首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GSP/gelatin composite nanofiber membranes containing silver nanoparticles were successfully fabricated as a novel biomaterial by electrospinning. The silver nanoparticles (AgNPs) were synthesized with the grape seed polyphenols (GSP) as reducing agent in aqueous solution of gelatin, and then the GSP/gelatin/AgNPs mixed solution was electrospun into nanofibers at 55 °C. The scanning electron microscopy (SEM) confirmed that the composite fibers were uniform and the average fiber diameter ranged between 150 nm and 230 nm with an increase in applied potentials from 14 kV to 22 kV. And the transmission electron microscopy (TEM) showed that silver nanoparticles distributed individually in the fibers with the average particle size of about 11 nm. Furthermore, the ultraviolet visible spectrophotometer (UV-vis spectroscopy) test demonstrated that all of Ag+ converted to Ag0 when the concentration of gelatin was 24 wt% and the mass ratio of GSP to AgNO3 was about 5:2. The antibacterial activities of the fiber membranes against E.coli and S.aureus were measured via a shake flank test and demonstrated good performance after the importation of silver nanopaticles. Cytotoxicity testing also revealed that fiber membranes contained silver nanoparticles had no cyto-toxic. All the results indicated that the GSP was effective for the formation and stabilization of silver nanoparticles in composite nanofibers mats which had the potential for applications in antimicrobial tissue engineering and wound dressing.  相似文献   

2.
Green nanotechnology is now accepted as an environmentally friendly and cost-effective advance with various biomedical applications. The cyanobacterium Synechocystis sp. is a unicellular spherical cyanobacterium with photo- and hetero-trophic capabilities. This study investigates the ability of this cyanobacterial species to produce silver nanoparticles (AgNPs) and the wound-healing properties of the produced nanoparticles in diabetic animals. Methods: UV–visible and FT-IR spectroscopy and and electron microscopy techniques investigated AgNPs’ producibility by Synechocystis sp. when supplemented with silver ion source. The produced AgNPs were evaluated for their antimicrobial, anti-oxidative, anti-inflammatory, and diabetic wound healing along with their angiogenesis potential. Results: The cyanobacterium biosynthesized spherical AgNPs with a diameter range of 10 to 35 nm. The produced AgNPs exhibited wound-healing properties verified with increased contraction percentage, tensile strength and hydroxyproline level in incision diabetic wounded animals. AgNPs treatment decreased epithelialization period, amplified the wound closure percentage, and elevated collagen, hydroxyproline and hexosamine contents, which improved angiogenesis factors’ contents (HIF-1α, TGF-β1 and VEGF) in excision wound models. AgNPs intensified catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GPx) activities, and glutathione (GSH) and nitric oxide content and reduced malondialdehyde (MDA) level. IL-1β, IL-6, TNF-α, and NF-κB (the inflammatory mediators) were decreased with AgNPs’ topical application. Conclusion: Biosynthesized AgNPs via Synechocystis sp. exhibited antimicrobial, anti-oxidative, anti-inflammatory, and angiogenesis promoting effects in diabetic wounded animals.  相似文献   

3.
Fish pathogens causing disease outbreaks represent a major threat to aquaculture industry and food security. The aim of the presented study is to develop safe and effective bioactive agents against two bacterial isolates: Aeromonas hydrophila and Pseudomonas fluorescens. We employed a broth microdilution method to investigate the antibacterial effect of biosynthesized silver nanoparticles (AgNPs); rutin, a natural flavonoid extracted from Ruta graveneoles; and heliomycin, a secondary metabolite produced by marine actinomycetes AB5, as monotherapeutic agents. Moreover, AgNPs in combination with rutin (AgNP + R) and heliomycin (AgNPs + H) were examined for their synergistic effect. The cytotoxic effect of individual bioactive compounds and in combination with AgNPs was investigated on epithelioma papulosum cyprini (EPC) fish cell lines. Individual treatment of AgNPs, rutin, and heliomycin exhibited a dose-dependent antimicrobial activity against A. hydrophila and P. fluorescens. Rutin minimum inhibitory concentration (MIC) showed the lowest cytotoxicity when tested on EPC cell lines, while heliomycin MIC was highly cytotoxic. Combined subtherapeutic doses of AgNPs + R and AgNPs + H displayed additive and synergistic effects against A. hydrophila and P. fluorescens, respectively, with improved results and relative safety profile. The study findings demonstrate that a combination of AgNPs and natural bioactive compounds may represent novel therapeutics fighting fish pathogens potentially affecting the fish farming industry.  相似文献   

4.
In this study, two biodegradable polymers, polycaprolactone (PCL) and polyvinyl alcohol (PVA) were used to fabricate nanofiber nonwovens (NFNs). Also, the silver nanoparticles (AgNPs) successfully reduced by using tea polyphenols (TP) and incorporated in the NFNs via electrospinning. The morphologies of the NFNs and AgNPs were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), respectively. The PCL nanofibers and PVA nanofibers interweaved each other, and AgNPs with average diameter 1.53±0.15 nm were embedded in the PVA nanofibers. The properties of electrospun NFNs were characterized by pore property, swelling/weight loss, water contact angle, mechanical property, and antibacterial activity. The nanofibers cross-linked to each other forming the 3Dnetwork porous structure with diameter about 1-1.5 μm. Although the hydrophobic PCL was added in the hybrid NFNs, the NFNs still showed hydrophilic propriety, high swelling degree (i.e. swelling degree is 330 % for 48 h), and low weight loss (i.e. weight loss is 22.4 % for 48 h). Also, the hybrid PCL/PVA/AgNPs NFNs exhibited a suitable mechanical property for wound dressings (i.e. tensile strength is 4.27 MPa, and breaking elongation is 88 %). Moreover, the hybrid NFNs effectively inhibited growth of Escherichia coli and Staphylococcus aureus. In summary, this PCL/PVA/AgNPs NFNs may provide a promising candidate for accelerating wound healing.  相似文献   

5.
This study is an attempt to investigate the feasibility of alkali pre-treatment to activate surface hydroxyl groups of cellulose fibers in order to enhance the deposition efficiency of silver nanoparticles (AgNPs) onto cotton fabrics. Cotton samples were pre-treated with various alkali solutions containing different earth metal hydroxides (LiOH, NaOH, and KOH). The as-prepared samples were then treated with aqueous silver nitrate followed by reduction treatment with aqueous ascorbic acid, which caused in situ formation of AgNPs on fiber surfaces. The surface structure of the fabrics was characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) analysis, and colorimetric data. The amount of silver was measured by using inductively coupled plasma-optical emission spectrometer (ICP-OES). Antimicrobial activity was measured against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli bacteria. It was established that alkali pre-treatment had a substantial effect on the formation and adsorption of AgNPs on the fibers. Alkali pre-treated samples were homogeneously coated by AgNPs with high surface coverage. Alkali type had significant effect not only on the amount of AgNPs on the surface but also on its size. High antibacterial activity against both Gram-positive and Gram-negative strains was also demonstrated, even after 10 cycles washing.  相似文献   

6.
A novel nano-silver colloidal solution was prepared in one step by mixing AgNO3 aqueous solution and an amino-terminated hyperbranched polymer (HBP-NH2) aqueous solution under vigorous stirring at room temperature. All results of Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM) and UV/Visible Absorption Spectrophotometry indicated that silver nanoparticles had been formed in colloidal solution. Cotton fabric was treated with nano-silver colloid by an impregnation method to provide the cotton fabric with antibacterial properties. The whiteness, silver content, antibacterial activity and washing durability of the silver-treated fabrics were determined. The results indicated that the silver-treated cotton fabric showed 99.01 % bacterial reduction of Staphylococcus aureus and 99.26 % bacterial reduction of Escherichia coli while the silver content on cotton was about 88 mg/kg. The antimicrobial activity of the silver-treated cotton fabric was maintained at over 98.77 % reduction level even after being exposed to 20 consecutive home laundering conditions. In addition, the results of scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) confirmed that silver nanoparticles have been fixed and well dispersed on cotton fabrics’ surface and the major state of the silver presented on the surface was Ag0.  相似文献   

7.
Madder is a natural colorant which is commonly applied with metal salts as a mordant to improve its affinity to fibers and color fastness. Madder produces an insoluble complex or lake in the presence of metal ions on mordanted fabric. In this study, wool fabric was pretreated with AgNPs (silver nanoparticles) as a mordant, then dyed with madder. The wool fabric samples were examined by scanning electron microscopy (SEM) and their colorimetric characteristics were evaluated. The formation of spherical silver nanoparticle was confirmed using UV-Visible spectroscopy, SEM images, and elemental analysis. The average size of synthesized silver nanoparticles on the surface of wool fibers is around 73 nm. The dyed wool samples were pretreated with different concentration of Ag+ ions or AgNPs, which showed higher color strength value compared to untreated dyed wool fabric. This pretreatment also presented good antibacterial activity.  相似文献   

8.
In this study, electrospun wool keratose (WK)/silk fibroin (SF) blend nanofiber was prepared and evaluated as a heavy metal ion adsorbent which can be used in water purification field. The WK, which was a soluble fraction of oxidized wool keratin fiber, was blended with SF in formic acid. The electrospinnability was greatly improved with an increase of SF content. The structure and properties of WK/SF blend nanofibers were investigated by SEM, FTIR, DMTA and tensile test. Among various WK/SF blend ratios, 50/50 blend nanofiber showed an excellent mechanical property. It might be due to some physical interaction between SF and WK molecules although FTIR result did not show any evidence of molecular miscibility. As a result of metal ion adsorption test, WK/SF blend nanofiber mats exhibited high Cu2+ adsorption capacity compared with ordinary wool sliver at pH 8.5. It might be due to large specific surface area of nanofiber mat as well as numerous functional groups of WK. Consequently, the WK/SF blend nanofiber mats can be a promising candidate as metal ion adsorption filter.  相似文献   

9.
The objective of this research was to impart antimicrobial properties to hemp fibers by incorporation of silver ions in hemp fibers by chemisorption. Sorption properties of hemp fibers were improved by non-selective oxidation using hydrogen peroxide and potassium permanganate. The optimal conditions for silver ions sorption by hemp fibers were determined by changing sorption conditions: pH value and concentration of aqueous silver nitrate solution, as well as duration of sorption. The maximum sorption capacity of modified hemp fibers was 1.84 mmol of Ag+ ions per gram of fibers. Antimicrobial activity of silver-loaded hemp fibers against different pathogens: Staphylococcus aureus, Escherichia coli, and Candida albicans was evaluated in vitro. Obtained silver-loaded hemp fibers show antimicrobial activity against tested pathogens.  相似文献   

10.
Dry bacterial cellulose nanofiber (BC) sheet coated with poly(lactic acid) (PLA) was developed and characterized towards acute wound healing applications. This new approach of PLA coating on BC revealed enhanced physical and antibacterial properties. Commercial BC sheets originated from the manufacturing of nata de coco jelly were dried and coated with the PLA at various concentrations of 2, 4, 6, 8, 10 and 12 % w/v for the purpose of improving the mechanical properties and followed by loading of antiseptic such as benzalkonium chloride (BAC). PLA has been proposed for the use of coating materials at a concentration of 8 %, the biocomposite sheet started exhibiting a low moisture uptake, prolonged swelling in simulated wound fluid solution and high tear (9.17 Nm2/kg) and burst indices (32.5 kPa·m2/g). The 8 % PLA coating revealed porous fiber-like morphology as observed under scanning electron microscope. Therapeutic loading capacity of the BC/8 PLA was substantially higher than the pristine BC. Furthermore strong antimicrobial activities against Staphylococcus aureaus and Escherichia coli were observed for the BC/8PLA biocomposite film. These reports were clearly suggestive of the fact that synthetic biodegradable polymers, such as PLA, may be exploited for the synergistic combination with BC for antimicrobial and acute wound management. This new and modified fiber source material could reduce the dependency on plant based cellulose for more demanding biomedical applications such as wound healing materials, vascular graft, cartilage replacement, drug delivery and tissue engineering.  相似文献   

11.
This article focuses on the functional finishing of textiles using silver nanoparticles (AgNPs) and chitosan derivative binder, which was synthesized by a modification of chitosan using α-ketoglutaric acid. The binder covalently linked to cotton fabric via esterification of the hydroxyl groups on the cotton surface, and tightly adhered to surface of the AgNPs by coordination bonds. As a result, the coating of AgNPs on the cotton fabric showed excellent antibacterial property and laundering durability. After 30 consecutive laundering cycles, the Ag content on the fabrics decreased to 37.6 %, but the bacterial reduction rates against both S. aureus and E. coli were maintained over 95 %. It has potential applications in a wide variety of fields such as sportswear, socks, and medical textile.  相似文献   

12.
Cellulose nanowhisker (CNW) reinforced electrospun Bombyx mori silk fibroin (SF) nanofibers were fabricated. The morphology, structure, and mechanical properties of nanofibers were investigated by FE-SEM, TEM, FTIR, and tensile testing. It was found that the nanofiber size decreased obviously from 250 nm in the unreinforced mat to 77–160 nm in the CNW reinforced mats depending on the CNW content due to the increased conductivity of spinning dope. In the reinforced mats, the CNWs were embedded in the SF matrix separated from each other, and aligned along the fiber axis. There was a positive correlation between the CNW content and the tensile strength and Young’s modulus of reinforced mats. However the strain at break dropped gradually with the increase of CNW. When the CNW content was 2 w/w%, the tensile strength and Young’s modulus of reinforced SF nanofiber mats were about 2 times higher than those of unreinforced mat.  相似文献   

13.
In this study, a kind of hydrogel nanofibers were successfully fabricated via solution blowing of chitosan (CS) and polylactic acid (PLA) solutions mixed with various contents of polyethylene glycol (PEG) to offer hydration. The nanofibers with PEG content varying were average 341-376 nm in diameter with smooth surface and distributed randomly forming three-dimension (3D) mats. Glutaraldehyde (GA) vapor was then applied to impart stability, and the cross-linking reaction mainly occurred between GA and hydroxyl groups which was confirmed by XPS. The hydrogel nanofibers showed quick absorption behavior, high equilibrate water absorption and good air permeability which could help the mats absorbing excess exudates, creating a moist wound healing environment and oxygen exchanging in wound healing. The mats also exhibited good antibacterial activities against E. coil. The combination advantages of nanofibers mats and hydrogel will help it find promising application in wound healing.  相似文献   

14.
Nylon 4/6 copolymer has desirable properties, such as high affinity to water and good tensile strength. These properties originate from the characteristics of nylon 4 and nylon 6. Zeolite is a good adsorptive material that has many pores in its structure and the ability to capture metallic ions. As a multifunctional additive, silver-ion-loaded zeolite nanoparticles were used to increase the moisture regain and impart antimicrobial properties to the nylon 4/6 copolymer. A nylon 4/6 nanofiber web was prepared by electrospinning from a polymer solution containing silver zeolite nanoparticles. The moisture regain of the nylon 4/6 nanofiber web increased with increasing amount of silver zeolite added. The web showed excellent antimicrobial activity against Klebsiella pneumoniae and Staphylococcus aureus. Overall, the nylon 4/6 nanofiber web could be a good material for wound healing dressings and high functional medical filters.  相似文献   

15.
The development of easily separated from water, high effective mineral ion removal materials is quite required in the hard water treatment system. In this study, water-stable polyelectrolyte polyacrylic acid (PAA) nanofibrous mats were fabricated by electrospinning technology and subsequent thermal crosslinking. Influence factors such as contact time, mat content, temperature and interfering ions strength were experimentally examined. The results indicated that polyelectrolyte PAA nanofibrous mats could be used as high effective Ca(II) ions removal material via complexation to form PAA?COOCa 2+ complex, with a maximum Ca(II) ion removal capacity of 152.8 mg/g within 60 min at 25 °C. Both equilibrium and kinetic studies showed that the behaviors of Ca(II) ions removal by polyelectrolyte nanofibrous mats followed Freundlich model and fitted pseudo-second-order model, respectively.  相似文献   

16.
In this study, we examined the effects of a dextran-modified silk fibroin nanofibrous mat (D-SFNM) on wound healing. To increase the hydrophilicity of silk fibroin (SF), the SF nanofibrous mat (SFNM) was modified with oxidized dextran. The D-SFNM absorbed water faster than the SFNM, and the swelling ratio was increased by approximately 80 % compared with the SFNM. An in vitro cell (NIH3T3) test revealed that fewer cells attached to the D-SFNM than the SFNM, but the proliferation of cells was not significantly affected by the presence of dextran. An in vivo wound healing test with mice indicated that the D-SFNM resulted in a good wound recovery effect similar to a commercial wound dressing material. The increased hydrophilicity of the D-SFNM might balance the moist environment at the wound site, which improves the wound healing compared with the SFNM.  相似文献   

17.
A series of flexible and tough polyimide (PI) microfibrous mats (PI-1~PI-4) have been prepared via the one-step electrospinning procedure with the organo-soluble PI resins as the starting materials. For this purpose, four PI resins were first synthesized by the chemical imidization reaction from 2,2′-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA) and four aromatic diamines containing rigid-rod moieties in their molecular skeletons, respectively. The PI resins derived from 6FDA and aromatic diamines, including PI-1 from 2-(4-aminophenyl)-5-aminobenzimidazole (APBI), PI-2 from 2-(4-aminophenyl)-5-aminobenzoxazole (APBO), PI-3 from 4,4′-diaminobenzanilide (DABA), and PI-4 from 2-chloro-4,4-diaminobenzanilide (Cl-DABA) exhibited good solubility in polar aprotic solvents, such as N-methyl-2-pyrrolidone (NMP) and N,N-dimethylacetamide (DMAc). Flexible and tough microfibrous mats were successfully prepared by a one-step electrospinning procedure from the PI/DMAc solution (solid content: 15–20 wt%; absolute viscosity: 8000–10000 mPa·s). The derived PI mats exhibited good whiteness according to the CIE Lab measurements with W (whiteness) values as high as 94.31, L (lightness) values higher than 94.00, b* (yellowness) values as low as 2.98 and yellow indices (YI) as low as 4.87. In addition, the prepared PI mats exhibited excellent thermal and dimensional stability with the glass transition temperatures (Tg) higher than 345 °C and linear coefficients of thermal expansion (CTE) as low as 27.8×10-6 /K.  相似文献   

18.
Gelatin is one of the most promising biomaterials due to its excellent biocompatibility and biodegradability. In order to improve the antimicrobial activity of gelatin, gelatin nanofibers containing silver nanoparticles were prepared by electrospinning gelatin/AgNO3/formic acid system, followed by UV irradiation. They were characterized by UV-visible spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction analysis. It was observed that the silver nanoparticles, which presented quasi-sphere shaped and 9–20 nm average diameters, were generated on the surface of the gelatin nanofibers. The size of the silver particles can be adjusted by changing the content of AgNO3. With increasing the amount of AgNO3, the average diameters of fibers decreased. The gelatin-Ag nanocomposites were found effective against Staphylococcus aureus and Pseudomonas aeruginosa. From these results, it is expected that the electrospun antimicrobial gelatin nanofiber mat can be used as an excellent wound dressing.  相似文献   

19.
Penicillium oxalicum k10 isolated from soil revealed the hydrolyzing ability of shrimp chitin and antifungal activity against Sclerotinia sclerotiorum. The k10 chitinase was produced from a powder chitin-containing medium and purified by ammonium sulfate precipitation and column chromatography. The purified chitinase showed maximal activity toward colloidal chitin at pH 5 and 40 °C. The enzymatic activity was enhanced by potassium and zinc, and it was inhibited by silver, iron, and copper. The chitinase could convert colloidal chitin to N-acetylglucosamine (GlcNAc), (GlcNAc)2, and (GlcNAc)3, showing that this enzyme had endocleavage and exocleavage activities. In addition, the chitinase prevented the mycelial growth of the phytopathogenic fungi S. sclerotiorum and Mucor circinelloides. These results indicate that k10 is a potential candidate for producing chitinase that could be useful for generating chitooligosaccharides from chitinous waste and functions as a fungicide.  相似文献   

20.
This article presents a non-complex method of producing biodegradable polylactide (PLA) fiber mats containing Al2O3-Ag nanopowder which display strong antimicrobial activities against E.coli and S. lutea. The method of preparing fiber mats was electrospinning. This article also gathers the results of the analysis of morphology and mechanical properties of both the Al2O3 nanopowder and the PLA-Al2O3/Ag fiber mats. The examination of the Al2O3 nanopowder was conducted with the use of a scanning electron microscope (SEM) and surface area measurements (BET). The morphology of the PLAAl2O3/Ag fiber mats was examined using SEM and TEM. The results of the study confirm the great potential of the electrospun PLA-Al2O3/Ag fiber mats for antibacterial application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号