the deletion lines of this chromosome suggests that ‘Chinese Spring’ and ‘Courtot’ have the dominant B1 allele, indicating that B1 alone has insufficient effect to induce complete awn inhibition.  相似文献   

9.
Clubroot disease caused by Plasmodiophora brassicae is one of the major diseases of Brassica crops, often devastating to the cultivation of cruciferous crops in temperate regions. In a previous study (Moriguchi et al. 1999) identified three major quantitative trait loci (QTLs) for clubroot resistance, each in a separate linkage group, in a population derived from a cross between a clubroot‐susceptible inbred cabbage line, Y2A and a resistant inbred kale line, K269. In this study, the original random amplified polymorphic DNA (RAPD) and restriction fragment length polymorphism (RFLP) markers were converted into sequence‐characterized amplified region (SCAR) markers to facilitate large‐scale marker‐assisted screening of clubroot resistance in cabbage breeding. Of 15 RAPD markers closely linked to the three QTLs, nine SCARs were developed as dominant markers after cloning and sequencing. In addition, two RAPD markers were converted into co‐dominant cleaved amplified polymorphic sequence (CAPS) markers, and one RFLP marker out of three tested was converted to a dominant SCAR marker. The effect of selection for resistance by the improved markers was evaluated in progeny plants in the F2 and F3. A total of 138 F2 plants were genotyped with nine SCARs and 121 well‐distributed makers consisting of 98 RAPD, 19 RFLP, two isozymes, and two morphological markers in order to estimate the level of resistance and the proportion of undesirable alleles from the kale in non‐target areas in each of the F2 populations. An F2 plant, YK118, had kale alleles at QTL1, QTL3 and QTL9. Three F2 plants, namely, YK107, YK25 and YK51 had kale alleles at only QTL1, QTL3 and QTL9, respectively. These F2 plants were selected for their low proportion of alleles derived from kale in non‐target regions. YK118, like the resistant kale parent, expressed very high resistance to three field isolates of Plasmodiophora brassicae, whereas the mean disease index in the F2 and F3 plants carrying only single QTLs was intermediate. The QTLs showed no differential response to the isolates. These plants with improved resistance will be useful as parental inbred lines for F1 hybrids.  相似文献   

10.
Little is known about the extent or diversity of resistance in soft red winter wheat (Triticum aestivum L.) to stripe rust, caused by the fungal pathogen Puccinia striiformis f.sp. tritici. The soft red winter (SRW) wheat cultivar ‘USG 3555’ has effective adult‐plant resistance to stripe rust, which was characterized in a population derived from ‘USG 3555’/‘Neuse’. The mapping population consisted of 99 recombinant inbred lines, which were evaluated for stripe rust infection type (IT) and severity to race PST‐100 in field trials in North Carolina in 2010 and 2011. Genome‐wide molecular‐marker screenings with 119 simple sequence repeats and 560 Diversity Arrays Technology (DArT) markers were employed to identify quantitative trait loci (QTL) for stripe rust resistance. QTL on chromosomes 1AS, 4BL and 7D of ‘USG 3555’ explained 12.8, 73.0 and 13.6% of the variation in stripe rust IT, and 13.5, 72.3 and 10.5% of the variation in stripe rust severity, respectively. Use of these and additional diagnostic markers for these QTL will facilitate the introgression of this source of stripe rust resistance into SRW wheat lines via marker‐assisted selection.  相似文献   

11.
F. Dreyer    K. Graichen  C. Jung   《Plant Breeding》2001,120(6):457-462
Turnip yellows virus (TuYV) is responsible for a recognizable loss of yield in European winter oilseed rape cultivation. To map genes involved in TuYV resistance, a double haploid population was established by crossing a resynthesized rapeseed line (R54) as donor for TuYV resistance with an elite rapeseed line (‘Express’). Resistance was determined with 10 plants per line by double antibody sandwich‐enzyme‐linked immunosorbent assay. After screening 17 primer combinations (Pstl/Msel and EcoRI/Msel), 143 amplified fragment length polymorphism markers were mapped to 20 linkage groups representing 15 chromosomes of the rapeseed genome. Quantitative trait loci (QTL) were mapped using the composite interval mapping approach. As a result, one major quantitative trait locus was found on linkage group MS17, explaining up to 50% of the phenotypic variation. Because no other factors displaying a significant effect on the expression of resistance could be identified, a simple mode of inheritance for TuYV resistance is suggested, thus enabling marker‐assisted selection during rapeseed breeding.  相似文献   

12.
M. Mardi    L. Pazouki    H. Delavar    M. B. Kazemi    B. Ghareyazie    B. Steiner    R. Nolz    M. Lemmens    H. Buerstmayr 《Plant Breeding》2006,125(4):313-317
Fusarium head blight (FHB or head scab) has become a major limiting factor for sustainable wheat (Triticum aestivum L.) production around the world. For quantitative trait loci (QTL) analysis of resistance to FHB, F3 plants and F3 : 5 lines, derived from a ‘Frontana’ (moderately resistant)/‘Seri82’ (susceptible) cross, were spray‐inoculated in 2001 and 2002, respectively. Artificial inoculations were carried out under field conditions. Of 273 SSR and AFLP markers, 250 could be mapped and they yielded 42 linkage groups, covering a genetic distance of 1931 cM. QTL analysis was based on the constructed linkage map and area under the disease progress curve (AUDPC). The analyses revealed three consistent QTLs associated with FHB resistance on chromosomes 1BL, 3AL and 7AS explaining 7.9%, 7.7% and 7.6% of the phenotypic variation, respectively, above 2 years. The results confirmed the previously described resistance QTL of ‘Frontana’ on chromosome 3AL. A combination of ‘Frontana’ resistance with ‘Sumai‐3’ resistance may lead to lines with augmented resistance expression.  相似文献   

13.
W-C. Zhou    F. L. Kolb    G-H. Bai    L. L. Domier    L. K. Boze  N. J. Smith 《Plant Breeding》2003,122(1):40-46
The objectives of this study were to validate the major quantitative trait locus (QTL) for scab resistance on the short arm of chromosome 3B in bread wheat and to isolate near‐isogenic lines for this QTL using marker‐assisted selection (MAS). Two resistant by susceptible populations, both using ‘Ning7840’ as the source of resistance, were developed to examine the effect of the 3BS QTL in different genetic backgrounds. Data for scab resistance and simple sequence repeat (SSR) markers linked to the resistance QTL were analyzed in the F2:3 lines of one population and in the F3:4 lines of the other. Markers linked to the major QTL on chromosome 3BS in the original mapping population (‘Ning7840’/‘Clark’) were closely associated with scab resistance in both validation populations. Marker‐assisted selection for the QTL with the SSR markers combined with phenotypic selection was more effective than selection based solely on phenotypic evaluation in early generations. Marker‐assisted selection of the major QTL during the seedling stage plus phenotypic selection after flowering effectively identified scab resistant lines in this experiment. Near‐isogenic lines for this 3BS QTL were isolated from the F6 generation of the cross ‘Ning7840’/‘IL89‐7978’ based on two flanking SSR markers, Xgwm389 and Xbarc147. Based on these results, MAS for the major scab resistance QTL can improve selection efficiency and may facilitate stacking of scab resistance genes from different sources.  相似文献   

14.
N. Saka    T. Tsuji    T. Toyama    M. Yano    T. Izawa    T. Sasaki 《Plant Breeding》2006,125(2):140-143
The chromosomal location of the resistance gene for green rice leafhopper (GRLH), an injurious insect for rice, has been determined and RFLP markers closely linked to this gene have been identified. The susceptible japonica rice variety ‘Nipponbare’ was crossed with a resistant japonica rice line ‘Aichi42’, in which green rice leaf hopper resistance had been introduced from an indica variety ‘Rantaj‐emas2’, and the 100 F2 plants obtained were used for linkage analysis. The green rice leafhopper resistance gene, Grh3(t), was mapped between RFLP markers C288B and C133A on chromosome 6 and co‐segregated with C81. Of the RFLP markers tightly linked to Grh3(t), C81 was converted to a SCAR marker and C133A to a cleaved amplified polymorphic sequence marker that could distinguish the heterozygous genotype to establish an effective marker‐aided selection system for the GRLH resistance gene.  相似文献   

15.
Tobacco bacterial wilt (TBW) is one of the most serious tobacco diseases in the world. Studies have shown that tobacco resistance to TBW is quantitatively inherited. This study aimed to map quantitative trait loci (QTL) conferring TBW resistance. An F2 : 3 population containing 237 lines was developed from a cross between two flue‐cured tobacco cultivars, ‘Yanyan 97’ (YY97; moderately resistant to TBW) and ‘Honghua Dajinyuan’ (HD; highly susceptible to TBW), and a linkage map consisting of 201 simple sequence repeats (SSR) markers and spanning a total length of 2326.7 cM was constructed based on the population. Field experiments were conducted 2011 and 2012, and disease symptoms were investigated three times in each year. The phenotypic data were analysed either separately or jointly for QTL mapping using the software QTLNetwork 2.1. Eight QTL with significant main effects were mapped on chromosomes 2, 6, 12, 17 and 24. A major QTL (qBWR17a) was detected on chromosome 17, which explained up to 30% of the phenotypic variation. The results can facilitate marker‐assisted selection (MAS) in TBW resistance breeding programme.  相似文献   

16.
Bacterial leaf blight (BLB), caused by Xanthomonas axonopodis pv. vignicola (Xav), is widespread in major cowpea [Vigna unguiculata (L.) Walp.] growing regions of the world. Considering the resource poor nature of cowpea farmers, development and introduction of cultivars resistant to the disease is the best option. Identification of DNA markers and marker‐assisted selection will increase precision of breeding for resistance to diseases like bacterial leaf blight. Hence, an attempt was made to detect QTL for resistance to BLB using 194 F2 : 3 progeny derived from the cross ‘C‐152’ (susceptible parent) × ‘V‐16’ (resistant parent). These progeny were screened for resistance to bacterial blight by the leaf inoculation method. Platykurtic distribution of per cent disease index scores indicated quantitative inheritance of resistance to bacterial leaf blight. A genetic map with 96 markers (79 SSR and 17 CISP) constructed from the 194 F2 individuals was used to perform QTL analysis. Out of three major QTL identified, one was on LG 8 (qtlblb‐1) and two on LG 11 (qtlblb‐2 and qtlblb‐3). The PCR product generated by the primer VuMt337 encoded for RIN2‐like mRNA that positively regulate RPM1‐ and RPS2‐dependent hypersensitive response. The QTL qtlblb‐1 explained 30.58% phenotypic variation followed by qtlblb‐2 and qtlblb‐3 with 10.77% and 10.63%, respectively. The major QTL region on LG 8 was introgressed from cultivar V‐16 into the bacterial leaf blight susceptible variety C‐152 through marker‐assisted backcrossing (MABC).  相似文献   

17.
B. Uzun    D. Lee    P. Donini  M. L Ça&#;irgan 《Plant Breeding》2003,122(1):95-97
The identification of an amplified fragment length polymorphism (AFLP) marker linked to an agronomically useful trait in sesame is reported. A bulked segregant analysis (BSA) approach was adopted on segregating progenies of a cross between the closed capsule mutant line ‘cc3’, and the Turkish variety ‘Muganli‐57′. A total of 72 primer combinations were screened for linkage to the trait, but only one closely linked amplified fragment length polymorphism (AFLP) marker was identified. The linkage was confirmed by analysing the AFLP profile from single plants. The marker has the potential to accelerate breeding programmes aimed at modifying unwanted side‐effects of the closed capsule mutation by marker‐assisted selection.  相似文献   

18.
枣疯病植原体的快速检测   总被引:2,自引:1,他引:1  
以表现丛枝症状的‘金丝4号’枣树为试材,以叶片总DNA粗提物为模板通过PCR扩增技术克隆16S rDNA基因,建立了枣疯病植原体快速检测方法。序列分析结果显示,枣疯病植原体‘金丝4号’株系(JWB-Jinsi4,TA)与JWB-G1(AB052876)同源性为99.7%,归属于16Sr Ⅴ-B组。实验结果表明,以DNA粗提物为模板的PCR扩增技术,可快速有效地检测枣疯病植原体,为生产实践中枣疯病的诊断和防治提供技术支持。  相似文献   

19.
C. C. Su    J. Wan    H. Q. Zhai    C. M. Wang    L. H. Sun    H. Yasui  A. Yoshimura 《Plant Breeding》2005,124(1):93-95
The brown planthopper (BPH) is one of the most destructive insect pests of rice. Resistant varieties have proved to be one of the most economic and effective measures for BPH management. In this study, an indica rice ‘DV85’ showed resistance to biotype 2 of BPH by bulked seedling test, and a recombinant inbred line (RIL) population derived from a cross between a susceptible rice ‘Kinmaze’ and ‘DV85’ was phenotyped to map genetic factors conferring BPH resistance in ‘DV85′. Composite interval mapping revealed that one quantitative trait locus (QTL) with a LOD score of 10.1 was detected between XNpb202 and C1172 on chromosome 11. This QTL was designated as Qbph11. Qbph11 explained 68.4% of the phenotypic variance of BPH resistance in this population. The allele from the resistant parent ‘DV85’ at Qbph11 reduced the damage caused by BPH feeding and would be very useful in breeding resistant rice varieties via marker‐assisted selection.  相似文献   

20.
A major quantitative trait locus (QTL) influencing seed fibre and colour in Brassica napus was dissected by marker saturation in a doubled haploid (DH) population from the black‐seeded oilseed rape line ‘Express 617’ crossed with a yellow‐seeded B. napus line, ‘1012–98’. The marker at the peak of a sub‐QTL with a strong effect on both seed colour and acid detergent lignin content lay only 4 kb away from a Brassica (H+)‐ATPase gene orthologous to the transparent testa gene AHA10. Near the peak of a second sub‐QTL, we mapped a copy of the key phenylpropanoid biosynthesis gene cinnamyl alcohol dehydrogenase, while another key phenylpropanoid biosynthesis gene, cinnamoyl co‐a reductase 1, was found nearby. In a cross between ‘Express 617’ and another dark‐seeded parent, ‘V8’, Bna.CCR1 was localized in silico near the peak of a corresponding seed fibre QTL, whereas in this case Bna.CAD2/CAD3 lay nearby. Re‐sequencing of the two phenylpropanoid genes via next‐generation amplicon sequencing revealed intragenic rearrangements and functionally relevant allelic variation in the three parents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号