共查询到19条相似文献,搜索用时 62 毫秒
1.
研究了复方红花(Carthamus tinctorius L.)无糖颗粒的制备工艺。采用湿法制粒,以颗粒的吸湿性和流动性为指标,筛选最佳处方,并对颗粒的外观、粒度、干燥失重、溶化性进行检查。结果表明,复方红花提取物与糊精质量比为1∶1.8,润湿剂为85%乙醇,矫味剂阿斯巴甜用量为0.3%时,颗粒的吸湿量最小,流动性好。颗粒的外观、粒度、干燥失重和溶化性均符合规定。 相似文献
2.
3.
通过分析红花(Carthamus tinctorius L.)原始光谱、变换光谱以及其他25种应用最普遍的高光谱参数与其叶绿素含量的相关性,并选择每个生长期与红花叶绿素含量相关性较好的高光谱指数和波段,建立不同生长期红花叶绿素含量的线性、抛物线、指数和对数模型,并用RMSE评价模型精度。最后得出各期的最佳模型:出苗期归一化差异指数(NDI)的抛物线模型具有最大模型精度0.900和检验精度0.932;分枝期黄边幅值(Dy)的抛物线模型精度为0.850,检验模型精度为0.811;始花期444 nm处二阶导数光谱的抛物线模型精度为0.734,检验精度为0.866;终花期798 nm处二阶导数光谱的抛物线模型精度为0.929;成熟期795 nm处二阶导数光谱的指数模型精度为0.904,检验精度为0.868。 相似文献
4.
5.
利用AFLP标记分析云南红花优异种质资源的遗传多样性 总被引:2,自引:0,他引:2
在云南红花优异种质筛选研究基础上,从DNA水平分析和探讨云南优异红花种质的遗传多样性,为云南红花种质资源的保护、评价和红花新品种选育提供理论依据。利用108对AFLP标记引物及POPGENE 3.2,NTsys2.2软件对50份云南优异的红花种质资源材料,通过多态性检测、聚类分析,计算遗传距离、遗传一致度及Nei指数,揭示云南红花种质资源的遗传分化和遗传多样性。结果表明,利用AFLP标记筛选出8对引物,共扩增331条带,142条多态性带,多态位点百分率为33.42%~55.80%,平均多态性为42.42%。根据UPGMA聚类分析,在遗传相似系数0.64~0.66,把50份红花材料分为4个组,与传统形态学分类相似,但略有不同。在群体遗传分化研究中,群体总基因多态性为0.283 3,群体内基因多态性为0.157 4,其中,群体间遗传分化系数为0.444 5,总基因流为0.624 8;6个群体间的遗传一致度为0.747 9~0.909 0,条纹壳群体和抗锈病群体间的一致度最高,为0.909 0,而黄花群体和大粒群体的遗传一致度最低,为0.747 9,说明50份云南优异红花种质资源在种内遗传变异丰富。这6个群体得到的等位基因观察数分布在1.250 0~1.675 0,全部群体则达到了1.800 0。有效等位基因数分布在1.120 4~1.426 9,全部群体则达到了1.4334。Nei指数分布在0.077 1~0.251 3,其值由大到小顺序为条纹壳群体>高亚油酸群体>抗锈病群体>无刺群体>大粒群体>黄花群体。Shannon指数分布在0.120 0~0.373 8,其值由大到小为条纹壳群体>抗锈病群体>高亚油酸群体>无刺群体>大粒群体>黄花群体。说明云南红花群体具有复杂的遗传分化和丰富的遗传多样性,遗传变异主要在群体间,应注重群体保护,同时AFLP标记技术能有效地揭示红花种质资源的遗传多样性,为红花种质资源保护、品种选育及分子进化研究提供依据。 相似文献
6.
ICRISAT花生微核心种质资源SSR标记遗传多样性分析 总被引:5,自引:1,他引:5
【目的】评价ICRISAT花生微核心种质资源的遗传多样性水平,揭示ICRISAT花生微核心种质资源遗传多样性,验证传统植物学分类的可靠程度,为充分发掘、利用ICRISAT花生微核心种质资源提供必要信息。【方法】采用27对花生SSR引物,对ICRISAT微核心花生种质168份材料(来自世界五大洲42个国家)进行遗传多样性分析;利用NTSYS-pcV2.0软件进行主成分分析(PCA)并绘制三维空间聚类图;利用Popgene V1.32估算种质群间的Nei78遗传距离等参数并进行UPGMA聚类分析,采用MEGA3.1绘制种质群间聚类图。【结果】27对SSR引物共扩增出115条多态性条带,每对引物平均扩增出4.2930个等位变异,其中有效等位变异数2.7931,有效等位变异所占比重为65.49%;PM137、16C6、14H6、8D9和7G02等引物最为有效,其Shannon’s信息指数均在1.5以上,等位变异数5个以上,有效变异数3.7个以上。在多粒型群体中,来源于南美洲和印度种质资源的遗传多样性较低,来源于南美洲和非洲种质资源的遗传多样性较高;在珍珠豆型群体中,来源于北美洲种质资源的遗传多样性较低,来源于南美洲和非洲种质资源的遗传多样性较高;在普通型群体中,来源于北美洲种质资源的遗传多样性较低,来源于南美洲、美国和非洲种质资源的遗传多样性较高。来自南美洲的花生种质资源具有较高的遗传多样性,与花生起源于南美洲的结论一致。PCA分析,发现栽培种花生种质资源由4个差异明显的基因源构成,"hypogaea"包括普通型种质资源,"vulgaris"包括珍珠豆型种质资源,"fastigiata1"包括多粒型种质资源,"fastigiata2"包括多粒型种质资源。植物学分类单位间的Nei78遗传距离介于16.336—23.607cM,UPGMA聚类方法将花生属植物学分类单位聚成5个组群,"组群1"对应"hypogaea"基因源,"组群2"对应"vulgaris"基因源,"组群3"对应"fastigiata1"、"fastigiata2"基因源之和,"组群4"和"组群5"分别代表秘鲁型和赤道型基因源,聚类结果支持4个基因源的划分。【结论】ICRISAT花生微核心种质资源具有丰富的遗传多样性,不同来源的变种群间存在明显的遗传差异,并分化成4个基因源,研究结果部分支持栽培种花生传统的植物学分类体系。为拓宽花生育成品种的遗传基础,应充分发掘ICRISAT微核心种质各基因源的遗传潜力。 相似文献
7.
车前种质资源遗传多样性ISSR分析 总被引:1,自引:0,他引:1
[目的]研究江西、湖南、湖北等7个省份的车前种质资源的遗传多样性。[方法]采用ISSR技术,对28份车前样品进行遗传多样性和亲缘关系分析。[结果]从40条引物中共筛选出16条可用于车前遗传多样性分析的ISSR引物,共扩增出131条带,其中多态性条带(PPB)有107条,占81.7%。ISSR数据分析显示,多态性位点百分率(P)为75.3%;平均等位基因观测数为0.071 3;有效等位基因数为0.299 0;Nei,s基因多样性指数(H)为0.360 1;Shannon多态性信息指数(I)为0.535 4。[结论]车前种质资源遗传多样性的地理差异较为明显;野生种与栽培种基因型差异较大。 相似文献
8.
遗传标记作为识别遗传物质的标识,是检测植物种质资源遗传多样性的有效工具,其在个体、细胞和分子水平上有形态标记、细胞标记、生化标记和分子标记四种形式。本文综述了四种遗传标记技术的优缺点及其在植物种质资源研究中的应用,并对发展趋势进行展望。 相似文献
9.
用水超声法提取红花(Carthamus tinctorius L.)中红花黄色素A,提取液经D-101大孔吸附树脂色谱柱进行粗分,所得水及体积分数30%的乙醇洗脱物用中压制备色谱进行两次分离纯化,所得产物经高效液相色谱分析,羟基红花黄色素A纯度为95.968%.该方法省时、简便、高效,值得推广应用. 相似文献
10.
世界蚕豆种质资源遗传多样性和相似性的ISSR分析 总被引:2,自引:1,他引:2
【目的】分析国内外蚕豆种质资源的遗传多样性,探索其遗传相似性和遗传结构,为世界蚕豆资源的综合评价和优良种质资源的发掘利用提供依据。【方法】利用ISSR标记技术,对来自世界35个国家的383份蚕豆资源的遗传相似性进行分析。【结果】筛选出的11条ISSR引物共扩增出229条条带,其中多态性条带212条(占93%)。不同地理来源蚕豆资源群的基因多样性指数在0.16—0.28,平均为0.22;遗传丰富度变化范围为104—193,平均为158.5。中国春播区蚕豆资源群遗传多样性最高(H=0.28,NA=193),最低的是美洲资源群体(H=0.16,NA=104)。非加权配对算术平均法(UPGMA)聚类结果表明,中国春播区和秋播区蚕豆资源明显不同;中国蚕豆资源群体与国外资源群间的遗传相似性较远,明显与国外资源相分离;北非和欧洲的蚕豆资源遗传相似性较近。亚洲、欧洲、非洲及中国的蚕豆资源群之间具有明显的地域分布规律。【结论】中国春播区蚕豆资源遗传变异丰富,遗传多样性较高;美洲蚕豆资源遗传基础相对狭窄。蚕豆资源群体遗传多样性差异和遗传相似性与其地理来源、生长习性和生态分布密切相关。 相似文献
11.
利用ISSR标记对34份樱桃种质资源进行遗传多样性检测。结果发现,ISSR标记能够揭示材料间较高的遗传多样性。每个引物可获得6~12条DNA片段,平均为8.76条;17个ISSR引物共扩增出149条DNA片段,其中143条具有多态性,多态性比率(PPB)为95.97%;平均多态信息量(PIC)为0.90;每个位点有效等位基因数(Ne)为1.914;材料间遗传相似系数GS变幅为0.44~0.91,平均达0.73。通过聚类,从分子水平对樱桃种质资源的遗传关系进行分析,并对34份资源进行分类,ISSR标记能将34份樱桃种质完全区分开,为樱桃种质资源的研究利用提供参考。 相似文献
12.
13.
爲評估台灣茶樹種原之遺傳歧異性,本硏究由100條ISSR引子中篩選出12條可産生多型性條帶明顯的引子,這些引子共可産生67個的多型性條帶罁恳环N原之分子標誌數據進行UPGMA法分群分析結果,可將台灣133個茶樹種原區分成六大群,包括油茶群、赤芽山茶群、野生茶樹群、大葉變種與小葉變種混合群、大葉、小葉及大葉、小葉雜交種混合群及小葉變種群。而主成分向量分析的結果與利用群聚分析得到的親緣關係樹形圖結果相符合。台灣茶樹種原高比例的遺傳歧異度是由台灣的野生茶樹所貢獻,部分重要栽培種間的相似性仍極高。爲了探討制茶過程對分子級品種鑒定之影響及DNA分子標誌應用于成茶品種鑒定之可行性,本硏究分析不同發酵程度的茶類,在制茶過程中對DNA質量之影響,試驗結果顯示高溫殺菁過程嚴重造成成茶DNA的降解。利用各種類別成茶與新鮮茶葉(對照)所抽取之DNA樣品進行PCR擴增反應,結果發現分子量小於1,000bp的ISSRDNA條帶表現較穩定。 相似文献
14.
[目的]对供试葡萄材料进行遗传多样性分析,构建其指纹图谱,为葡萄分类、种质鉴定和制干葡萄定向育种提供科学依据.[方法]利用SSR标记对新疆44个相对适宜制干葡萄(VitisL)品种(系)进行遗传多样性分析及指纹图谱构建.[结果]以52对SSR引物对供试材料的基因组DNA进行PCR扩增,筛选出8对多态性高、谱带清晰的引物.共扩增出190条带,均为多态性条带,多态性百分率为100;.多态性信息含量指数(PIC)变幅为0.686 8~0.964 0,平均为0.908 4.UPGMA聚类分析表明,44份葡萄品种(系)间遗传相似系数的变异范围为0.63~0.92,在遗传相似系数0.654处,可将44份供试材料分为5个类群,在一定程度上反映了品种之间的亲缘关系.利用Vmc9a2.1、UDV-017、UDV-033和UDV-041等4条引物构建了品种DNA指纹图谱,可区分44个供试材料.[结论]SSR标记方法可分析供试材料的亲缘关系,利用筛选出的4种引物可构建其DNA指纹图谱. 相似文献
15.
【目的】 筛选出油药兼用优质红花种质资源,为选育适应新疆油药兼用优质红花品种提供参考。【方法】 对收集的32份油药兼用红花种质资源进行遗传多样性、变异和聚类分析。【结果】 种质资源中生育期在80~90 d的有4份,90~100 d的6份,100~110 d的16份,110 d的以上的6份。参试材料的10个质量遗传多样性指数变幅在0.37~1.29;花色的遗传多样性指数最高(1.29);数量性状中多样性指数最大的是含油率和油酸,为3.47;聚类分析将 32份材料可以分为10大类,其中第一大类中以青海的材料为主;第二大类包含14份材料;第三大类3份材料;第四大类包括3份材料,主要来自山东。其他材料BXY11(甘肃)、BXY1(新疆)、BXY19(河北)、BXY3(江苏)、BXY8(浙江)分别成一类。【结论】 油药兼用红花种质资源主要是叶型倒披(90.6%)、籽粒壳性普通(87.5%)、花球性状圆锥(84.4%)、籽粒性状圆锥(87.5%)为主,新疆油药兼用红花品种品质性状遗传多样性高于产量性状,且材料的聚类与其来源无明显的联系,但青海、甘肃、河南、山东的材料优先聚在一起,新疆拥有丰富的油药兼用红花种质资源,且遗传距离较远。 相似文献
16.
利用SSR标记分析小豆种质资源的遗传多样性 总被引:3,自引:2,他引:3
【目的】分析小豆起源国中国丰富的小豆种质资源的遗传多样性及群体结构,提高这些种质在育种中的利用效率。【方法】选用51对SSR引物对国内外145份小豆种质进行多样性评价,并分析了中国小豆种质资源间的遗传关系和遗传结构。【结果】共检测出222个等位变异,每SSR位点的等位变异数为2~13不等,平均为4.35个,其中分布频率低于5%的等位变异数占35.9%。多态性信息含量(PIC值)为0.014~0.838,平均为0.472。不同种质间遗传相似性系数为0.227~0.951,平均为0.482。比较分析发现,湖北、陕西等省小豆资源的遗传变异最丰富,且遗传背景与中国主产区小豆存在较大差异。基于NTSYS的聚类可以将145份小豆种质划分为5组,根据组内种质的地理来源,可分别命名为东北组、华北Ⅰ组、华北Ⅱ组、华东组和混合组,其中混合组主要由湖北、陕西及国外种质组成。利用STRUCTURE对小豆种质资源的遗传结构分析与NTSYS聚类结果基本一致,即种质的遗传背景与地理来源有关。【结论】中国小豆种质资源遗传变异丰富,不同地理来源小豆间存在遗传分化,可以作为小豆生态区划的重要参考依据。 相似文献
17.
野生狗牙根种质资源SRAP与SSR的遗传多样性 总被引:2,自引:0,他引:2
【目的】为指导种质资源的引进和利用及选育优质狗牙根新品种提供科学依据。【方法】采用SRAP和SSR两种分子标记方法相结合,对52份野生狗牙根材料进行遗传多样性分析。【结果】①利用4个表型差异显著的野生狗牙根对SRAP的150对引物组合及SSR的200对引物组合进行扩增,分别筛选出有效引物组合各18对,SRAP和SSR扩增总条带分别为236和346条,多态性条带206和255条,平均每对引物扩增出多态性条带各11.4和14.17条,多态性位点百分率分别为87.29%和73.70%;②两种标记结合进行聚类分析,当GS=0.68时,可将所有供试材料分成5个组群;当GS=0.78时,可将第V个组群分成6个小组,大部分来自相同或相似生态地理环境的材料聚为一类;③基于聚类分析,可将供试材料分为8个生态地理类群,据各类群间的Nei氏遗传一致度和遗传距离的无偏估计值表明,生态地理环境相似的地理类群遗传距离较小;④SRAP和SSR标记之间具有显著的相关性,且相关性较高。【结论】野生狗牙根有丰富的遗传多样性,其聚类和生态地理环境有一定的相关性。 相似文献
18.
利用简单重复序列(Simple sequence repeat,SSR)分子标记技术分析了172个桑树品种(系)的遗传多样性,结果表明,10对SSR引物在172份材料中共检测出了67个等位变异,平均每对引物检测到6.7个等位变异,其中多态性标记为66个,多态性比率为98.51%。利用种间的遗传相似性系数进行聚类分析,可将5个种分为三类,白桑、鲁桑、广东桑可聚为一类,山桑、瑞穗桑各为一类。其中白桑与鲁桑的亲缘关系最近,相似性系数为0.9935,山桑和瑞穗桑的亲缘关系最远,相似性系数为0.6866,这一结果与桑树形态学的分类结果大体一致。 相似文献
19.
基于SSR标记的中国绿豆种质资源遗传多样性研究 总被引:2,自引:1,他引:2
【目的】分析中国栽培绿豆种质资源的遗传多样性、亲缘关系和遗传分化,为资源的有效利用、新基因的挖掘和新品种选育奠定基础。【方法】利用40对SSR引物对18个不同地理来源(共272份种质)的绿豆群体进行遗传多样性分析。【结果】共检测到125个等位基因,平均等位基因数(NA)为3.1个,平均有效等位基因数(NE)为1.8个,平均Nei’s基因多样性(H)为0.4233,平均多态性信息含量(PIC)为0.3497,平均期望杂合度(He)为0.4241,平均Shannon信息指数(I)为0.6754,比较发现,河北、山东和安徽是绿豆资源遗传变异较为丰富的地区;平均观测杂合度(Ho)为0.1001,种群内总近交系数(Fis)为0.6759,表明中国绿豆种质间存在一定程度地近交现象;18个参试群体整体水平上的基因流(Nm)值为0.6936,种群间遗传分化系数(Fst)为0.2649,遗传变异水平较高;基于Popgene软件的聚类结果可将272份参试个体聚为2大类,将18个参试群体分为3大类,群体间地理来源越近,亲缘关系也越近。【结论】中国绿豆种质资源遗传多样性较高;地理生态条件等对绿豆种质资源的遗传变异影响很大;群体间遗传分化较大,但同时也存在一定程度地近交现象。 相似文献