首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hybrid breeding is a widely discussed alternative for triticale. Heterosis as well as general (GCA) and specific combining ability (SCA) effects were estimated for eight agronomic traits. The experiment comprised 24 F1 hybrids, produced by a chemical hybridizing agent, together with their six female and four male parents, grown in drilled plots in two locations. In comparison with the mid‐parent values, hybrids averaged a 6.4 dt/ha (10.1%) higher grain yield, 8.4% more kernels per spike, a 6.8% higher 1000‐kernel weight, 9.7% lower falling number (FN) and 4.4% greater plant height. SCA effects for grain yield were significant and ranged from 4.5 to 6.9 dt/ha for grain yield. Together with GCA x location interactions, they explained most of the variation. For 1000‐kernel weight, GCA effects were predominant. SCA and interactions with location accounted for most of the variation in FN, whereas interactions were negligible for plant height. Correlations between mid‐parent and hybrid performance and between GCA and per se performance of parents were tight for all traits except grain yield, which allows for pre‐selection of parental lines. Although the amount of heterosis in triticale at present is closer to wheat than to rye, by selecting parents for combining ability and identifying heterotic patterns, grain yield heterosis of up to 20% appears sufficiently encouraging to embark on hybrid breeding.  相似文献   

2.
In triticale, preharvest sprouting tolerance is important for yield stability and quality of the grain. Therefore, an experiment was conducted to estimate quantitative genetic parameters of preharvest sprouting tolerance in triticale using a diallel of eight modern triticale cultivars and breeding lines. The 28 F1‐hybrids and the parents were planted in the breeding nurseries in 2001 and 2002 at four locations. Heading, plant height, falling numbers of two harvest dates, thousand kernel weight (TKW) and preharvest sprouting (Spr) were measured. The heritabilities for plant height and TKW were the highest with 0.91 and 0.85, respectively. Falling number and sprouting showed heritabilities between 0.66 and 0.83. Mid‐parent heterosis (MPHET) was negative for heading, indicating a non‐significant earlier heading of the F1‐hybrids. In plant height and TKW the heterosis was positive with 4.7% and 6.3% MPHET. Both falling numbers displayed a negative MPHET of nearly −15%. In contrast to falling numbers, the preharvest sprouting of hybrids was slightly reduced in comparison with the parents. In all traits analysed, general combining ability (GCA)‐variances were greater than specific combining ability (SCA)‐variances.  相似文献   

3.
Accurate hybrid prediction and knowledge about the relative contribution of general (GCA) and specific combining ability (SCA) are of utmost importance for efficient hybrid breeding. We therefore evaluated 91 triticale single-cross hybrids in field trials at seven environments for plant height, heading time, fresh biomass, dry matter content and dry biomass. Fresh and dry biomass showed the highest proportion (23%) of variance due to SCA. Prediction accuracies based on GCA were slightly higher than based on mid-parent values. Utilizing parental kinship information yielded the highest prediction accuracies when both parental lines have been tested in other hybrid combinations, but still moderate-to-low prediction accuracies for two untested parents. Thus, hybrid prediction for biomass traits in triticale is currently promising based on mid-parent values as emphasized by our simulation study, but can be expected to shift to GCA-based prediction with an increasing importance of GCA due to selection in hybrid breeding. Moreover, the performance of potential hybrids between newly developed lines can be predicted with moderate accuracy using genomic relationship information.  相似文献   

4.
In wheat, the possibility of introducing F1 seed into practical agriculture has been greatly enhanced by the discovery of effective chemical hybridising agents (CHAs). Although some technical and economic problems concerning the use of CHAs for large-scale production of F1 seed remain to be solved, a first group of F1 hybrids has been submitted for registration in several European countries i.e., France, England and Italy. Combining ability for grain yield and several agronomic and quality traits was studied in an eight-parent diallel cross. Highly significant combining ability effects were observed for all the traits while specific combining ability effects were statistically significant for grain yield, plant height, heading time and Chopin alveograph parameter P. The level of genetic diversity between parents as estimated using molecular markers is considered a tool for predicting the hybrid performance and heterosis of crosses. To explore this possibility, RFLP and RAPD markers were used to predict the performance of hybrids obtained from diallel and top crosses. The performance of the hybrids was determined in replicated plot trials sown at normal seed density in several locations. Coefficient of parentage (rp), based on pedigree information for all the pairwise combinations of the parents ranged from 0.01 to 0.34. The parents were assayed for random amplified polymorphic DNA (RAPD) with 87 primers which generated 304 polymorphic bands. Genetic similarity between parents, estimated on the basis of common bands using the Jaccard's similarity coefficient (J), ranged from 0.25 to 0.57. Correlation between parental diversity and hybrid performance was generally weak. A positive trend is observed in the yield potential of the hybrids produced in Italy in the last 10 years. In fact among the first set of hybrids produced by random crossing of the available cultivars, none produced 10% more than the checks whereas the last generation of hybrids includes combinations yielding 15% more than the best standards. Our results clearly indicate the need to develop specific strategies in order to identify and/or to select parental lines with a high level of general combining ability (GCA) and specific combining ability (SCA). The information regarding the genetic diversity of the parental lines do not appear helpful for predicting F1 performance. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Identification of hybrids for commercialization is crucial for sustainable maize production in sub-Saharan Africa (SSA). One hundred and ninety test crosses, 10 tester × tester crosses + 10 hybrid checks were evaluated across 11 environments, 2017 to 2019. Inheritance of grain yield under Striga infestation, optimal and across environments was influenced by additive genetic action, but there was greater influence of nonadditive gene action under drought stress conditions. Nine, seven and two inbreds had significant and positive general combining ability (GCA) effects for grain yield under Striga-infested, optimal and drought stress environments, respectively, and would contribute high grain yield to their progenies. Heterotic grouping methods based on specific and GCA, GCA effects of multiple traits and DArTseq markers classified the inbreds into five, three and two heterotic groups, respectively, across research conditions. The DArTseq markers method that classified the inbred lines into two major heterotic groups and was one of the most efficient methods should be adopted for practical purposes in maize breeding programmes in SSA. Hybrids TZEI 7 × TZdEI 352, TZEI 1238 × TZEI 7 and TZEI 1252 × TZEI 7 had outstanding grain yield under contrasting environments and should be tested on-farm for commercialization in SSA.  相似文献   

6.
B. A. Kiula    N. G. Lyimo    A.-M. Botha 《Plant Breeding》2008,127(2):140-144
Identifying the best inbred combinations for the development of commercial hybrid maize varieties remains the main challenge to maize breeders. The aim of this work was to study associations between the genetic distance (GD) of 21 inbreds and the corresponding F1 phenotypic data. Furthermore, the impact of grouping lines into genetically similar clusters was investigated. The 21 inbred lines were fingerprinted using amplified fragment length polymorphism markers. Parents and 210 F1 progeny were evaluated in the field. Joint data analysis mostly revealed a tighter association between GD and the F1 performance or mid parent heterosis in the intergroup than in the intragroup crosses. Despite these correlations, intergoup crosses should always be field‐tested before their release. Crosses showing low GD values should be discarded to avoid field‐testing costs. Better F1 hybrid performance predictions can be achieved by integrating molecular and F1 phenotypic data.  相似文献   

7.
W. Qian    Q. Li    J. Noack    O. Sass    J. Meng    M. Frauen    C. Jung 《Plant Breeding》2009,128(5):466-470
Chinese semi-winter rapeseed is genetically diverse from European winter rapeseed. Our objectives were (1) to evaluate the potential of semi-winter rapeseed for winter rapeseed hybrid breeding, (2) to assess the relative importance of general combining ability (GCA) vs. specific combining ability (SCA) among combinations between Chinese semi-winter and European winter rapeseed, and (3) to compare the strategies to predict heterosis based on parental genetic distance (GD) estimated from AFLP marker data and GCA for hybrid performance. Four winter male sterile lines from Germany as testers were crossed with 14 Chinese semi-winter rapeseed lines to develop 56 hybrids, which were evaluated together with their parents and commercial hybrids for seed yield, oil content and protein content under three environments in Germany. The Chinese parental lines were not adapted to local environmental conditions as demonstrated by lacking winter hardiness and poor seed yields per se . However, the hybrids between the Chinese parents and the adapted winter rapeseed lines exhibited high heterosis for seed yield. About 20% of the hybrids were significantly superior to the respective hybrid control under three environments. Additive gene effects mainly contributed to hybrid performance since the variance components of GCA were higher as compared with SCA. The correlation between parental GD and hybrid performance was found to be low whereas the correlation between GCA and hybrid performance was high and significant, with correlation coefficients of 0.95 for seed yield, 0.87 for oil content, and 0.91 for protein content, indicating that GCA can predict hybrid performance. These results demonstrate that Chinese semi-winter rapeseed germplasm has a great potential to increase seed yield in winter rapeseed hybrid breeding programmes in Europe.  相似文献   

8.
陆地棉配合力与杂种优势、遗传距离的相关性分析   总被引:4,自引:2,他引:4  
 用10个陆地棉亲本进行不完全双列杂交,共配置了45个组合,计算亲本的一般配合力(GCA)、特殊配合力(SCA)、杂种优势,并结合SSR标记研究了陆地棉亲本配合力与杂种优势、遗传距离之间的相关关系。配合力分析发现,10个亲本的一般配合力和特殊配合力存在显著或极显著差异。分析亲本配合力、杂种优势和遗传距离的相关性发现,子棉产量、皮棉产量、衣分的一般配合力和杂种优势呈显著或极显著相关,纤维长度、比强度、麦克隆值、株高、果枝数、单株铃数、铃重、子棉产量、皮棉产量、衣分的特殊配合力和杂种优势均呈极显著正相关,而与遗传距离相关均不显著。单株铃数、铃重、子棉产量、皮棉产量、衣分的杂种优势与遗传距离均为正向显著或极显著相关。在育种实践中这些显著或极显著相关的性状可能具有较高的改良潜力。  相似文献   

9.
Heterosis and combining-ability effects were studied in the parents and 66 F1 hybrids from a diallel cross of 12 elite sesame varieties in five different environments in Venezuela. The mean yield of the hybrids was clearly superior to the parental mean in all five locations. There were three heterotic hybrids that showed a higher yield than controls in all environments. The best hybrid in each place yielded significantly better than the best cultivar, the differences ranging from 28 to 109%. Specific combining-ability (SCA) effects were more important than general combining-ability (GCA) in four of the environments. A large genotypexlocation interaction was found for all traits, suggesting that hybrids should be produced for specific locations. ‘Arawaca’ and ‘Piritu’ should be chosen as parents for any sesame-breeding programme in view of their large GCA effects.  相似文献   

10.
Previous findings in some crops suggest that parental distance is correlated with heterosis and agronomic performance. However, this pattern is not always evident in the progeny. The present study aimed to assess the relationship of parental distance with the agronomic performance of raspberry families and three estimators based on non-environmental effects: specific combining ability, general combining ability, and best linear unbiased prediction. A total of 35 genotypes, including eight open-pollinated raspberry cultivars and their 28 F1 hybrids, were scored for vegetative and fruit traits. The relationship between estimators and parental distance ranged from 0.02 to 0.66. The estimators based on purely additive effects were superior to the per se performance of raspberry crosses. Additionally, it was observed that the specific combining ability—as an estimator associated with the parental genetic relatedness—performed poorly, and low correlation coefficients were observed for most of the traits. It was found that the degree of association for the estimators increased when narrow-sense heritability was high. It is concluded that the estimators based on only additive effects show a better association with parental relatedness, and therefore parental distance was an effective parameter in identifying crosses with high yield and large fruit size.  相似文献   

11.
A partial diallel set of crosses was made between 14 potato cultivars chosen for their fertility, from those included in a potato breeding programme at the NEIKER – Basque Institute for Agricultural Research. The progeny were grown in completely randomized trials from 1997 to 1999. Performance for yield, tuber number and average tuber weight was analysed in seedling and two clonal generations. Variance estimates due to both general combining ability (GCA) and specific combining ability (SCA) were significant in all generations for all traits under study. However, SCA was more important than GCA in almost all cases. Correlation coefficients among characters, generations, GCA and SCA effects were examined. For tuber yield no relation was obtained between generations; however, average tuber weight and yield were positively associated in all generations. The results indicate that appropriate selection criteria depend strongly on the particular cross. The implication for a breeding strategy are discussed.  相似文献   

12.
H. Tamaki    A. Yoshizawa    H. Fujii    K. Sato 《Plant Breeding》2007,126(1):95-100
Hybrid varieties have not become commercially successful in perennial and self‐incompatible forage crops because of their severe inbreeding depression and/or ineffectiveness in commercial seed production. Here, a modified synthetic variety (MSV), a breeding method for forage crops is proposed, where specific combining ability (SCA) is exploited in a way different from that in hybrids. As Syn‐l seeds from only two of its parental clones are used to produce its Syn‐2, its performance in Syn‐2 partially depends on the SCA between the two seed parents. The inbreeding coefficient of MSVs can be as low as that of conventional synthetic varieties sold today. To evaluate its advantages, 15 modified synthetic strains (MSSs) of timothy were developed from a set of Syn‐l seeds of a conventional synthetic strain (CSS) having six parental clones. An MSS (Syn‐2) showed a yield level equivalent to and a disease score significantly lower than the CSS (Syn‐1) in a field test. The diallel crossing analysis implied that the SCA effects are influential for yield, and that MSV or other SCA‐exploiting breeding methods have the potential to improve the yield level of timothy effectively.  相似文献   

13.
Summary The frequency and magnitude of heterosis were examined in relation to genetic divergence among parents in two diallel cross experiments in groundnut. The parents were grouped into clusters based on their diver-gence. The range, mean and standard deviation of the intra-and inter-cluster divergence were used to define four divergence classes. The frequency of heterotic crosses and the magnitude of heterosis for yield and its components were found to be higher in crosses between the parents in intermediate divergence classes than extreme ones. The results agreed well with the overall status of the specific combining ability of these crosses.  相似文献   

14.
Development of hybrids is considered to be a promising avenue to enhance the yield potential of crops. We investigated (i) the amount of heterosis observed in hybrid progeny, (ii) relative importance of general (GCA) versus specific (SCA) combining ability, and (iii) the relationship between heterosis and genetic distance measures in four agronomic traits of spring bread wheat. Eight male and 14 female lines, as well as 112 hybrids produced in a factorial design were grown in replicated trials at two environments in Mexico. Principal coordinate analysis based on Rogers' distance (RD) estimates calculated from 113 SSRs revealed three different groups of parents. Mid-parent heterosis (MPH) for grain yield averaged 0.02 t ha−1 (0.5%) and varied from −15.33% to 14.13%. MPH and hybrid performance (F1P) were higher for intra-group hybrids than for inter-group hybrids, with low values observed in inter-group crosses involving two non-adapted Chinese parents. Combined analyses of variance revealed significant differences among parents and among hybrids. Estimates of GCA variances were more important than SCA variances for all traits. Tight correlations of GCA with line per se performance, and mid-parent value with F1P were observed for all traits. In contrast, correlations of MPH with RD and coefficient of parentage were not significant. It was concluded that the level of heterosis in spring wheat was too low to warrant a commercial exploitation in hybrids. SSRs proved to be a powerful tool for the identification of divergent groups in advanced wheat breeding materials.  相似文献   

15.
The heterosis and combining ability for plant height and its components of hybrid wheat were investigated in an incomplete diallel experiment including 5 CMS lines and 4 restorer lines. The results showed that heterosis (HS) and heterobeltiosis (HBS) occurred in plant height (PH) and length of the first internode (LFI), second internode (LSI), third internode (LTI), basal internode (LBI) and the spike (LS) of hybrids, but their values varied among crosses and characters; the HS and HBS of LBI were larger than those of other characters, the HS and HBS of LSI and LTI contributed a lot to those of PH. There were significant relationships between internode lengths and PH for specific combining ability (SCA) and general combining ability (GCA), and among lengths of the adjacent internodes for SCA and/or GCA effects. However, the relationships of LS with the lengths of internodes and PH were insignificant for GCA, SCA, HS and HBS. The SCA effects were more important than GCA effects for LFI, the reverse was true for LSI, LTI, LS and PH, and the SCA effects was nearly equal to the GCA effects for LBI. So, LFI was mainly influenced by non-additive effect of genes, while LSI, LTI, LS and PH were mainly controlled by additive gene effects, LBI was controlled equally by additive and non-additive effects of genes. The genes that control the length of specific internode not only affect PH, but also the length of the adjacent internode. The genetic system in charge of lengths of internodes and plant height is independent of that for length of spike. Thus, it is possible to develop new wheat cultivars or hybrid combinations having long spike but dwarf plant height. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Biomass yield heterosis has been shown to exist between Medicago sativasubsp. sativa and Medica gosativa subsp. falcata. The objective of this study was to gain a better understanding of what morphological and genetic factors were most highly correlated with total biomass yield heterosis. We calculated genetic distances among nine sativa and five falcate genotypes based on amplified fragment length polymorphism (AFLP) and simple sequence repeat (SSR) DNA markers. Genetic distance did not correlate with specific combining ability (SCA) or mid-parent heterosis. In contrast, a morphological distance matrix based on seventeen agronomic and forage quality traits was significantly correlated with heterosis; the agronomic traits of maturity, midseason regrowth, and autumn regrowth showed strong association with heterosis. Heterosis was also correlated with subspecies. We suggest that in many cases progeny heterosis can be accounted for by the interaction of genes controlling morphologically divergent traits between the parents. In other cases, progeny heterosis could also be due to divergence between the parents at particular genetic loci that do not control field-level phenotypic differences. Genetic distanceper se between parental genotypes, based on neutral molecular markers, however, does not reflect the potential of individual genotypes to produce heterosis in their progeny. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
The present study was carried out to evaluate genetic divergence among eleven japonica rice cultivars and to assess the relationship between genetic distance and hybrid performance in partial non-reciprocal crosses among them. The 44 F1 hybrids along with the eleven parents were evaluated for five cold tolerance-related traits; discoloration at seedling stage, days to heading, culm length, fertility, and spikelets per panicle in a cold water screening nursery (17 °C). The eleven parents were examined for DNA polymorphism using amplified fragment length polymorphisms(AFLPs). A total of 855 polymorphic variants were generated and based on the polymorphism data, genetic distances (GDs) ranged from 0.023 to0.524. Very little heterosis was observed in hybrids for most of the traits,whereas heterosis was high for fertility. The correlation values of GDs with F1 performance were mostly non-significant except for discoloration and fertility. The correlations of GDs with mid-parent and better-parent heterosis were not significant and proved to be of no predictive value. Our results indicate that GDs based on AFLP markers are not useful for predicting heterosis for cold tolerance in japonica hybrids. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
As it is related to the variability in genome expression, variability in protein quantities revealed by two-dimensional electrophoresis was proposed for describing phenotypic diversity. The objective of this study was to compare the predictive power of different genetic distances derived from molecular markers and from protein quantitative variations in a diallel of 210 hybrids among 21 maize inbred lines (Zea mays L.) of various origin. The lines were characterized for: 1. 142 markers resulting from the analysis of enzyme, RFLP, and protein-structure polymorphism; and 2. The variation in relative quantities of 190 proteins. The hybrids were evaluated for six forage traits in four environments. Correlations between the genetic distances computed for 142 marker loci and hybrid performances were moderate to high in diallels using crosses between related lines. Genetic distances based on protein quantities showed, in most cases, similar or lower correlations. Distance measures were not useful as predictors of hybrid performance for crosses between unrelated lines. Protein quantities were better for revealing specific genotypes.  相似文献   

19.
Triticale (×Triticosecale Wittmack) holds great potential as a source for biomass production for industrial applications in Central Europe and hybrid breeding in particular appears promising owing to the higher vigour of hybrids compared to lines. In this study, a set of 178 winter triticale genotypes, including 91 hybrids, their 10 male and 23 female parental lines, as well as 54 varieties were evaluated for biomass yield and other agronomically relevant traits in 2 years at five locations in Germany. We observed a large variation of dry biomass yield as well as significant genotypic variances and high heritabilities for all traits. For the hybrids, a moderate correlation was observed between biomass and plant height and between biomass and grain yield. Mid‐parent heterosis of biomass yield ranged from ?13.6 to 16.5% with an average of 4.8%, and the maximum commercial heterosis was 9.1%. Taken together, our results illustrate the potential of hybrid breeding of triticale for biomass yield to diversify our portfolio of crops for biomass production.  相似文献   

20.
Fruit quality traits were studied in 12 exotic accessions and their hybrids with a “Piel de Sapo” inodorus melon cultivar. The genetic relationships among these genotypes were assessed with 16 microsatellite markers, which agreed with the classification of Cucumis callosus, C. pubescens and C. trigonus as accessions within C. melo. There were very large differences between all the exotic accessions and “Piel de Sapo” genotype for fruit traits. When the hybrids were analysed, three different situations regarding mid parent heterosis were found, depending on the trait: no heterosis (soluble solid concentration), highly variable, from negative to positive (fruit weight and fruit diameter) and general positive heterosis (ovary shape, fruit length and fruit shape). Best parent heterosis for fruit shape was also common among hybrids. A highly significant correlation (r = 0.81) was detected between fruit shape and fruit length heterosis, suggesting that fruit shape heterosis is caused mainly by the enlargement of the fruit longitudinally. A highly significant correlation (r = 0.84) between heterosis for fruit shape and genetic distance, as estimated with microsatellites, was also found. These results, together with the previously reported observation that melon fruit shape is polygenic and highly heritable, makes the genetics of melon fruit shape a suitable system for dissecting the genetic and molecular basis of heterosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号