首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用盆栽试验对生长在不同粒径团聚体干旱土壤中大豆出苗和幼苗生长指标进行研究。结果表明,在低土壤含水量条件下,与大粒径团聚体和未筛土壤相比,小粒径团聚体(尤其1~2 mm)显著提高大豆出苗率(P<0.05),缩短出苗时间,显著增加冠干重、苗高及叶面积,显著增加总根长和根表面积,但显著降低主根直径和根干重(P<0.05)。说明大粒径团聚体不利于干旱土壤大豆出苗和幼苗生长,种床内小粒径团聚体可部分地补偿土壤干旱对大豆出苗和幼苗生长造成的危害。  相似文献   

2.
花生种子大小和形状对出苗和幼苗建成的影响   总被引:1,自引:0,他引:1  
以不同花生品种的饱满种子为试验材料,采用盆栽方法,在幼苗3叶期和6叶期不同幼苗生长阶段研究种子大小(重量)、形状(长、宽、长/宽比)等特性与出苗速率及幼苗生长的关系。结果表明,花生种子大小、形状影响萌发出苗和幼苗生长。①花生种子质量愈大且种形愈长,其出苗后残留于子叶中的物质能量愈多,幼苗地上部鲜重较小;种子质量较小时,其长、宽、厚等性状与幼苗生长无明显相关关系,但种子质量和长/宽比显著影响地上部干物质的积累;适中质量的种子其长、宽、质量和长/宽比均明显促进地上部和根系的生长发育,且其种子长度和质量与残留物间呈显著相关关系。②中等质量的种子对根系生长的影响很小,且适中的长/宽比明显促进种子萌发时物质的运转和幼苗的生长。③较长粒型花生种子其长度与子叶残留物呈极显著正相关,宽度与子叶残留物呈显著负相关,且与地上部生长无显著相关关系;中等长度和较短粒型的种子的质量明显利于幼苗地上部的生长。  相似文献   

3.
腐殖酸对大豆幼苗生长的影响   总被引:1,自引:0,他引:1  
腐殖酸(FA)是腐肥的主要成份,其主要功能是参与植物体内的氧化还原过程,促进植物的呼吸作用,进而促进植物的生长。国内外在水稻、玉米、小麦上研究较多,而在大豆上的有关报道则不多,为验证FA对大豆幼苗的生长作用,进行以下试验。本试验在江苏省农科院经作所大...  相似文献   

4.
抗旱剂对大豆出苗及幼苗生长的效应   总被引:6,自引:0,他引:6  
在干旱胁迫下,抗旱拌种剂加浸种剂复合处理能够提高大豆种子的发芽率,促进幼苗根系生长,增加根冠比,加强水分的吸收和利用。同时能提高叶绿素和可溶性糖含量,幼苗体内脯氨酸含量降低,植株保水力明显增强。试验结果表明抗旱剂浸种8h后2%拌种处理效果最好。  相似文献   

5.
为揭示在常规耕作制度基础上大豆田表土处理对表层土壤物理性状及产量的影响,试验采用大区对比法,设置2个处理(T1:当地常规耕作措施;T2:当地常规耕作措施+表土破碎处理),研究表土处理对0~30 cm土壤温湿度、容重、孔隙度、水稳定性团聚体及大豆产量的影响。结果表明:T2处理显著降低0~10 cm土层容重,降幅6.0%~13.8%,显著提高0~10 cm土层孔隙度,增幅3.83%~8.40%,降低5~15 cm土层的温度,降幅0.2~1.3℃,提高5~15 cm土层的湿度,增幅0.1%~1.5%;显著增加大团聚体(R0.25 mm)数量,增幅9.02%~20.30%,增加土壤水稳定性团聚体的平均质量直径(MWD)与几何平均直径(GMD),其中MWD和GMD增幅分别为4.25%~6.58%和28.4%~30.3%,产量提高6.24%。结果表明,常规耕作措施结合表土破碎处理能够降低表层土壤容重,增加表层土壤孔隙度,增加土壤大团聚体数量,增加土壤水稳定性,可为作物的生长提供较良好的土壤环境。  相似文献   

6.
秸秆焚烧土壤提取液对大豆种子萌发和幼苗生长的影响   总被引:2,自引:0,他引:2  
采用砂培法研究了秸秆焚烧土壤提取液对大豆种子萌发和幼苗生长的影响.结果表明,秸秆焚烧的土壤提取液可使大豆种子活力明显下降、根系发育受阻、脂肪酸含量减少、子叶储藏物质的转化率下降、幼苗生长受阻、干物质积累减少.  相似文献   

7.
采用田间试验,运用湿筛法,研究了菌渣施用对茶园土壤水稳性团聚体含量、分布和稳定性的影响.试验设计4个处理,分别为单施氮肥(M0)、50%氮肥+50%菌渣有机肥(M1)、全量菌渣有机肥(M2)和2倍菌渣有机肥(M3).结果表明:>5 mm的团粒结构是茶园土壤团聚体的主要组分,所占比例为37.04%~52.37%,其它各粒径分布较为均匀;随着土层加深,茶园土壤大团聚体含量降低,<0.25 mm的微团聚体含量则相应上升.施用菌渣主要增加了土壤中>5 mm团聚体含量,增幅15.20%~41.39%,其中高量菌渣有机肥处理(M2和M3)处理显著增加(P<0.05).茶园土壤R0.25(>0.25 mm水稳性团聚体)、平均重量直径(MWD)和几何平均值(GMD)均随着菌渣施用量的提高而增加,分形维数(D)随菌渣用量的提高而减小.相关分析表明,R0.25、MWD和GMD均与>5 mm的大团聚体呈极显著正相关,与0.25~0.5 mm和<0.25 mm之间呈极显著负相关;D与>5 mm的大团聚体呈极显著负相关,与0.25~0.5 mm和<0.25 mm之间呈极显著正相关,这就说明>5 mm的大团聚体越多,土壤团聚体稳定性越好.以上结果说明,施用菌渣有机肥能增加土壤中大团聚体的含量及其水稳性,是改善茶园土壤理化性状和培肥地力的有效途径.  相似文献   

8.
孙庆元  蒙敏  张雪崧  赵略  刘娜 《大豆科学》2007,26(6):897-901
尿素作为底肥在土壤尿素酶的作用下快速水解,对大豆幼苗生长产生不良影响.尿素酶抑制剂NBPT可抑制土壤尿素酶的活性,但是如何施用NBPT既抑制了土壤尿素酶的活性,又不影响大豆幼苗的生长还少有报道.采用盆栽方法研究了NBPT对尿素水解速度、大豆出苗、幼苗生长的影响.结果表明,NBPT对土壤脲酶具有较强的抑制作用,有效浓度在0.1%~2%之间.与尿素配合施用NBPT有效地减缓了只施用尿素对幼苗的毒害作用,NBPT与尿素配比为1:100时对大豆出苗有较大的促进作用,可提高20.7%.配施NBPT对大豆幼苗的生长都有明显的促进作用,将NBPT比尿素先施2d显示了更好的效果.  相似文献   

9.
除草剂对大豆幼苗根腐病及其土壤微生物的影响   总被引:5,自引:0,他引:5  
陈立杰  刘惕若 《大豆科学》1999,18(2):115-119
两种除草剂中,地乐胺可降低大豆幼苗、根腐病的发生,而乙草胺可国重大豆根腐病的发生,在施工初期(10天左右)土壤中各和睦具菌被抑制,细菌数量增加;后期地乐胺处理区Penicillium和细菌的相对数量有所增加,而乙草胺处理区Fusarium,Rhizoctonia数量有所增加,Penicillium和细菌的活性被抑制。  相似文献   

10.
大豆为子叶出土作物,土壤结皮严重影响大豆出苗质量。本文综述了土壤结皮的形成原因和过程、土壤结皮对土壤和农作物的影响。针对我国黄淮海地区土壤结皮给大豆出苗带来的不利影响,还简述了秸秆覆盖对抑制土壤结皮形成的作用效果,以期为黄淮海地区大豆的生产提供技术参考。  相似文献   

11.
The seeds of three promising advanced lines of soybeans (TGx 923-2EN, TGx 1019-2EN and TGx 1497-1D) which were part of a larger collection evaluated in agronomic field trials in Nigeria were selected for characterization of physicochemical properties, chemical composition, water absorption, cooking time and cooked texture as a function of soaking and cooking. Seed density, leached solids, swelling capacity and seed coat percentage were within a range of 1.15 to 1.26 g per ml, 1.00 to 1.26 g per 100 g, 80.25 to 84.35 g per 100 g and 6.6 to 10.1% w/w of dry beans, respectively. The total polyphenol content of the cream colored beans was similar (0.75 to 0.76 mg/g) but higher than the amount (0.60 mg/g) found in the white beans. Cooking times varied between 71 and 96 min without soaking and were reduced by about 32.0% following a presoaking treatment in water for 12 hours at room temperature (28±1°C). Small seeds absorbed higher amounts of water during soaking and required less cooking time than larger seeds. Unsoaked beans required 40 min of cooking to achieve the same degree of cooked texture as the soaked beans cooked for 20 min, suggesting that cooking times and cooked texture for all lines were improved through soaking.  相似文献   

12.
《Field Crops Research》2003,80(2):147-155
Soybean (Glycine max (L.) Merr.) is one of the most important food and cash crops in China and a key protein source for the farmers in northern China. Previous experiments in both the field and greenhouse have shown that N2 fixation alone cannot meet the N requirement for maximizing soybean yield, and that N top-dressing at the flowering stage was more efficient than N top-dressing at the vegetative stages. However, the effect of N fertilizer application at other reproductive stages of soybean is unknown. Thus, a field experiment was conducted to study the effects of N applications at various reproductive stages on growth, N2 fixation and yield of three soybean genotypes. The results showed that starter N at 25 kg ha−1 resulted in minimum yield, total N accumulation and total amount of N2 fixed in all three genotypes. N top-dressing at 50 kg ha−1 at either the V2 or R1 stages, significantly increased N accumulation, yield and total amount of N2 fixed in all three genotypes. However, N top-dressing at the same rate at either the R3 or R5 stage did not show this positive effect in any of the three genotypes. Thus, the best timing for N top-dressing during reproduction is at the flowering stage, which increased seed yield by 21% for Wuyin 9, 27% for You 91-19, and 26% for Jufeng, respectively, compared to the treatment without N top-dressing.  相似文献   

13.
A field study was conducted in 2006 at Sari Agricultural and Natural Resources University, in order to determine the best time for weed control in soybean promising line, 033. Experiment was arranged in randomized complete block design with 4 replications and two series of treatments. In the first series, weeds were kept in place until crop reached V2 (second trifoliolate), V4 (fourth trifoliolate), V6 (sixth trifoliolate), R1 (beginning bloom, first flower), R3 (beginning pod), R5 (beginning seed) and were then removed and the crop kept weed-free for the rest of the season. In the second series, crops were kept weed-free until the above growth stages after which weeds were allowed to grow in the plots for the rest of the season. Whole season weedy and weed-free plots were included in the experiment for yield comparison. The results showed that among studied traits, grain yield, pod numbers per plant and weed biomass were affected significantly by control and interference treatments. The highest number of pods per plant was obtained from plots which kept weed-free for whole season control. Results showed that weed control should be carried out between V2 (26 day after planting) to R1 (63 day after planting) stages of soybean to provide maximum grain yield. Thus, it is possible to optimize the timing of weed control, which can serve to reduce the costs and side effects of intensive chemical weed control.  相似文献   

14.
Effect of soybean (Glycine max) on serum level of some sex hormones: testosterone, follicle stimulating hormone (FSH), luteinizing hormone/interstitial cell stimulating hormone (LH/ICSH), estradiol and prolactin in male rats was investigated. Twenty male albino rats of 12 weeks old with similar body weights were assigned to four groups of 5 rats each and treatment with soybean meal at 100, 200 and 300 mg kg(-1) body weight, respectively daily for 8 weeks. Blood samples collected through cardiac puncture were assayed for levels of hormones. There were dose-dependent effects of the soybean meal on the serum concentration of the hormones. The treatment significantly reduced the levels of testosterone and FSH in the serum while it significantly increased the levels of estradiol, LH/ICSH and prolactin. The results show that soybean (Glycine max) had strong capability to disrupt hormonal functions. Hence, its indiscriminate use could increase the risk of infertility in males.  相似文献   

15.
The objective of this research was to investigate the effect of water stress in regulated deficit irrigation (RDI) on the yield of soybean growing on Ultisol soil. This research was conducted under plastic house on the experimental farm of Lampung Polytechnique from August to November 2004. The water stress treatments in regulated deficit irrigation were ET1 (1.0 × ETc), ET2 (0.8 × ETc), ET3 (0.6 × ETc), ET4 (0.4 × ETc) and ET5 (0.2 × ETc), arranged in a randomized block design with four replications. ETc means crop evapotranspiration under standard condition, which was well watered. For example, the ET2 (0.8 × ETc) treatment means that the amount of supplied water per a day is the same as the crop adjustment evapotranspiration (ETcadj) with the value 0.8 of water stress coefficient (K s). The RDI treatments were carried out just at vegetative phase and its treatments were stopped at the beginning of flowering phase, and afterwards the treatments were watered at 1.0 × ETc. The results showed that since week II, the soybean experienced stress throughout the growth period except ET2 treatment. ET2 treatment started to be stressed at week V and continued to be stressed until the harvest time. At the ET3 treatment, the critical water content (θc) of soybean was reached at week II, and the θc was 0.24 m3/m3 on the average. The RDI at vegetative period significantly affected the yield. The highest yield was ET1 (35.2 g/plant), followed by ET2 (31.0 g/plant), ET3 (18.1 g/plant), ET4 (7.6 g/plant), and ET5 (3.3 g/plant). The optimal water management of soybean with the highest yield efficiency was regulated deficit irrigation with water stress coefficient (K s) of 0.80 for vegetative phase.  相似文献   

16.
The objective of this research was to investigate the critical water content (θ c) and water stress coefficient (K s) of soybean plant under deficit irrigation. This research was conducted in a plastic house at the University of Lampung, Sumatra in Indonesia from June to September 2000. The water deficit levels were 0–20%, 20–40%, 40–60%, 60–80%, and 80–100% of available water (AW) deficit, arranged in Randomized Completely Block (RCB) design with four replications. The results showed that the soybean plant started to experience stress from week IV within 40–60% of AW deficit. The fraction of total available water (TAW) that the crop can extract from the root zone without suffering water stress (p) was 0.5 and θc was 0.305 m3 m−3. The values of K s at p=0.5 were 0.78, 0.86, 0.78, and 0.71 from week IV to week VII, respectively. The optimum yield of soybean plant with the highest yield efficiency was reached at 40–60% of AW deficit with an average K s value of 0.78; this level of deficit irrigation could conserve about 10% of the irrigation. The optimum yield of soybean plant was 7.9 g/pot and crop water requirement was 372 mm.  相似文献   

17.
在大田条件下,采用随机区组设计,研究了不同用量草甘膦对抗草甘膦大豆(RR1)光合特性日变化的影响。结果表明:(1)在未喷施草甘膦情况下,抗草甘膦大豆(RR1)的净光合速率(Pn)、蒸腾速率(Tr)和气孔导度(Gs)日变化均呈单峰曲线,峰值分别出现在10∶00、12∶00和10∶00。RR1叶片叶绿素含量指数(CCI)的日变化呈先降低后升高趋势,14∶00左右最低。水分利用效率(WUE)和胞间CO2浓度(Ci)随着时间的推移均呈波浪式变化,WUE在6∶00、10∶00和16∶00有3个小峰,而Ci在6∶00最高。(2)喷施草甘膦后,RR1光合特性的日变化趋势总体与未喷药前相似。Pn和CCI随草甘膦用量的增加呈降低趋势;但当草甘膦用量大于4.48 L.hm-2时,CCI和Pn显著下降。12∶00以前(包含12∶00),除低用量(1.12 L.hm-2)的草甘膦促进RR1的Gs外,各用量抑制了RR1的Tr和Gs;而12∶00以后,草甘膦却促进了RR1的Tr和Gs。草甘膦增加了RR1的Ci,而大于2.24 L.hm-2的草甘膦却降低了RR1的WUE。表明光强和草甘膦会影响大豆的光合特性和叶绿素含量。  相似文献   

18.
草甘膦对大豆叶片超微结构及生化指标的影响   总被引:2,自引:0,他引:2  
喷施草甘膦后研究大豆莽草酸、叶绿素以及叶片超微结构变化,揭示草甘膦对大豆伤害的机理。喷施草甘膦后,大豆品种东农42叶绿体内产生嗜锇颗粒,片层结构变得稀薄,淀粉粒减少;由于叶绿素含量降低,东农42莽草酸积累;随后叶绿体变形裂解,细胞膜从细胞壁上脱落,细胞瓦解。相比之下,GTS40-3-2叶肉细胞的液泡、叶绿体、叶绿体片层、淀粉粒等先出现一定程度的变化,后恢复;叶肉细胞出现嗜锇颗粒,表现为先增多,后减少,大约1周后消失;莽草酸含量几乎没有变化,叶绿素先下降后恢复,恢复过程需要2周左右。  相似文献   

19.
Glyphosate-resistant (GR) volunteer corn is a troublesome weed in soybean fields in a corn-soybean rotation as well as in corn fields in a continuous corn production system. The objectives of this study were to evaluate the impact of (1) different densities of GR volunteer corn on soybean yields, present as individual plants or clumps, controlled at fourth trifoliate (V4), sixth trifoliate (V6), or full flowering (R2) soybean growth stages, and (2) late-season volunteer corn emergence on soybean yields, after being controlled at different soybean growth stages. Field experiments were conducted in 2013 and 2014 under irrigated conditions in Clay County, Nebraska, and under rain-fed conditions in Lancaster County, Nebraska, USA. To maintain the desired number of isolated volunteer corn plants (1250, 2500, 5000, and 10,000 plants ha−1) and clumps (63, 125, 250, and 500 clumps ha−1), individual seeds and/or corn ears were hand-planted in each plot based on their respective target densities. Volunteer corn was controlled with applications of clethodim at V4, V6, or R2 soybean growth stages. Late-season volunteer corn emergence had no effect on soybean yield with volunteer corn densities and control timings at both locations in 2013 and 2014. During the first year of study at Clay County, volunteer corn densities and control timings had no effect on soybean yield. When volunteer corn was left uncontrolled or controlled at the R2 soybean growth stage, yield was the lowest at highest isolated volunteer corn plants (10,000 plants ha−1) plus clump density (500 clumps ha−1) during the second year of study in Clay County (≤5068 kg ha−1) and during both years of study in Lancaster County (≤1968 kg ha−1).  相似文献   

20.
大豆种子抗老化鉴定的方法研究   总被引:2,自引:0,他引:2  
选用遗传差异相对较大的皖豆24、皖豆25(杂交品种)及合豆3号的种子,在温度为40℃、湿度为85%的条件下老化处理4、8和12 d,研究加速老化过程中不同基因型大豆种子成苗率、发芽率、电导率及单株幼苗干重的变化规律。结果表明:随着加速老化时间的延长种子活力下降;加速老化处理8 d,3个品种的各项鉴定指标均发生改变:品种的成苗率、发芽率及单株幼苗干重显著降低,电导率明显升高,且品种间有显著差异;发芽率和成苗率的变化在品种间具有一致性,电导率、单株幼苗干重的变化和成苗率品种间一致性较差;成苗率和发芽率的相关性最高(r=0.972**)。利用国家大豆微核心种质中的91份资源对老化鉴定方法进行验证,结果在温度为40℃,湿度为85%条件下老化8 d的种子发芽率及老化指数与在自然条件下老化15个月的发芽率及老化指数极显著相关(r=0.943**,0.716**)。综合分析认为,温度为40℃,湿度为85%条件下老化处理8 d,以种子发芽率为活力鉴定指标可作为大豆种子抗老化性的鉴定方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号