首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A slightly modified three-step sequential extraction procedure proposed by the Community Bureau of Reference (BCR) for analysis of sediments was successfully applied to soil samples. Contaminated soil samples from the lead and zinc mining area in the Mezica valley (Slovenia) and natural soils from a non-industrial area were analysed. The total concentrations of Cd, Pb and Zn and their concentrations in fractions after extraction were determined by flame or electrothermal atomic absorption spectrometry (FAAS, ETAAS). Total metal concentrations in natural soils ranged from 0.3 to 2.6 mg kg-1 for Cd, from 20 to 45 mg kg-1 for Pb and from 70 to 140 mg kg-1 for Zn, while these concentrations ranged from 0.5 to 35 mg kg-1 for Cd, from 200 to 10000 mg kg-1 for Pb and from 140 to 1500 mg kg-1 for Zn in soils from contaminated areas. The results of the partitioning study applying the slightly modified BCR three-step extraction procedure indicate that Cd, Pb and Zn in natural soils prevails mostly in sparingly soluble fractions. Cd in natural soils is bound mainly to Fe and Mn oxides and hydroxides, Pb to organic matter, sulphides and silicates, while Zn is predominantly bound to silicates. In contaminated soils, Cd, Pb and Zn are distributed between the easily and sparingly soluble fractions. Due to the high total Cd, Pb and Zn concentrations in contaminated soil close to the smelter, ! and their high proportions in the easily soluble fraction (80% of Cd, 50% of Pb and 70% of Zn), the soil around smelters represents an environmental hazard.  相似文献   

2.
The use of phosphorus (P) to reduce lead (Pb)bioavailability is being proposed as an alternative to excavationand disposal as a remedial technology for Pb-contaminated soilsin residential areas. The objective of this study was todetermine the influence of P sources and rates andCaCO3additions on the bioavailabilities of Pb, cadmium (Cd), and zinc(Zn) in a contaminated soil material using plants, a sequentialextraction procedure, and ion activities in equilibrium solutionas indicators. A contaminated soil containing 370 mg kg-1 Cd, 2800 mg kg-1 Pb and 29100 mg kg-1 Zn was amended ina factorial arrangement of CaCO3 (0 or 2000 mg kg-1) and P as rock phosphate or KH2PO4 at 0:1, 2:1 or 4:1P:Pb mole ratios. A pot study was conducted using sorghum-sudangrass (Sorghum bicolor L. Moench). The addition of P did not influence Pb concentrations in plant tissue and had little effect on Cd concentrations. An interaction between P source and level of P addition was found for Zn concentrations in plant tissue; concentrations increased with increasing amounts of P from KH2PO4 anddecreased with increasing amounts of P from rock phosphate. Sequential extraction results suggested a much greater reduction in Pb bioavailability from treatment withKH2PO4 than with rock phosphate and that P influencedthe fractionations of Cd and Zn. Activities of Cd2+,Pb2+, and Zn2+ in equilibrium solutions generally weredecreased by rock phosphate and increased by KH2PO4. Saturation indices suggested the addition ofKH2PO4shifted the soil equilibrium from octavite to hydroxypyromorphite, whereas solid-phase control of Cd2+ andZn2+ was not influenced by soil amendments. A soluble Psource was more effective in reducing Pb bioavailability thanrock phosphate but had variable effects on Cd and Znbioavailabilities.  相似文献   

3.
Sánchez  J.  Marino  N.  Vaquero  M. C.  Ansorena  J.  Legórburu  I. 《Water, air, and soil pollution》1998,107(1-4):303-319
Soil, aquatic biota (moss: Brachythecium rivulare; aquatic macrophytes: Juncus effusus, Potamogeton crispus; fish: Salmo trutta fario, Anguilla anguilla, Phoxinus phoxinus, Chelon labrosus) and sediment samples from the Urumea river valley were analysed for metals by acid digestion and atomic absorption spectroscopy. The sediments show the presence of metal pollution (Cd: 2.5–24 mg kg-1; Pb: 125–1,150 mg kg-1; Zn: 125–2,500 mg kg-1) because mining and industrial wastes. A selective retention of dense minerals in dam sediments contributes to the load of metal, but interstitial water analysis (Cd: <0.02–0.1 mg L-1; Pb: 0.3–1.0 mg L-1; Zn: <0.05–0.6 mg L-1) shows that precipitation equilibrium controls their mobilisation. Biota samples show evidence of metal accumulation, moss reaching 1,100 mg kg-1 in lead and 6,800 mg kg-1 in zinc. Soil from the valley is polluted by both, river carried material and industrial sources (Cd: 1.0–4.0 mg kg-1; Pb: 26–1,120 mg kg-1; Zn: 105–1,390 mg kg-1/math>), but they are used, indistinctly, for farming and pasture.  相似文献   

4.
A total of 162 fish and shellfish samples representing important species have been collected from different coastal areas of Bahrain in the Arabian Gulf, and analyzed for lead, cadmium, mercury, and arsenic using electrothermal atomic absorption spectrophotometric method. The dverall mean levels for Pb, Cd, Hg and As in fish samples were 0.132, 0.032, 0.084 and 1.7 µg g?1 wet weight, respectively, whereas for shellfish they were 0.149, 0.045, 0.042 and 3.61 µg g?1 wet weight. These values indicate higher levels of metals in shellfish when compared with fish, except for mercury, and reveal that generally the levels of metals in these organisms are lower than existing guidelines, except for arsenic. The provisional tolerable weekly intake of Pb, Cd, Hg and As through fish was estimated to be 0.7, 0.17, 0.45 and 9 µg kg?1 bodyweight per week, respectively. Our results did not reveal a clear pattern regarding variations of metals concentration between areas and species.  相似文献   

5.
Laboratory batch and greenhouse pot experiments were conducted to determine the extraction efficiency of ethylenediaminetetraacetic acid (EDTA) for solubilizing lead (Pb) and cadmium (Cd) and to explore the natural and chemically induced Pb and Cd phytoextraction efficiencies of spinach and mustard after EDTA application. The EDTA was applied at 0, 1.25, 2.5, and 5.0 mM kg?1 soil in three replicates. Addition of EDTA increased significantly the soluble fraction Pb and Cd over the control and maximum increases for Pb (1.42- and 1.96-fold) and Cd (1.45- and 1.38-fold) were observed with the addition of 5.0 mM EDTA kg?1 in Gujranwala and Pacca soils, respectively. Similarly, addition of EDTA increased significantly the Pb and Cd concentrations in the plant shoots, soil solution, bioconcentration factor, and phytoextraction rate. Mustard exhibited better results than spinach when extracting Pb and Cd from both contaminated soils.  相似文献   

6.
A greenhouse experiment was designed to determine the cadmium (Cd) and lead (Pb) distribution and accumulation in parsley plants grown on soil amended with Cd and Pb. The soil was amended with 0, 5, 10 20, 40, 60, 80, and 100 mg Cd kg?1 in the form of cadmium nitrate [Cd(NO3)2] and 0, 5, 10, 50 and 100 mg Pb kg?1 in the form of lead nitrate [Pb(NO3)2]. The main soil properties; concentrations of the diethylenetriaminepentaacetic acid (DTPA)–extractable metals lead (Pb), Cd, copper (Cu), iron (Fe), zinc (Zn), and manganese (Mn) in soil; plant growth; and total contents of metals in shoots and roots were measured. The DTPA-extractable Cd was increased significantly by the addition of Cd. Despite the fact that Pb was not applied, its availability was significantly greater in treatments 40–100 mg Cd kg?1 compared with the control. Fresh biomass was increased significantly in treatments of 5 and 10 mg Cd kg?1 as compared to the control. Further addition of Cd reduced fresh weight but not significantly, although Cd concentration in shoots reached 26.5 mg kg?1. Although Pb was not applied with Cd, its concentration in parsley increased significantly in treatments with 60, 80, and 100 mg Cd g?1 compared with the others. Available soil Pb was increased significantly with Pb levels; nevertheless, the increase was small compared to the additions of Pb to soil. There were no significant differences in shoot and root fresh weights between treatments, although metal contents reached 20.0 mg Pb kg?1 and 16.4 mg Pb kg?1 respectively. Lead accumulation was enhanced by Pb treatments, but the positive effect on its uptake was not relative to the increase of Pb rates. Cadmium was not applied, and yet considerable uptake of Cd by control plants was evident. The interactive effects of Pb and Cd on their availability in soil and plants and their relation to other metals are also discussed.  相似文献   

7.
喷施硅铈溶胶缓解镉铅对小白菜毒害的研究   总被引:1,自引:0,他引:1  
通过大田试验,在轻度镉-铅复合污染菜地向小白菜叶面喷施不同浓度的硅溶胶、铈溶胶及硅铈复合溶胶,研究其对产量、品质、抗氧化酶活性及Cd、Pb吸收的影响。结果表明,喷施硅铈溶胶均能促进小白菜生长,增加小白菜生物量和提高维生素C、可溶性糖的含量,降低亚硝酸盐的含量;显著增强抗氧化系统保护酶(SOD、POD)活性和降低小白菜地下部、地上部中镉、铅的含量及累积量。在不同浓度的施硅和施铈处理中,喷施0.50 g kg-1SiO2处理和0.20 g kg-1CeO2处理在增产、提升品质和缓解重金属对小白菜毒害上效果最佳,喷施硅铈复合溶胶虽效果显著,但与单独施硅、施铈相比无明显提高。  相似文献   

8.
The purpose of this study was to use zero‐valent iron nanoparticles (nZVI) and cellulosic wastes to reduce bioavailability of lead (Pb) and cadmium (Cd), and to establish Persian maple seedlings (Acer velutinum Bioss.) in contaminated soil. One‐year‐old seedlings were planted in pots filled with unpolluted soil. Lead [Pb(NO3)2] and Cd [Cd(NO3)2] were added with concentrations of 0 (Control), 100 (Pb100), 200 (Pb200), and 300 (Pb300) mg kg−1 and 10 (Cd10), 20 (Cd20), and 30 (Cd30) mg kg−1. Cellulosic wastes were mixed with soil at the same time of planting [four levels: 0, 10 (W1), 20 (W2), 30 (W3) g 100 g−1 soil]. The nZVI was prepared by reducing Fe3+ to Fe0 and injected to pots [four levels: 0, 1 (N1), 2 (N2), and 3 (N3) mg kg−1]. Height, diameter, biomass, tolerance index of seedlings, bioavailability of heavy metals in soil, and removal efficiency of amendments were measured. The highest values of seedling characteristics were observed in N3. The highest removal efficiency of Pb (Pb100: 81.95%, Pb200: 75.5%, Pb300: 69.9%) and Cd (Cd10: 92%, Cd20: 73.7%, Cd30: 68.5%) was also observed in N3. The use of nZVI and cellulosic waste could be a proper approach for seedling establishment in forests contaminated with heavy metals.  相似文献   

9.
Derivative potentiometric stripping analysis (dPSA) was utilized to evaluate the Cd(II), Cu(II), Pb(II), and Zn(II) content in olive oil samples produced in Sicily in the crop year 2000-2001. The repeatability of the method was attested at 86.36% for cadmium, at 94.94% for copper, at 99.00% for lead, and at 98.92% for zinc. Recovery tests were carried out, both on cleanup procedures and on extraction steps, on olive oil spiked at different levels; obtained recoveries were 84.52 +/- 9.86 for cadmium, 97.34 +/- 2.72 for copper, 100.68 +/- 0.67 for lead and 83.35 +/- 1.72 for zinc. Theoretic detection limits were 1.2 ng g(-1) for Cd, 3.6 ng g(-1) for Cu, 5.9 ng g(-1) for Pb, and 14.3 ng g(-1) for Zn. Found concentrations range were 15.94-58.51 ng g(-1) for Cu, 32.64-156.48 ng g(-1) for Pb, and 157.00-385.22 ng g(-1) for Zn. Copper, lead, and zinc were found in all samples. The main advantage of this determination consists of a not too aggressive metals extraction procedure using hydrochloric acid, which avoids losses of elements typical of sample calcinations methods.  相似文献   

10.
土法炼锌区大气沉降Pb、Zn、Cd及其对土壤质量的影响   总被引:6,自引:0,他引:6  
Dust emissions from smelters, as a major contributor to heavy metal contamination in soils, could severely influence soil quality. Downwind surface soils within 1.5 km of a zinc smelter, which was active for 10 years but ceased in 2000, in Magu Town, Guizhou Province, China were selected to examine Pb, Zn, and Cd concentrations and their fractionation along a distance gradient from a zinc smelter, and to study the possible effects of Pb, Zn, and Cd accumulation on soil microorganisms by comparing with a reference soil located at a downwind distance of 10 km from the zinc smelter. Soils within 1.5 km of the zinc smelter accumulated high levels of heavy metals Zn (508 mg kg-1), Pb (95.6 mg kg-1), and Cd (5.98 mg kg-1) with low ratios of Zn/Cd (59.1--115) and Pb/Cd (12.4--23.4). Composite pollution indices (CPIs) of surface soils (2.52--15.2) were 3 to 13 times higher than the reference soils. In metal accumulated soils, exchangeable plus carbonate-bound fractions accounted for more than 10% of the total Zn, Pb, and Cd. The saturation degree of metals (SDM) in soils within 1.5 km of the smelter (averaging 1.25) was six times higher than that of the reference soils (0.209). A smaller soil microbial biomass was found more frequently in metal accumulated soils (85.1--438 μg C g-1) than in reference soils (497 μg C g-1), and a negative correlation (P < 0.01) of soil microbial biomass carbon to organic carbon ratio (Cmic/Corg) with SDM was observed. Microbial consumption of carbon sources was more rapid in contaminated soils than in reference soils, and a shift in the substrate utilization pattern was apparent and was negatively correlated with SDM (R = -0.773, P < 0.01). Consequently, dust deposited Pb, Zn, and Cd in soils from zinc smelting were readily mobilized, and weredetrimental to soil quality mainly in respect of microbial biomass.  相似文献   

11.
Metal pollution is an important concern because of its potential to affect human health. Metals such as lead and cadmium can enter soil via the food chain and exceed normal limits, producing harmful effects. In this study, six common garden and residential plant species were grown in soils from Spelter, WV, USA, contaminated with a variety of metals including lead (Pb), zinc (Zn), cadmium (Cd), and copper (Cu). Plant species included radish, carrot, chicory, spinach, lettuce, and clover. Metal concentrations in plant tissues were compared with metal concentration in soil by a multi‐step chemical extraction. The largest accumulation of Pb (126 mg kg−1) and Zn (1493 mg kg−1) was seen in radish roots, with Cd (40 mg kg−1) having the largest accumulation in carrot roots. Comparisons of plant availability with soil chemical extractions indicated that the combined soluble and exchangeable fractions could estimate available Zn and Cd for all six plant species. For Pb and Cu, however, the comparisons indicate that these two elements were not readily available in Spelter soils. A health risk assessment was carried out for residents at Spelter on the basis of edible tissue concentrations and publicly available consumption data. Uptake of Cd by carrot roots was about five times more than the regulatory limits for men, eight times more for women, and 12 times more for children. On the basis of the results, carrot and lettuce grown in these soils have the potential to cause toxicological problems in men, women, and young children resulting from Cd and Zn accumulation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Seawater samples were collected from the northern Red Sea and the Gulf of Aqaba at different depths during February 1999 and analyzed for iron, zinc, manganese, nickel, copper, cadmium, cobalt and lead to determine the existing concentration of these metals, their distribution patterns and where contamination has occurred. The concentrations of Fe, Zn, Mn, Ni, Cu, Cd, Co, Pb were scatteredin the ranges: (0.56–4.44; mean 1.67±0.9 μg L-1), (0.13–1.17; mean 0.24±0.12 μg L-1), (0.06–0.21; mean 0.13±0.03 μg L-1), (0.05–0.52; mean 0.16±0.06 μg L-1), (0.07–0.29; mean 0.14±0.06 μg L-1), (0.02–0.78; mean 0.49±0.14 μg L-1), (0.06–0.29; mean 0.15±0.04 μg L-1), and (0.02–0.68; mean 0.31±0.13 μg L-1), respectively. The results revealed a small range of variation and regional irregularities. It also indicated significant higher concentrations for Fe, Cd and Pb compared to other metals. Compared to the northern Red Sea, significant higher concentrations for Ni and Cd are measured at the Gulf of Aqaba. Other metals, i.e. Fe, Zn, Mn, Cu, Co, and Pb are not significantly different in both areas indicating no distinct concentration gradients. Except for Pb, the distribution patterns indicated significantly lower concentrations at surface layer in both regions, then increasing to their maximum values at the sub-surface layers which followed by a decrease in deep water. The study indicated also that the mean concentrations of trace metals examined here are much lower than those reported for the Mediterranean Sea and typical of open ocean water.  相似文献   

13.
Bioaccumulation of trace metals in plant tissues can present a health risk to wildlife, and potentially to humans. The Passamaquoddy tribe in Maine was concerned about health risks of cadmium (Cd) because of a health advisory for moose liver and kidney consumption due to high Cd levels. This study found relatively low to moderate concentrations of Cd, nickel (Ni), lead (Pb), and zinc (Zn) concentrations in four common terrestrial moose browse species, associated forest soils, and two species of aquatic vegetation on Passamaquoddy tribal land in eastern Maine. Terrestrial plant tissue concentrations ranged from 0.1 to 1.97, 0.65 to 7.08, 0.29 to 2.0, and 42 to 431 mg kg?1 for Cd, Ni, Pb and Zn, respectively. Deciduous species, particularly aspen and birch, may be a more significant source of Cd and Zn to wildlife compared to coniferous or aquatic species. Aquatic plant tissue concentrations ranged from 0.11 to 0.14, 0.46 to 1.01, 0.8 to 0.9, and 22 to 41 mg kg?1 for Cd, Ni, Pb and Zn, respectively. Total O horizon concentration means for coniferous and deciduous were 0.50 and 1.00, 4.27 and 4.11, 55 and 21, and 55 and 167 mg kg?1 for Cd, Ni, Pb and Zn, respectively. The study provides baseline vegetation and soil trace metal concentrations for a remote region in Maine impacted by non-point sources.  相似文献   

14.

Purpose

This study investigated the behavior of cadmium (Cd), lead (Pb), nickel (Ni), and zinc (Zn) in urban sediments collected in commercial, residential, and industrial areas of the city of Porto Alegre, Brazil, and evaluated different degrees of pollution in this urban subdrainage basin through the use of the geoaccumulation index (Igeo).

Materials and methods

Concentrations of Cd, Ni, Pb, and Zn were analyzed using acid digestion (EPA method 3050) in fractions <63 μm in 20 composite samples of urban sediment collected using a portable vacuum in 20 different sampling points on roads from three areas with diverse use: commercial, industrial, and residential.

Results and discussion

The values of Igeo were commercial area (3.35, Zn; 3.76, Cd; 3.60, Ni; 2.63, Pb) > residential area (3.34, Zn; 3.36, Cd; 2.94, Ni; 1.46, Pb) > industrial area (2.74, Zn; 1.78, Cd; 3.01, Ni; 1.45, Pb), indicating that the sediment was “highly contaminated” in the case of Zn and Ni, while for Cd, it was “moderately to highly contaminated,” and for Pb, it was “moderately contaminated.” The pollution is associated with traffic flow in all areas.

Conclusions

Research should be increased to make urban systems more sustainable, reducing their pollution potential and minimizing the delivery of potentially polluting particles into freshwater bodies. The Igeo allows for the determination of a simple index of diffuse pollution state associated with urban sediments.  相似文献   

15.
Abstract

This study was carried out to investigate whether an insoluble polyacrylate polymer could be used to remediate a sandy soil contaminated with cadmium (Cd) (30 and 60 mg Cd kg?1 of soil), nickel (Ni) (50 and 100 mg Ni kg?1 of soil), zinc (Zn) (250 and 400 mg Zn kg?1 of soil), or the three elements together (30 mg Cd, 50 mg Ni, and 250 mg Zn kg?1 of soil). Growth of perennial ryegrass was stimulated in the polymer‐amended soil contaminated with the greatest amounts of Ni or Zn, and when the three metals were present, compared with the unamended soil with the same levels of contamination. Shoots of plants cultivated in the amended soil had concentrations of the metals that were 24–67% of those in plants from the unamended contaminated soil. After ryegrass had been growing for 87 days, the amounts of water‐extractable metals present in the amended soil varied from 8 to 53% of those in the unamended soil. The results are consistent with soil remediation being achieved through removal of the metals from soil solution.  相似文献   

16.
A screen-house experiment was conducted to study cadmium (Cd) and lead (Pb) phytoextraction using mustard and fenugreek as test crops. Cadmium was applied at a rate of 20 mg kg?1 soil for both crops, and Pb was applied at 160 and 80 mg kg?1 soil for mustard and fenugreek, respectively. The disodium salt of ethylenediamine tetraacetic acid (EDTA) was applied at 0, 0.5, 1.0, and 1.5 g kg?1 soil. Dry-matter yield (DMY) of both crops decreased with increasing rates of EDTA application. Application of 1.5 g EDTA kg?1 soil caused 23% and 70% declines in DMY of mustard and fenugreek shoots, respectively, in the soils receiving 20 mg Cd kg?1 soil. Similarly, in soil with 160 mg Pb kg?1 soil, application of 1.5 g EDTA kg?1 resulted in 25.4% decrease in DMY of mustard shoot, whereas this decrease was 55.4% in fenugreek grown on a soil that had received 80 mg Pb kg?1 soil. The EDTA application increased the plant Cd and Pb concentrations as well as shoot/root ratios of these metals in both the crops. Application of 1.5 g kg?1 EDTA resulted in a 1.50-fold increase in Cd accumulation and a 3-fold increase in Pb accumulation by mustard compared to the control treatment. EDTA application caused mobilization of Cd and Pb from carbonate, manganese oxide, and amorphous iron oxide fractions, which was evident from decrease in these fractions in the presence of EDTA as compared to the control treatment (no EDTA).  相似文献   

17.
The To Lich and Kim Nguu Rivers, laden with untreated waste from industrial sources, serve as sources of water for irrigating vegetable farms. The purposes of this study were to identify the impact of wastewater irrigation on the level of heavy metals in the soils and vegetables and to predict their potential mobility and bioavailability. Soil samples were collected from different distances from the canal. The average concentrations of the heavy metals in the soil were in the order zinc (Zn; 204 mg kg?1) > copper (Cu; 196 mg kg?1) > chromium (Cr; 175 mg kg?1) > lead (Pb; 131 mg kg?1) > nickel (Ni; 60 mg kg?1) > cadmium (Cd; 4 mg kg?1). The concentrations of all heavy metals in the study site were much greater than the background level in that area and exceeded the permissible levels of the Vietnamese standards for Cd, Cu, and Pb. The concentrations of Zn, Ni, and Pb in the surface soil decreased with distance from the canal. The results of selective sequential extraction indicated that dominant fractions were oxide, organic, and residual for Ni, Pb, and Zn; organic and oxide for Cr; oxide for Cd; and organic for Cu. Leaching tests for water and acid indicated that the ratio of leached metal concentration to total metal concentration in the soil decreased in the order of Cd > Ni > Cr > Pb > Cu > Zn and in the order of Cd > Ni > Cr > Zn > Cu > Pb for the ethylenediaminetetraaceitc acid (EDTA) treatment. The EDTA treatment gave greater leachability than other treatments for most metal types. By leaching with water and acid, all heavy metals were fully released from the exchangeable fraction, and some heavy metals were fully released from carbonate and oxide fractions. The concentrations of Cd, Cr, Cu, Ni, Pb, and Zn in the vegetables exceeded the Vietnamese standards. The transfer coefficients for the metals were in the order of Zn > Ni > Cu > Cd = Cr > Pb.  相似文献   

18.
采用野外调查和室内分析相结合的方法,研究了河北省安国市和蔚县板蓝根产地土壤-植物中Cd、Pb、Hg、As含量特征及其在菘蓝中的累积特性,并对板蓝根产地土壤和草药中Cd、Pb、Hg、As污染状况进行了评价,为该地区安全、合理地发展中草药生产提供数据支撑和科学依据。结果表明,安国市和蔚县板蓝根产地土壤中重金属Cd、Pb、Hg、As含量差异不大,土壤重金属含量的变异系数在11.70%~97.65%。以《土壤环境质量标准》(GB 15618—1995)一级标准值进行评价,综合污染指数评价结果显示45%板蓝根种植区土壤Cd、Pb、Hg、As污染等级为警戒限,其他处于清洁水平;而以《土壤环境质量标准》二级标准值进行评价,种植区单项污染指数及综合污染指数结果均0.7,土壤环境清洁。此外,菘蓝地上部(大青叶)Cd、Pb、Hg、As平均含量分别为0.22 mg·kg~(-1)、0.89 mg·kg~(-1)、0.04 mg·kg~(-1)、0.25 mg·kg~(-1),对重金属的富集能力表现为CdHgPbAs;菘蓝地下部(板蓝根)Cd、Pb、Hg、As含量均值分别为0.14 mg·kg~(-1)、0.57 mg·kg~(-1)、0.04 mg·kg~(-1)、0.26 mg·kg~(-1),对重金属的富集能力表现为CdHgAsPb。所有菘蓝样品中Pb、Hg、As含量均未超出《药用植物及制剂进口绿色行业标准》(WM2—2001),大青叶9.09%样品中Cd超标,且Cd平均污染指数0.7,属警戒限污染等级。因此,在中药材GAP(良好的农业规范)产地环境质量评价时,除板蓝根产地土壤完全符合土壤环境质量二级标准外,也不应忽视板蓝根和大青叶吸收和累积重金属的自身特性。  相似文献   

19.
Abstract: The fraction distributions of heavy metals have attracted more attention because of the relationship between the toxicity and their speciation. Heavy‐metal fraction distributions in soil contaminated with mine tailings (soil A) and in soil irrigated with mine wastewater (soil B), before and after treatment with disodium ethylenediaminetetraacetic acid (EDTA), were analyzed with Tessier's sequential extraction procedures. The total contents of lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) exceeded the maximum permissible levels by 5.1, 33.3, 3.1, and 8.0 times in soil A and by 2.6, 12.0, 0.2, and 1.9 times in soil B, respectively. The results showed that both soils had high levels of heavy‐metal pollution. Although the fractions were found in different distribution before extraction, the residual fraction was found to be the predominant fraction of the four heavy metals. There was a small amount of exchangeable fraction of heavy metals in both contaminated soils. Furthermore, in this study, the extraction efficiencies of Pb, Cd, and Cu were higher than those of Zn. After extraction, the concentrations of exchangeable Pb, Cd, Cu, and Zn increased 84.7 mg·kg?1, 0.3 mg·kg?1, 4.1 mg·kg?1, and 39.9 mg·kg?1 in soil A and 48.7 mg·kg?1, 0.6 mg·kg?1, 2.7 mg·kg?1, and 44.1 mg·kg?1 in soil B, respectively. The concentrations of carbonate, iron and manganese oxides, organic matter, and residue of heavy metals decreased. This implies that EDTA increased metal mobility and bioavailability and may lead to groundwater contamination.  相似文献   

20.
Holm  P.E.  Christensen  T.H.  Lorenz  S.E.  Hamon  R.E.  Domingues  H.C.  Sequeira  E.M.  McGrath  S.P. 《Water, air, and soil pollution》1998,102(1-2):105-115
Soil water concentrations of cadmium and zinc were measured in plant pots with 15 contaminated soils which differed in origin, texture, pH (5.1 – 7.8) and concentrations of cadmium (0.2 – 17 mg Cd kg-1) and zinc (36 – 1300 mg Zn kg-1). The soil waters contained total concentrations of 0.5 to 17 µg Cd L-1 and 9 to 3600 µg Zn L-1, which were dominated by free metal ions as measured by an ion exchange-resin method. Annual leaching outflows were estimated from soil water concentrations to be 0.5 – 17 g Cd ha-1 y-1 and 9 – 3600 g Zn ha-1 y-1 per 100 mm of net percolation, corresponding to 0.1% per year of the total soil content of cadmium and zinc. The measured soil water concentrations of cadmium and zinc did not correlate linearly with the corresponding soil concentrations but correlated fairly well with concentrations measured in Ca(NO3)2 extracts of the soils and with soil water concentrations estimated from soil concentrations and pH. Such concentration estimates may be useful for estimating amounts of cadmium and zinc being leached from soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号