首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenylbutazone was administered intravenously (i.v.) to a group of four lactating cows at a dosage of 6 mg/kg body weight. Whole plasma, protein-free plasma and milk were analysed for phenylbutazone residues. Pharmacokinetic parameters of total and free phenylbutazone in plasma were calculated using a non compartmental method. In regards to whole plasma data, the mean volume of distribution at steady state ( V ss), was 147 mL/kg body weight, with a mean (± SEM) terminal elimination half-life ( t 1/2) of 40 ± 6 h. The mean clearance ( Cl ) was 3 mL/h/kg body weight. The V ss as determined from the protein-free plasma fraction was 50 021 mL/kg body weight. This larger V ss of free phenylbutazone compared to total plasma phenylbutazone was attributed to a high degree of plasma protein binding, as well as the greater penetration of free phenylbutazone into tissues. The mean t 1/2 of free phenylbutazone was 39 ± 5 h. This similarity to the t 1/2 estimated from total plasma phenylbutazone data is attributed to an equilibrium between free and plasma phenylbutazone during the terminal elimination phase. Mean t 1/2 as determined from milk, applying a urinary excretion rate model, was 47 ± 4 h. Milk clearance of phenylbutazone was 0.009 mL/h/kg body weight, or about 0.34% of total body clearance. Furthermore, evidence suggests that phenylbutazone either binds to milk proteins, or is actively transported into milk, as its concentration in milk was greater than that predicted due to a simple partitioning from plasma into milk.  相似文献   

2.
Tissue distribution and elimination kinetics of oxytetracycline in sixteen organs and body fluids were determined in young pigs following intravenous and oral administration. Seventeen non-fasted pigs, 8–10 weeks of age, weight range 16.4–34.5 kg were dosed intravenously at a dose rate of 11 mg/kg bodyweight. An additional seventeen weaning pigs, 12–14 weeks of age, weight range 27.2–36.3 kg were dosed orally at a dose rate of 48–65 mg/kg bodyweight. Oxytetracycline was rapidly distributed (half-life, 6.71 ± 1.13 min) in swine. The mean volume of distribution was 1.26 ± 0.18 l/kg and overall body clearance was 3.82 ± 0.59 ml/kg/min. The elimination half-life of oxytetracycline in pigs was 3.87 ± 0.62 h, which is shorter than has been observed in other domestic animal species. Oxytetracycline became rapidly and efficiently involved in enterohepatic cycling, with as much as 70% of a total intravenous dose being available for reabsorption from the gastrointestinal tract within 1 h after administration. This high degree of enterohepatic recycling prolonged the half-life, and the large amount of drug that entered the enteric tract contributed to the high volumes of distribution and high k 12/ k 21 ratios. The excellent tissue penetration of this drug further contributed to the high volume of distribution and high k 12/ k 21 ratios obtained. Relationships between plasma and tissue depletion for several major edible organs were found to be statistically significant. Blood plasma is proposed as a body fluid for monitoring oxytetracycline tissue residues.  相似文献   

3.
The disposition kinetics and systemic availability of phenylbutazone were studied in healthy dairy cows. The same dose (6mg/kg) of phenylbutazone was administered by the i.v., i.m. and oral routes. The elimination half time after intravenous administration ranged from 32.4 to 60.8h. The result suggested that the distribution of phenylbutazone in cows can be described by a two-compartment open model. Total body clearance of the drug had a mean value of 0.0016 ml/kg-h. The overall tissue to plasma level ratio (k12/k21-β), after distribution equilibrium had been attained was 0.64. Phenylbutazone was shown, by an equilibrium dialysis method, to be highly bound to plasma proteins (93%) at serum levels of 100 μ/ml. The systemic availability of phenylbutazone was 69% and 89% when administered orally and intramuscularly respectively. Animals receiving half the dose of phenylbutazone (3 mg/kg) intravenously did not differ from cows receiving 6 mg/kg in elimination half-life and other distribution and elimination kinetic parameters. Based on the experimental data obtained, a dosage regimen is proposed, consisting of a priming oral dose of 9 mg/kg and maintenance doses of 4.5 mg/kg of phenylbutazone orally administered at 48 h intervals. The relatively long half-life in cattle, however, complicates the use of phenylbutazone because of the drug residue problem.  相似文献   

4.
Hens were given single intravenous or oral doses (30 mg/kg body weight) of metronidazole and the plasma concentrations of the drug were determined by high-performance liquid chromatography (HPLC) at intervals from 10 min to 24 h after drug administration. Pharmacokinetic variables were calculated by the Lagrange algorithm technique. The elimination half-life ( t 1/2β) after the intravenous injection was 4.2 ± 0.5 h, the volume of distribution ( V d(ss)) 1.1±0.2 L/kg and the total body clearance ( Cl B) 131.2 ± 20 mL/h.kg. Oral bioavailability of the metronidazole was 78 ± 16%. The plasma maximum concentration ( C max) 31.9 ± 2.3 μg/mL was reached 2 h after the oral administration and the oral elimination half-life ( t 1/2β) was 4.7 ± 0.2 h. The binding of metronidazole to proteins in hen plasma was very low (less than 3%). Whole body autoradiography of [3H] metronidazole in hens and quails showed an even distribution of labelled material in various tissues at short survival intervals (1-4 h) after oral or intravenous administration. A high labelling was seen in the contents of the small and large intestines. In the laying quails a labelling was also seen in the albumen and in a ring in the periphery of the yolk at long survival intervals. Our results show that a concentration twofold above the MIC is maintained in the plasma of hens for at least 12 h at an oral dose of 30 mg/kg metronidazole.  相似文献   

5.
Pharmacokinetics of diminazene in female Boran (Bos indicus) cattle   总被引:1,自引:0,他引:1  
The disposition kinetics and bioavailability of diminazene in five healthy heifers were determined after single intravenous (i.v.) and intramuscular (i.m.) administration of the drug in sequence with a wash-out period between administrations of 6 weeks. Intact diminazene in plasma, whole blood and urine samples was analysed using high-performance liquid chromatography. Nonlinear regression analysis of the i.v. and i.m. data indicated that, for either route, the plasma disappearance curves of diminazene were best described by triexponential equations. The i.v. bolus was followed by rapid and biphasic distribution with half-life values of 0.04 h and 0.58 h, Vd(ss) was 1.91 ± 0.42 1/kg, elimination half-life was 31.71 h while CI averaged 1.74 ± 0.40 ml/min/kg. Within 30 min of the i.v. dose, the erythrocyte/plasma partition ratio of diminazene was 0.30 ± 0.15. Diminazene was rapidly absorbed following i.m. administration; t ½ka was 0.60 h. Cmax, 4.68 ± 1.12 μg/ml, was attained in 10–15 min and systemic availability was 102.42 ± 7.25%. The half-life of the terminal disappearance phase was 145.48 h. About 8.26% of the i.m. dose was excreted intact in the urine within the first 24 h of treatment. In vitro , diminazene was bound to bovine plasma albumin to the extent of 38.01–91.10%.  相似文献   

6.
The pharmacokinetics of flunixin meglumine in the sheep   总被引:4,自引:0,他引:4  
Flunixin meglumine was administered intravenously and intramuscularly in sheep and the pharmacokinetics of the drug studied. Plasma concentrations of flunixin were measured by high performance liquid chromatography. The decline in plasma- flunixin concentration with time was best fitted by a triexponential equation. The pharmacokinetics following intravenous administration of 1.0 mg/kg indicate that flunixin has a rapid distribution half-life (t½π= 2.3 min), a slow body clearance rate (Clb= 0.6 ml/kg/min) and an elimination half-life of 229 min. Similarly, at 2.0 mg/kg, flunixin is rapidly distributed from the plasma, t½π= 2.7 min, has a slow body clearance rate (C/b = 0.7 mk/lg/min) and an elimination half-life of 205 min.
Following intramuscular injection flunixin is rapidly and well absorbed from the injection site. It had a mean maximum concentration ( C max) of ≫5.9 μg/ml when administered at a dose rate of 1.1 mg/kg, and a relative bioavailability of 70%. Plasma concentrations increase proportionally to dose over the range 1.1 mg/kg-2.2 mg/kg when administered by the intramuscular route.  相似文献   

7.
The pharmacodynamics and enantioselective pharmacokinetics of vedaprofen were studied in six ponies in a two period cross-over study, in which a mild acute inflammatory reaction was induced by carrageenan soaked sponges implanted subcutaneously in the neck. Vedaprofen, administered intravenously at a dosage of 1 mg/kg, produced significant and prolonged inhibition of ex vivo serum thromboxane B2 (TXB2) synthesis and short-lived inhibition of exudate prostaglandin E2 (PGE2) and TXB2 synthesis. Vedaprofen also partially inhibited oedematous swelling and leucocyte infiltration into exudate. Vedaprofen dis-played enantioselective pharmacokinetics, plasma concentrations of the R(–) enantiomer exceeding those of S(+) vedaprofen. The plasma concentration ratio, R:S, increased from 69: 31 at 5 min to 96: 4 at 3 h and plasma mean AUC values were 7524 and 1639 ng.h/mL, respectively. Volume of distribution was greater for S(+) vedaprofen, whilst elimination half-life (t½β) and mean residence time were greater for R(–) vedaprofen. The penetration of vedaprofen into inflammatory exudate was also enantioselective. For R(–) and S(+) veda-profen maximum concentration (Cmax) values were 2950 and 1534 ng/mL, respectively, and corresponding AUC values were 9755 and 4400 ng.h/mL. Vedaprofen was highly protein bound (greater than 99%) in both plasma and exudate. The significance of these data for the therapeutic use of vedaprofen is discussed.  相似文献   

8.
Concentrations of the non-steroidal anti-inflammatory drug (NSAID) alclofenac were determined by a sensitive high performance liquid chromatographic procedure in plasma and urine of horses following oral administration of a dose of 3 g. In plasma, alclofenac was present in detectable concentrations for 72 h. The plasma disposition in individual horses was best described by a bi-compartmental model with two successive rate constants ka1= 0.05 ± 0.06 h-1 and ka2= 0.06 ± 0.01 h-l. Alclofenac half-lives t ½ and t 1/2β were 1.0 ± 0.8 h and 6.9 ± 1.5 h, respectively. Maximal concentrations (38.9 ± 16.2 μg/ml) were obtained after 8.5 ± 2.4 h. Alclofenac was detected in urine for at least 48 h after dosing. The percentage of the dose excreted as unchanged alclofenac in 12 h was very low (0.68 ± 0.19%), total (free + conjugated) alclofenac accounted for 2.16 ± 0.55% of the dose.  相似文献   

9.
The pharmacokinetics of imidocarb were studied in seven mongrel dogs and eight crossbred goats. An intravenous bolus dose (4 mg/kg) of 12% imidocarb dipropionate solution wasinjected into the cephalic vein in dogs and the jugular vein in goats. The plasma concentration of imidocarb was measured by spectro-photometry. The experimental data were analysed using a two-compartment open model. The apparent volume of the central compartment was significantly higher ( P <0.01) in dogs than in goats. The significantly larger ( P <0.05) apparent specific volume of distribution in goats than in dogs may be attributed to passive diffusion followed by ion trapping of the drug in rumen fluid. Neither the half-life nor body clearance differed significantly between dogs ( t 1/2, 207 ± 45 min; ClB , 1.47 ± 0.38 ml/min kg) and goats ( t 1/2, 251 ± 94 min; ClB , 1.62 ± 0.50 ml/min kg). While almost 80% of the dose had been eliminated at 8 h in. both species, the high ratio of the imidocarb level in the peripheral-to-central compartment in goats suggests that a prolonged period may be required for complete elimination of the drug.  相似文献   

10.
This study examined the pharmacokinetics of steady-state phenylbutazone and single bolus intravenous gentamicin when administered together in the horse. The trial design was completed as a cross-over with seven thoroughbred horses. In the first phase each horse received 2.2 mg/kg gentamicin intravenously. After a 2-week washout, each horse received 4.4 mg/kg phenylbutazone intravenously every 24 h for 5 days. On the fourth day each horse received gentamicin as before. Plasma was harvested for gentamicin concentration determination by fluorescence polarization immunoassay and for phenylbutazone concentration determination by high-performance liquid chromatography. All gentamicin data were best approximated by a two-compartment open model using sequential, weighted non-linear regression. Pharmacokinetic parameters were calculated using model-dependent formulae. Phenylbutazone data were analysed by non-compartmental methods. Phenylbutazone induced a 49% increase in the rate of gentamicin return to the central compartment from peripheral tissues (k21) (P<0.05) and there was a trend to a 24% increase in k12 (P = 0.052). The gentamicin elimination half-life was decreased 23% and the Vd(area) was reduced by 26%. No induction by gentamicin of changes in phenylbutazone pharmacokinetics were detected. In summary, phenylbutazone induced changes to the rate and extent of distribution and elimination of gentamicin. Therefore, care should be exercised in the use of aminoglycosides in equine patients concurrently maintained on phenylbutazone.  相似文献   

11.
Disposition of ciprofloxacin following intravenous administration in dogs   总被引:2,自引:0,他引:2  
The pharmacokinetics of ciprofloxacin (CIP) following intravenous administration m dogs nave been mvestisated. The drug was administered at three doses (2.5,5 and 10 mg/kg body weight) and was assayed in biological fluid samples (plasma and urine) by an HPLC method. The plasma concentration-time curves ere best described by a two-compartment open pharmacokinetic model. The was widely distributed (Vd(area) almost 3 1/kg), being distributed in the dog more rapidly than in other species (t1/2(λ1) 3 min approximately). The elimination half-life (t1/2λ2)) was 129–180 min which is similar to values obtaine in other species. The unchanged drug eliminated in urine was less than 37% of the administered dose, which is less than the values obtained in humans, calves and pigs. The glomerular filtration rate and the renal clearance of CIP in the dog suggest that renal elimination probably occurs mainly by glomerular filtration. The results showed that the pharmacokinetics of CIP, as in other species, was linear in dogs in the dose range studied.  相似文献   

12.
The pharmacokinetics of furosemide were investigated in anaesthetized horses with bilateral ureteral ligation (BUL) with ( n  = 5) or without ( n  = 5) premedication with phenylbutazone. Horses were administered an intravenous (i.v.) bolus dose of furosemide (1 mg/kg) 6090 min after BUL. Plasma samples collected up to 3 h after drug administration were analysed by a validated high performance liquid chromatography method. Median plasma clearance ( CL p) of furosemide in anaesthetized horses with BUL was 1.4 mL/min/kg. Apparent steady state volume of distribution ( V dss) ranged from 169 to 880 mL/kg and the elimination half life ( t ½) ranged from 83 min to 209 h.   No differences in plasma concentration or kinetic parameter estimates were observed when phenylbutazone was administered before furosemide administration. BUL markedly reduces the elimination of furosemide in horses and models the potential effects that severe changes in kidney function may have on drug kinetics in horses.  相似文献   

13.
Pentoxifylline (7.5 mg/kg) was bolused intravenously to eight healthy horses and was immediately followed by infusion (1.5 mg/kg/h) for 3 h. Clinical parameters were recorded and blood samples were collected for 24 h. Plasma was separated and concentrations of pentoxifylline, its reduced metabolite I, and 6-keto-prostaglandin F were determined. Heparinized whole blood was also incubated ex vivo with 1 ng Escherichi coli endotoxin/mL blood for 6 h before determination of plasma tumour necrosis factor activity. The peak plasma concentrations of pentoxifylline and metabolite I occurred at 15 min after bolus injection and were 9.2± 1.4 and 7.8± 4.3 μg/mL, respectively. The half-life of elimination ( t ½β) of pentoxifylline was 1.44 h and volume of distribution ( V darea) was 0.94 L/kg. The mean plasma concentration of 6-keto-prostaglandin F increased over time, with a significant increase occurring 30 min after the bolus administration. Ex vivo plasma endotoxin-induced tumour necrosis factor activity was significantly decreased at 1.5 and 3 h of infusion. These results indicate that infusion of pentoxifylline will increase 6-keto-prostaglandin F and significantly suppress endotoxin-induced tumour necrosis factor activity in horses during the period of infusion.  相似文献   

14.
A high-performance liquid chromatographic method for the determination of the non-steroidal anti-inflammatory drug, oxindanac, in calf plasma is described. Recoveries over the concentration range 0.3 75 to 62.5 μg/ml were 90.2–107.8% with interassay coefficients of variation of 2.1–22.3%. The limit of detection was estimated as 0.10 μg/ml and the limit of quantification calculated to be 0.24 pg/ml in a 1 ml plasma sample. This method was used to establish the pharmacokinetics following intravenous (i.v.), intramuscular (i.m.) and oral (p.o.) administration to calves of oxindanac at a dose rate of 2 mg/kg. The elimination t 1/2, was long ( t 1/2 21.2 h after i.v. injection) and absorption was rapid (t1/2B 0.072 h) and complete ( F > 100%) following i.m. administration. Bioavailability was incomplete ( F = 66.6%) following p.o. administration to calves that had been fed on milk, and Wagner-Nelson analysis revealed twoabsorption phases ( t 1/2's 0.20 and 1.9 h). Oxindanac produced long-lasting inhibition of serum TxB2 production, with mean kmax values (% inhibition) of 96.8, 94.1 and 81.3 following i.v., i.m. and p.0. administration, respectively. A single i.v. or i.m. injection of 2 mg/kg oxindanac will probably be active in calves for at least 36–48 h.  相似文献   

15.
The pharmacokinetics and pharmacodynamics of the non-steroidal antiinflammatory drug, oxindanac, were assessed simultaneously in calves after intravenous (i.v.) administration at dose rates of 0.5, 1, 2, 4 and 8 mg/kg. Plasma pharmacokinetic data were fitted to either two or three compartment open models. The elimination t 1/2 was constant in the dose range 0.5 to 4 mg/kg (20.2–22.8 h) and shorter at 8 mg/kg (14.7 h). The pharmacodynamics of oxindanac were assessed by its inhibition of serum TxB2, an index of platelet cyclo-oxygenase activity. Plots of total plasma oxindanac concentration vs. inhibition of serum TxB2 fitted in all cases a sigmoidal Emax equation. There were no significant differences in the estimates for ED 50 (1.6-1.9 μg/ml), Hill constant (1.3-2.7) or Emax between the doses used in the in vivo studies or when blood was spiked with oxindanac in vitro. Plots of inhibition of serum TxB2 vs. time were prepared from the pharmacokinetic model equations in each calf in combination with a single sigmoidal Emax plot generated in vitro. These data were not significantly different from the results produced in vivo. It is concluded that oxindanac causes reversible inhibition of platelet cyclo-oxygenase in calves. Its inhibition of serum TxB2 can be predicted from total plasma drug concentration, as described by a multicompartmental model, and sigmoidal Emax enzyme kinetics. It was not necessary to take into account factors such as drug equilibration between plasma and its target site, free vs. total drug concentration or chirality. This simple model may be useful for predicting the pharmacodynamics of oxindanac in other species.  相似文献   

16.
The pharmacokinetics of oral and intravenous allopurinol was studied in five horses and compared with intravenous oxypurinol. The plasma concentration vs. time curves, following intravenous administration of 5 mg/kg, were best described by the biexponential equations Cp = 106.58e-25.141+ 159.93e-10.96tfor allopurinol and Cp = 321.09e-972t+ 82.39e-0.44tfor oxypurinol. Allopurinol was rapidly removed from the plasma, compared to oxypurinol, with an elimination half-life ( t 1/2β) of 0.09 h and an area under the curve ( AUC ) of 19.8 μmol·h/L after intravenous administration, while the t 1/2β and AUC of oxypurinol were 1.09 h and 231 μmol·h/L, respectively. The bioavailability of allopurinol was low (14.3%), although no allopurinol was detected in the plasma of two horses after oral administration. However, the AUC of drug and metabolite after intravenous administration of allopurinol was equivalent to that of intravenously injected oxypurinol. The results suggest that allopurinol is rapidly metabolised in vivo and that the majority of the pharmacological activity of allopurinol in the horse may result from the action of the active metabolite, oxypurinol.  相似文献   

17.
Sodium meclofenamate is a non-steroidal anti-inflammatory drug with anaphylactic protective activity in cattle. The objectives of this study were to describe the pharmacokinetic behaviour of sodium meclofenamate after intravenous and oral administration to sheep and to determine the influence of closure of the reticular groove on the bioavailability of the drug. Sodium meclofenamate was administered by the intravenous (2.2 mg/kg) and oral (20 mg/kg) routes to sheep (n = 6). During the oral study the reticular groove was closed by intravenous administration of lysine vasopressin (0.3 IU/kg) or left open (saline solution). The closure of the reticular groove was assessed by determination of the blood glucose curves after oral administration of a glucose solution. After intravenous administration of meclofenamate, the distribution and elimination half-lives of the drug were 7.2 min and 542 min respectively, Vss was 1.68 L/kg and ClB was 2.47 mL/min kg. Two different patterns of the plasma concentration curves were observed after oral administration of sodium meclofenamate. When the reticular groove was closed, two peaks were observed ( t max-2 12-15 min, C max-1 3.30-24.01 μg/mL; and t max-2', 52.50-75 min, C max-2' 6.45-11.08 μg/mL).  相似文献   

18.
Permeability of the blood-milk barrier to methylene blue in cows and goats   总被引:1,自引:0,他引:1  
A 2% aqueous solution of methylene blue was administered as a single intravenous (i.v.) bolus injection (10 mg/kg) to six lactating cows and seven lactating goats and as a continuous i.v. drip to five lactating goats. The same dose was administered as a 10% solution by intramammary infusion to five lactating goats. Blood and milk samples collected at various times after these treatments were assayed for the drug by a colorimetric method. Methylene blue, a highly charged molecule (pKa<1), passed readily from blood into milk; drug concentrations in milk 4-36 h after the single i.v. bolus injection were higher than those in blood. When examined at constant methylene blue levels in blood, a milk-blood ratio of 5: 1 was observed. After intramammary infusion, the drug passed quickly into systemic circulation, peaked at 3 h and was still detectable in blood 12 h after infusion. The drug appeared in the urine within 1 5 min after intramammary infusion. The rapid movement of the drug across the blood-milk barrier cannot be explained on the basis of its known physicochemical properties or according to the pH-pKa passive diffusion concept.  相似文献   

19.
The single-dose disposition kinetics of danofloxacin were determined in clinically normal lactating cows after intravenous (i.v.) and intramuscular (i.m.) administration of the drug at 1.25 mg/kg. The drug concentrations in blood serum and milk were determined by microbiological assay methods and the data were subjected to kinetic analysis. The mean i.v. and i.m. elimination half-lives ( t ½el) in serum were 54.9 and 135.7 min, respectively. The steady-state volume of distribution ( V ss) was 2.04 L/kg. The drug was quickly absorbed after i.m. injection but a 'flip flop' effect was clearly evident and bioavailability was > 100%. Penetration of danofloxacin from blood into milk was rapid and extensive with drug concentrations in milk exceeding those in serum beginning 90–120 min after i.v. and i.m. administration and onwards. Milk danofloxacin concentrations equal to or higher than the minimal inhibitory concentrations (MIC) for pathogenic Gram-negative bacteria and Mycoplasma species were maintained over ≈ 24 h.
  Concentrations greater than the MIC for Staphylococcus aureus were maintained in the milk for 12 h.  相似文献   

20.
The pharmacokinetic properties of norfloxacin were determined in healthy pigs after single intramuscular (i.m.) and intravenous (i.v.) dosage of 8 mg/kg body weight After i.m. and i.v. administration, the plasma concentration-time graph was characteristic of a two-compartment open model. After single i.m. administration, norfloxacin was absorbed rapidly, with a t max of 1.46 ± 0.06 h. The elimination half-life ( t 1/2β) and the mean residence time of norfloxacin in plasma were 4.99 ± 0.28 and 6.05 ± 0.22 h, respectively, after i.m. administration and 3.65 ± 0.16 and 3.34 ± 0.16 h, respectively, after i.v. administration. Intramuscular bioavailability was found to be 53.7 ± 4.4%. Plasma concentrations greater than 0.2 μg/mL were achieved at 20 min and persisted up to 8 h post-administration. Maximal plasma concentration was 1.11 ± 0.03 μg/mL. Statistically significant differences between the two routes of administration were found for the half-lives of both distribution and elimination phases ( t 1/2α, t 1/2β) and apparent volume of distribution (Vd(area)). In pigs, norfloxacin was mainly converted to desethylenenorfloxacln and oxonorfloxacin. Considerable tissue concentrations of norfloxacin, desethylenenorfloxacin, and oxonorfloxacin were found when norfloxacin was administered intramuscularly (8 mg/kg on 4 consecutive days). The concentration of the parent fluoroquinolone in liver and kidney ranged between 0.015 and 0.017 μg/g on day 12 after the end of dosing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号