首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the structure and optical properties of poly(methyl methacrylate) (PMMA) nanofibers and films were investigated. Differential scanning calorimetery (DSC) and Wide-Angle X-ray scattering (WAXS) results confirmed the amorphous structure of both nanofibers and films. Low angle X-ray diffraction (LA-XRD) revealed the presence of voids and/or particles with the spacing of 128.4 Å within the nanofibers. From the Porod plots, a three-dimensional surface fractal for the nanofibers and a mass fractal structure for the films were derived. By the interpretation of Small Angle X-ray scattering (SAXS), the shape and size of the particles in the samples were assessed. It was concluded that the particles shape within the nanofibers and the films were globular, with the radius of gyration of 8.5 nm for the nanofibers and 16.5 nm for the films. The nanofiber mat showed less light transparency when compared with the film. This phenomenon could be attributed to the difference in the physical shape, as well as scattering of the light by the voids or particles within the nanofibers.  相似文献   

2.
Electrically conducting nanofibers based on cellulosic materials offer cheap and safe class of materials that can be used for water desalination. In the present work, high conducting cellulose triacetate (CTA) nanofibers containing multiwall carbon nanotubes (MWCNTs) with very low percolation threshold concentration (0.014 wt%) were produced by electrospinning. Unprecedentedly, a hydrophilic ionic liquid consists of 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) was used to dissolve CTA producing a solution of 10 wt%. This CTA solution was used to engineer both bare CTA nanofibers and CTA nanofibers impregnated with MWCNT. The fabricated nanofibers were characterized by the field emission-scanning electron microscopy (FE-SEM) and the high-resolution transmission electron microscopy (HR-TEM). Both FE-SEM and HR-TEM images showed that the MWCNTs were inserted and uniformly distributed inside electrospun nanofibers. Furthermore, mechanical properties such as tensile strength of MWCNTs loaded-CTA electrospun nanofibers was significantly improved by up to 280 % and 270 % for the Young modulus, when compared with the bare CTA fibers. In addition, the surface properties as the hydrophilicity of electrospun nanofibers membrane was enhanced due to the presence of MWCNTs. Moreover, the electrical conductivity of MWCNT loaded-CTA electrospun nanofibers was greatly enhanced after the implementation of the MWCNTs inside the CTA fiber. The performance of composite nanofiber for water desalination was examined in a lab-scale classic capacitive deionization (CDI) unit, at different concentrations of salt. The obtained data revealed that the electro-adsorption of anions and cations on the surface of MWCNTs loaded-CTA electrospun nanofibers electrodes were monitored with time and their concentration were decreased progressively with time and reaches equilibrium.  相似文献   

3.
In this study, the morphology and crystal polymorphism of electrospun blend nanocomposite of graphene filled-polyvinylidene fluoride (PVDF)/poly(methyl methacrylate) (PMMA) nanofibers were investigated. The preparation of the nanofibers was carried out by synthesis of PMMA/graphene as a masterbatch through in-situ polymerization, and then followed by compounding with PVDF solution in the different ratios. The process of electrospinning was done at three selective conditions of temperature, moist and ordinary environment. Crystallinity, morphology and thermal properties of nanofibers were characterized by X-ray diffraction spectroscopy (XRD), differential scanning calorimetric (DSC), Transmittance Electron Microscopy (TEM), Thermogravimetric Analyses (TGA), and Field Emission Scanning Electron Microscopic (FE-SEM). The enhancement of β crystal formation in the electrospun graphene-filled blend nanofibers was confirmed by XRD and DSC results. This can be ascribed by the benefits of solution casting, mechanical stretching, high electric field, PMMA interactions and graphene restrictions, altogether in one simple process. Also, presence of water molecules during the electrospinning causes the orientation of fluorine atoms in PVDF due to polar-polar interactions which enhance the polar conformation even in the pure PVDF nanofibers.  相似文献   

4.
Silk fibroin (SF) nanofibers were prepared by electrospinning and their application as an enzyme immobilization support was attempted. By varying the concentration of SF dope solution the diameter of SF nanofiber was controlled. The SF nanofiber web had high capacity of enzyme loading, which reached to 5.6 wt%. The activity of immobilizedα-chymotrypsin (CT) on SF nanofiber was 8 times higher than that on silk fiber and it increased as the fiber diameter decreased. Sample SF8 (ca. 205 nm fiber diameter) has excellent stability at 25°C by retaining more than 90 % of initial activity after 24 hours, while sample SF11 (ca. 320 nm fiber diameter) shows higher stability in ethanol, retaining more than 45% of initial activity. The formation of multipoint attachment between enzyme and support might increase the stability of enzyme. From these results, it is expected that the electrospun SF nanofibers can be used as an excellent support for enzyme immobilization.  相似文献   

5.
Though the tensile strength of nanofibers is essential to determine their application fields, few studies have been conducted on this topic, due to the difficulties involved in the preparation of single nanofiber tensile specimens, the manipulation of the clamping device, and the sensing of the nano- force and strain. A bundle testing method was employed in this work to measure the tensile strength of nanofibers. For this purpose, a conductive substrate was designed to hold several thousand nanofibers extruded from a spinning nozzle and align them uniaxially during the electrospinning process. This substrate was designed for a dynamic mechanical analyzer (DMA), because most DMAs are equipped with fine sensors sensitive enough to measure a very small force and strain. Nylon 6 nanofibers were electrospun and collected on the substrate. Then, they were elongated simultaneously in the DMA until they were fractured, showing that the aligned nanofibers have superior tensile strength and modulus compared to their counterpart microfibers and thus suggesting that polymeric nanofibers have the potential to be used as reinforcement fibers for composite materials.  相似文献   

6.
In this work, electrospinning of poly(lactic acid) (PLA), chitosan and their blends has been investigated, and nanofibers with a diameter ranging from 90 nm to 1.9 microns were produced and used as carriers for immobilization of the phospholipase A1. A strong influence of chitosan (CS) and the solvent trifluoroacetic acid (TFA) on the morphology, distribution of the nanofibers diameter and on their hydrophobicity was observed. The yield of phospholipase A1 (PLA1) on non-woven fibers was evaluated using the method of Bradford. Their activities and their reutilisability were assessed titrimetrically using soybean lecithin as substrate. The results showed that the degree of immobilization on the non-woven fibers of pure PLA and mixtures PLA/CS4 and PLA/SC6 are 73, 54, 45 % respectively and can be reused up to 4 cycles without significant loss of enzyme activity. Moreover, a remarkable improvement of the activity of phospholipase A1 on non-woven based on pure PLA fibers was observed, indicating that most of the enzymes were probably in their active form.  相似文献   

7.
In this study a newly laser treatment method for surface modification of nanofibers is introduced. The new method is based on different infrared absorption of materials. Surface modification of Clay-PAN composite nanofibers was performed using selective laser etching approach with CO2 pulsed laser in order to increase surface area of nanofibers. The surface structure of resulted nanofibers is characterized using field emission scanning electron microscope and the results show characteristic modification of the surface topography of laser treated nanofibers. The modified surface structure of nanofibers was studied and analyzed for different laser pulse numbers and laser fluence. The results show that nanofiber surface modification strongly depends on the number of CO2 laser pulses and frequency of modified sites on the surface of nanofibers increasing with increasing the pulse fluence. This new technique is highly selective and can also compete with conventional techniques for nanofibers surface modification.  相似文献   

8.
We report a simple and versatile method to prepare hydrophobic composite SiO2 membrane. The electrospun SiO2 membrane was selected due to its good flexibility and thermal stability. The hydrophobic SiO2 membrane was succussfully prepared by simply evaporating a thin polydimethylsiloxane (PDMS) layer on the fiber surface. The characterization results show that the PDMS layer is too thin to be observed. The PDMS coating has no influence on the porous structure of the fibrous membrane, but imparts the good hydrophobicity and oleophilicity to the SiO2 nanofibers. As demonstration, the hydrophobic SiO2-PDMS membrane displays good oil absorption performance from the oil/water mixture, as well as filtration membrane for oil/water separation. Additionally, due to the proper pore size and hydrophobic surface, the SiO2- PDMS membrane shows good waterproof performance and breathability at the same time.  相似文献   

9.
We report our study on fabrication of soluble eggshell membrane (SESM) and silk fibroin (SF) nanofibers composite (SF/SESM) for facemasks by electrospinning. Biocompatibility of the SF and SESM, determined from hydrophilicity results, is exploited in SF/SESM nanocomposite for facemask application. The SF/SESM nanocomposites were prepared in different ratios of SF and SESM. The samples were characterized by scanning electron microscopy (SEM), FTIR and water droplet adsorption tests conducted via water contact angle (WCA) and water droplet diffusion. The results revealed that addition of SESM has insignificant effect on the electrospinnability of SF nanofibers in the studied ratios. The SEM results depicted regular morphology of the nanofibers except increase in nanofiber diameter with addition of SESM. The FTIR results confirmed respective peaks of SF and SESM in SF/SESM nanocomposite. WCA of the nanofibers decreased with addition of SESM such that for SF/SESM30, 30 % SESM, it reduced to 0 ° from 101 ° for pure SF nanofibers. The research results demonstrate SF/SESM30 nanocomposite as optimum ratio of SF and SESM for facemasks and other biomedical applications.  相似文献   

10.
The aim of the present study was to prepare nanofibers loaded with montelukast, a cysteinyl leukotrienes (CysLTs) inhibitor, with anti-inflammatory properties effective on wound healing. Polymeric nanofibers containing montelukast were spun by electrospinning method using different ratios of the blend of two biodegradable polymers of poly(methyl vinyl etherco-maleic acid) (PMVEMA) and poly(lactic-co-glycolic acid) (PLGA) at the total polymer concentration of 37 %, the distance of the needle to rotating screen of 19 cm, the voltage of 12 Kv and the rate of injection of 0.2 ml/h. The ratio of two polymers in the blend and the concentration of montelukast were optimized based on the diameter of the nanofibers, drug loading percent and release efficiency by a full factorial design. The morphology, diameter and diameter distribution of the nanofibers were studied by scanning electron microscopy (SEM). Drug loading percent in the nanofibers was determined by extracting the loaded drug from a specific surface of the nanofibers which was subsequently analyzed spectrophotometrically. The drug release rate from the nanofibers was studied in phosphate buffer solution (pH 7.4) containing 0.5 % Tween 20 at predetermined time intervals until 10 days. The cytotoxicity of the designed nanofibers was evaluated on mouse fibroblast cells using trypan blue method, their platelet adherence property was quantified by measuring the lactate dehydrogenase (LDH) activity and confirmed by SEM micrographs. The optimized ratio of PLGA/PMVEMA was 3:1 with the total concentration of polymers as 37 % loaded with 30 % of montelukast produced nanofibers with a diameter of 157.6 nm, drug loading percent of 43.7 % and release efficiency of 75 % after 10 days. The cell viability was similar in nanofibers and the negative control group. The platelets adhesion to the nanofibers was more than the negative control group (p<0.05).  相似文献   

11.
As titanium oxide is a well-known photocatalyst, we investigated the effects of silver content and nanostructural morphology on the photocatalytic degradation of two dyes, methylene blue and rhodamine B. Two nano-formulations were utilized, including nanofibers and nanoparticles. Silver-grafted titanium oxide nanofibers were synthesized using the electrospinning of silver nitrate/titanium isopropoxide/poly(vinyl acetate) sol-gel. The nanoparticulate form was obtained by calcination of a ground powder prepared from the same electrospun sol-gel. The results affirmed the advantage of the silver-grafted titanium oxide nanostructures over the silver-free ones. Increasing the silver content in the nanofibers led to increases in their surface area, which is an important parameter in heterogeneous catalytic chemical reactions. Therefore, the results strongly suggest the use of silver-grafted titanium oxide in a nanofibrous form. These results further support utilizing Agloaded titanium oxide nanofibers as a photocatalyst.  相似文献   

12.
In this work, PA-6 core and PMMA shell composite nanofiber mats together with pure PMMA and PA-6 nanofibrous membranes were obtained through electrospinning. Two kinds of transparent composites were fabricated by hot pressing multilayers of the composite nanofiber mats and of the interlaced pure PA-6 with PMMA nanofibrous membranes, respectively, under the same processing condition and with the same amount of PA-6 nanofiber content. Tensile properties and visible light transmittances of the two transparent composites were characterized. It has been found that both the tensile behavior and the visible light transmittance of the composites obtained from the composite nanofiber mats were better than the counterparts from the interlaced pure PA-6 and PMMA nanofibrous membranes. With a minor loss of less than 10 % in the transparency, a maximal increase of around 20 % in the tensile modulus and tensile strength has been recognized for a transparent composite from the composite nanofibers. Although less efficient, the tensile strengths of the composites from the interlaced nanofibrous membranes were all higher than that of a transparent panel processed from the pure PMMA nanofibers.  相似文献   

13.
Polyindole nanofibers were prepared via electrospinning method using acetonitrile as solvent. The obtained electrospun polyindole nanofibers were characterized with SEM, TEM, FTIR and BET surface areas measurements. Adsorption experiments were carried out in batch sorption mode to investigate the effect of pH, contact time and diameter of polyindole nanofibers. The Cu(II) adsorption was highly pH dependent and the optimum pH was found to be 6. The maximum adsorption capacities for electrospun polyindole nanofibers and polyindole powders were 121.95 and 18.93 mg/g attained in 15 and 60 min, respectively. With the diameter of polyindole nanofibers increasing, the adsorption capacity slightly decreased. The adsorption isotherm data fitted well to the Langmuir isothermal model which indicates that the monolayer adsorption occurred. The kinetics data analysis showed that the adsorption process could be described by pseudo-second order kinetic model, suggesting a chemisorption process as the rate limiting step. Thermodynamic parameters ΔHº, ΔSº and ΔGº for the Cu(II) adsorption by polyindole nanofibers were calculated. The results showed that the Cu(II) adsorption was feasible, spontaneous and endothermic. Desorption results revealed that the adsorption capacity can remain up to 75 % after 10 times usage. The electrospun polyindole nanofibers would have promising application for removal of Cu(II) from wastewater treatment.  相似文献   

14.
Hydrophobic polyvinylpyrrolidone (PVP) nanofibers, which is intensely hygroscopic, has been successfully prepared to improve their moisture resistance using a modified coaxial electrospinning process. A stearic acid (SA) solution was exploited as the sheath fluid to coat the fibers. Scanning electron microscopy demonstrated that the SA-coated PVP nanofibers became increasingly small with a rise in the sheath-to-core flow rate ratio; continuing to increase the sheath flow rate beyond a cut-off point resulted in nanofibres with very complicated morphologies. Transmission electron microscope images showed that SA formed a thin layer on the PVP nanofibers, with SA nanoparticles present on the fiber surfaces when a sheath-to-core flow rate ratio of 0.2:0.8 was used. Attenuated total reflectance-Fourier transform infrared spectroscopy verified the coating of SA onto the PVP nanofibers, and also the formation of hydrogen bonds between the SA and PVP molecules. The SA-coated PVP nanofibers were found to have much enhanced moisture resistance over pure PVP fibers. Modified coaxial electrospinning hence comprises a novel and powerful strategy for nanocoating and surface modification of polymer nanofibers.  相似文献   

15.
Building proton transfer channel is an important strategy to optimize the proton transfer process of the proton exchange membrane (PEM). In this work, sulfonated pre-oxidized nanofibers were prepared by solution blowing of polyacrylonitrile (PAN) nanofibers followed by pre-oxidization and sulfonating, and the nanofibers were composited with SPEEK to enhance its performance as PEM. The results of the proton conductivity verified that the employment of sulfonated pre-oxidized nanofibers improved the proton conductivity. Meanwhile, the introduction of the sulfonated pre-oxidized nanofibers realized the upgrades of the thermostability and water absorbency of the membrane, and led to the decrease of the swelling property and methyl alcohol’s permeability of the material. It is indicated that the composite membrane is promising materials for PEM fuel cells.  相似文献   

16.
In the present study, we introduce poly(caprolactone) (PCL) nanofibers that contain hydroxyapatite (HAp) nanoparticles (NPs) as a result of an electrospinning process. A simple method that does not depend on additional foreign chemicals has been employed to synthesize HAp NPs through calcination of bovine bones. Typically, a colloidal gel consisting of PCL/HAp has been electrospun to form nanofibers. Physiochemical aspects of prepared nanofibers were characterized for FE-SEM, TEM, XRD and FTIR which confirmed nanofibers were well-oriented and had good dispersion of HAp NPs. Parameters affecting the utilization of the prepared nanofibers in various nano-biotechnological fields have been studied; for instance, the bioactivity of the produced nanofiber mats was investigated while incubated with stimulated body fluid (SBF). The results from incubation of nanofibers in SBF indicate that incorporation of HAp strongly activates precipitation of the apatite-like materials because the HAp NPs act as seeds that accelerate crystallization of the biological HAp from the utilized SBF.  相似文献   

17.
A novel electrospinning system for the mass production of nanofibers using a moving conventional yarn as the spinneret was designed. In the process of electrospinning, a large number of jets were ejected from the surface of the polymer liquid carried by the yarn. The effects of conductivity, surface structure and fineness of the yarn on the morphology and productivity of the obtained nanofibers were discussed in the research. Results indicate that the productivity of nanofibers can be increased up to 1.17 g/h with our method, which is a more than fourfold enhancement compared to less than 0.3 g/h with the method of single-needle electrospinning. Both issues of needle clogging in needle electrospinning and intense solvent evaporation due to the open solution surface in most needleless electrospinning techniques can be avoided.  相似文献   

18.
Carboxymethyl cellulose (CMC)-polyvinyl alcohol (PVA) and chitosan (CS)-polyvinyl alcohol were cross-linked by Fe3+ and glutaraldehyde respectively to prepare the cation exchange membrane layer and the anion exchange membrane layer, polyvinyl alcohol-sodium alginate (SA)-copper phthalocyanine tetrasulfonic acid (CuTsPc, or copper tetracarboxy phthalocyanine: CuTcPc) cation exchange nanofibers or polyvinyl alcohol-chitosan-copper tetraaminophthalocyanine (CuTAPc) anion exchange nanofibers prepared by electrospinning technique were introduced into the interlayer to obtain the modified bipolar membrane (BPM). The experimental results showed that in comparison with the BPM without the cation/anion exchange nanofibers interlayer, the water splitting efficiency of the modified BPM was obviously increased, and its membrane impedance decreased. When the concentration of CuTsPc in the PVA-SA-CuTsPc nanofibers was 3.0 %, the transmembrane voltage drop (IR drop) of the CMC-PVA/PVA-SA-CuTsPc/CS-PVA BPM was as low as 0.5 V at a high current density of 90 mA·cm?2.  相似文献   

19.
Polyacrylonitrile nanofibers were produced using the electrospinning method and dyed with a basic dye alongside regular polyacrylonitrile fibers. In order to investigate the effect of high surface area to volume ratio of nanofibers on their adsorption behavior in comparison with regular fibers, the dyeing conditions for both types of fibers were kept just the same. Physiochemical parameters of dyeing such as adsorption isotherm, standard affinity, enthalpy change, rate of dyeing constant, diffusion coefficient, and activation energy of diffusion were investigated for both types of fibers. The results showed that the adsorption process can be well described with the Langmuir adsorption isotherm for both types of fibers whereas the standard affinity of dye to nanofibers was higher than regular fibers and the higher negative values of enthalpy changes were obtained for regular fibers. The nanofibers rate of dyeing was faster than regular fibers with higher amounts of diffusion coefficients and lower amounts of activation energy of diffusion. This study also revealed that in spite of the approximately same amount of dye exhaustion for both types of fibers, the color strength of regular fibers was noticeably higher than nanofibers.  相似文献   

20.
ZnO nanoparticles (ZNPs) were obtained via a direct calcining method. ZnO nanofibers (ZNFs) were fabricated by electrospinning polyacrylonitrile (PAN) and zinc acetate (Zn(Ac)2) solution and calcining PAN/Zn(Ac)2 nanofibers. The samples were characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), fourier transform infrared spectrum (FT-IR), X-ray diffraction (XRD), photoluminescence spectra (PL) and UV-vis spectroscopy. The results showed that the sizes of the ZNPs ranged from 90–275 nm with the average value 170 nm. The ZNFs were constructed by a series of nanoparticles along the fiber axis, and the sizes of the nanoparticles ranged from 50–250 nm with the average size 150 nm. The ZNPs and the ZNFs were both crystallized with hexagonal wurtzite structure. Although the nanoparticles in the ZNFs accumulated along the fiber axis and more surface oxygen vacancies were formed for the ZNPs, the distance of photocatalytic activities between these two kinds of catalyst was only 5 %. Besides, both the ZNPs and the ZNFs could be recycled and reused for their stable photocatalytic activities. Compared with the ZNPs, the ZNFs showed a wider application for their fibrious morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号