首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.

Purpose

Sorption of humic substances on other soil components plays an important role in controlling their function and fate in soil. Sorption of humic substances by individual soil components has been studied extensively. However, few studies reported the sorption characteristic of humic substances on composites of soil components. This study aimed to investigate the sorption characteristics of humic acid on Fe oxide-bacteria composites and improve the understanding on the interaction among humic substance Fe oxide bacteria in soil.

Materials and methods

Humic acid was purchased from Sigma-Aldrich and was purified. Hematite and ferrihydrite were synthesized in the lab. Bacillus subtilis and Pseudomonas putida were cultivated in Luria-Broth medium and harvested at stationary growth phase. Batch sorption experiments were carried out at pH 5.0. Various amounts of humic acid were mixed with 20 mg of Fe oxide, bacteria, or Fe oxide-bacteria composite (oxide to bacteria of 1:1) in 10 mL of KCl (0.02 mol L?1) to construct sorption isotherms. The effects of phosphate concentration and addition order among humic acid, Fe oxide, bacteria on the sorption of humic acid were also studied. The sorption of humic acid was calculated by the difference between the amount of humic acid added initially and that remained in the supernatant.

Results and discussion

The maximum sorption of humic acid on hematite, ferrihydrite, B. subtilis and P. putida was 73.2, 153.5, 69.1, and 56.7 mg C g?1, respectively. The maximum sorption of humic acid on examined Fe oxide-bacteria composite was 28.2–57.2 % less than the predicted values, implying that the sorption of humic acid was reduced by the interaction between Fe oxides and bacteria. The presence of phosphate exerted negligible influence on the sorption of humic acid on bacteria while it inhibited the sorption of humic acid on Fe oxides. On Fe oxide-bacteria composites, inhibiting influences followed by promoting or weak inhibiting effects of phosphate with increasing concentration on the sorption of humic acid were found.

Conclusions

The interaction between Fe oxides and bacteria reduced the sorption of humic acid; moreover, the reduction was greater by the interaction of bacteria with ferrihydrite than that with hematite. Phosphate exerted negligible and inhibiting influence on the sorption of humic acid by bacteria and Fe oxides, respectively. On Fe oxide-bacteria composites, humic acid sorption was initially inhibited and then promoted or weakly inhibited by phosphate with increasing concentration.  相似文献   

2.

Purpose

Sorption of antimony on soils is the primary factor that influences its immobilization and migration in the environment. In the present study, the sorption of Sb(V) onto seven Chinese soils with different physicochemical properties was investigated for exploring the relationship between the sorption capacity of Sb(V) and the physicochemical properties of the soils.

Materials and methods

Sorption isotherms and kinetics experiments were performed to ascertain the sorption capacity and the kinetic rate, respectively. The relationship between the sorption capacity of Sb(V) and the physicochemical properties of the soils was analyzed by multiple linear regressions.

Results and discussion

The results showed that the sorption isotherms fitted with both the Langmuir and Freundlich equations very well (R 2?=?0.936–0.997), and the sorption kinetic of Sb(V) onto the seven Chinese soils followed a pseudo-second-order reaction. The maximum sorption capacity of Sb(V) on the soils ranged from 134 to 1,333 mg?kg?1. Nearly 94 % of the variability in maximum sorption of Sb(V) modeled by Freundlich equation could be described by FeDCB (dithionite–citrate–bicarbonicum extractable), and nearly 98 % of the variability could be described by FeDCB and AlDCB.

Conclusions

Multiple linear regressions can be successfully applied to analyzing the relationship between sorption capacity and soil properties. FeDCB and AlDCB played important roles in Sb(V) sorption onto soils. It would be useful to understand the environmental behaviors of Sb and for the implementation of risk assessment management and remediation strategies of Sb.  相似文献   

3.

Purpose

The sorption behavior of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) to three different artificial soil mixtures was investigated. Artificial soils serve as model systems for improving understanding of sorption phenomena.

Materials and methods

The soils consisted of quartz, ferrihydrite, illite, montmorillonite, and charcoal. In a previous study, several selected mixtures had been inoculated with organic matter, and microbial aging (incubation) had been performed for different periods of time (3, 12, and 18?months) before conducting the sorption experiments. The effect of this pre-incubation time on the sorption behavior was determined. Interaction of MCPA with soil surfaces was monitored by aqueous phase sorption experiments, using high-performance liquid chromatography/ultraviolet and in selected cases Fourier-transformed infrared spectroscopy.

Results and discussion

The sorption behavior showed large differences between differently aged soils; Freundlich and linear sorption model fits (with sorption constants K f , 1/n exponents, and K d values, respectively) were given for pH?=?3 and the unbuffered pH of ??7. The largest extent of sorption from diluted solutions was found on the surfaces with a pre-incubation time of 3?months. Sorption increased at acidic pH values.

Conclusions

Regarding the influence of aging of artificial soils, the following conclusions were drawn: young artificial soils exhibit stronger sorption at lower concentrations, with a larger K f value than aged soils. A correlation with organic carbon content was not confirmed. Thus, the sorption characteristics of the soils are more influenced by the aging of the organic carbon than by the organic carbon content itself.  相似文献   

4.

Purpose

Many amendments have been applied to immobilize heavy metals in soil. However, little information is available on the changes of immobilization efficiencies of heavy metals in contaminated soils over time. This work investigated the immobilization efficiencies of copper (Cu) and cadmium (Cd) in contaminated soils in situ remediated with one-time application of three amendments for 1 year and 4 years.

Materials and methods

Apatite, lime, and charcoal were mixed with the topsoil of each plot with the amounts of 22.3, 4.45, and 66.8 t/ha, respectively. Soil chemical properties and fractions of Cu and Cd were examined after in situ remediation for 1 year and 4 years. Soil sorption and retention capacities and desorption proportions for Cu and Cd were investigated by batch experiments.

Results and discussion

The addition of amendments significantly increased soil pH, but decreased exchange acid and aluminum (Al). The amendments significantly decreased the CaCl2 extractable Cu and Cd and transformed them from active to inactive fractions. After the application of amendments for 1 year, the maximum sorption capacities ranged from 35.6 to 38.8 mmol/kg for Cu and from 14.4 to 17.0 mmol/kg for Cd, which were markedly higher than those of the application of amendments for 4 years (Cu, 29.6–34.7 mmol/kg; Cd, 10.9–16.4 mmol/kg). Desorption proportions (D) of Cu and Cd using three extractants followed the order of \( {D}_{{\mathrm{NaNO}}_3}<{D}_{{\mathrm{CaCI}}_2}<{D}_{{\mathrm{MgCI}}_2} \) . Moreover, the retention capacities (R) of Cu and Cd both increased and followed the order of R apatite?>?R lime?>?R charcoal, resulting in higher Cu and Cd in the amended soils than the untreated soil.

Conclusions

Apatite, lime, and charcoal increased the soil sorption and retention capacities of Cu and Cd and resulted in higher immobilization efficiencies in the amended soils than the untreated soil. However, the immobilization efficiencies of Cu and Cd decreased with the decrease of sorption capacities after 4 years. It was concluded that apatite had the best effect on the long-term stability of immobilized Cu and Cd and can be applied to immobilize heavy metals in contaminated soils.  相似文献   

5.
The adsorption of 2-(2,4-dichloro-3-methylphenoxy)propanoic acid (DMPA) on the surface horizon of a humus-rich Andosol was examined. To investigate the mechanisms of adsorption, chemically treated Andosols, such as organic matter removed Andosol, organic matter and active metals removed Andosol, and clay minerals of the Andosol, were prepared. Furthermore, humic acid was extracted from the Andosol. The mechanisms of the DMPA adsorption were identified by using those untreated and chemically treated Andosols and the humic acid. The amount of DMPA adsorbed increased with decreasing equilibrium pH value. Active surface hydroxyl groups were identified as the most important soil functional group in DMPA adsorption. The predominant mechanism of DMPA adsorption on the Andosol is a ligand-exchange reaction, in which an active surface hydroxyl on Al and/or Fe is replaced by a carboxylic group of DMPA. A comparative study revealed that the amount of DMPA adsorbed was slightly greater than that of (2,4-dichlorophenoxy)acetic acid (2,4-D), especially at equilibrium pH values below 5. This is because the octanol-water partition coefficient (log Kow) of DMPA in the equilibrium pH range is higher than that of 2,4-D, and SOM participates in the adsorption process through a hydrophobic interaction.  相似文献   

6.
Radiotracer experiments on the sorption of I? (iodide) and IO inf 3 p? (iodate) from water by soils such as field soil, rice paddy soil and sandy soil, as well as by some soil components, have been carried out with special reference to the effects of heating and gamma-irradiating the soil. Desorption phenomena of I from soil to various solutions were also studied. The sorption of I? by soil was markedly reduced through treatments of air-drying and heating the soil prior to its equilibration with water. The results indicated that I? sorption was by the soil fraction which was unstable at about 150 °C, while IO inf 3 p? sorption was by the soil fraction which was relatively stable to heating. Gamma-irradiation at 27 kGy affected the sorption to a smaller extent than heating at 150 °C. A very high sorption (or soil-water distribution coefficient, Kd) was found in untreated field soil (andosol) with a low organic C (humus) content, while the sorption by sandy soil was considerably smaller than the other soils. Neither I? or IO inf 3 p? were well sorbed by clay minerals, Al2O3 and quartz sand, while the sorption by Fe2O3 was IO inf 3 p? were desorbed by 1N NaOH solution. By acidifying this solution, only a part of the desorbed I was re-precipitated with humic acid. The desorption by solutions containing K2SO3 or KI was also high, while that by solutions containing HCI, CH3COONH4 or chemical fertilizer was considerably lower. These findings suggested the possibility that I was not directly associated with humic acid itself.  相似文献   

7.

Purpose

Biochars are increasingly recognized as effective, inexpensive, and environmentally friendly sorbents for abating organic contaminants. In this study, the sorption and competitive sorption characteristics of simazine (SZ), metsulfuron-methyl (ME), and tetracycline (TC) to corn straw biochars and soil were examined to understand the interactions of herbicides and antibiotics with biochars and the potential role of biochars as engineered sorbents.

Materials and methods

Biochars were obtained by pyrolyzing corn straw at 400, 500, and 600 °C for 6 h under oxygen-limited conditions and were characterized via elemental analysis, N2-BET surface area determination, 13C nuclear magnetic resonance spectroscopy, and Fourier transform infrared spectroscopy. Soil was collected from North Tanggu Farm in Tianjin, and its organic carbon, cation exchange capacity, and particle size distribution were analyzed. The batch sorption experiments were performed to obtain the sorption isotherms of SZ, ME, and TC to biochars and soil.

Results and discussion

The biochars that were pyrolyzed at higher temperatures had higher sorption affinities for SZ, ME, and TC, which may be due to the enhancement of hydrophobic interactions, charge transfer (ππ*) interactions, and pore-filling mechanism. The sorption affinities for these compounds to all biochars decreased in the order SZ?>?TC?>?ME, indicating that the neutral molecule with a stronger hydrophobicity is more easily adsorbed by biochars. For soil, the decrease of the sorption affinities followed the order TC?>?SZ?>?ME due to the high sorption affinity of TC with clays in the soil. Moreover, the sorption affinities of TC by biochars were lower than by soil, indicating that corn straw biochars may be not an ideal sorbent for the immobilization of TC. Biochars were much more effective in sorbing SZ and ME than soil, indicating that corn straw biochars can potentially prevent transport of the herbicides to surface and ground water. Nevertheless, the presence of TC significantly hinders biochar adsorption of SZ and ME, implying that the coexisting contaminants should be considered when developing biochars as engineered sorbents.

Conclusions

The observations in this study demonstrated that the sorption of organic contaminants by biochars is dependent on the properties of the biochars and the molecular structures of the contaminants. Corn straw biochars effectively retain SZ and ME and hinder their transportation to surface and ground water; however, the coexisting contaminants should be considered. Our results will be helpful for designing biochars as engineered sorbents for environmental applications.  相似文献   

8.

Purpose

Interestingly, soil is the component of the natural environment in which most hydrophobic organic pollution including polycyclic aromatic hydrocarbons (PAHs) gets accumulated. The aim of the present paper was to determine the effect of soil pollution with PAHs on the elemental composition, spectral properties, and hydrophobic and hydrophilic properties of humic acids. The research was performed on different types of soil samples that were artificially polluted with selected PAHs (anthracene, pyrene, fluorene and chrysene).

Materials and methods

The soil samples were polluted with selected PAHs in an amount corresponding to 10 mg PAHs kg?1. The PAHs-polluted soil samples were incubated for 180 and 360 days at a temperature of 20–25 °C and fixed moisture (50 % of field water capacity). Humic acids (HAs) were extracted from the soil samples prior to the incubation (additionally, soils not polluted with PAHs) and after 180 and 360 days of incubation. For isolated HAs, the following analyses were performed: elemental composition, UV–Vis and IR spectra, susceptibility to oxidation, and hydrophilic (HIL) and hydrophobic (HOB) properties were determined using high-performance liquid chromatography.

Results and discussion

The research demonstrated that introducing anthracene, fluorene, pyrene and chrysene to soil samples resulted in a change in some of the quality parameters of humic acids. However, the intensity and the direction of those changes were determined by soil properties. The changes of the parameters, once PAHs were introduced, that did not depend on the soil properties were ΔA 665u and ΔA 465u (susceptibility to oxidation at wavelengths of 465 and 665 nm) as well as HIL/ΣHOB. The same tendency in changes in the structure of humic acids, once PAHs were introduced, was also observed based on the Fourier transform infrared spectra pattern.

Conclusions

A single pollution of soils with PAHs that leads to changes in the quality parameters of humic acids shows that, as for the soils permanently exposed to pollution with those compounds, significant changes can occur in the properties of humic acids. As a result, it can lead to a change in the functions played by humic acids in the environment.  相似文献   

9.

Purpose

Sorption and desorption of butachlor were simultaneously investigated on synthesized pure amorphous hydrated Fe oxides (AHOs Fe), and soils both with and without surface coating of AHOs Fe, with special interest towards how amorphous sesquioxides affect and contribute to butachlor retention in soils.

Materials and methods

The AHOs Fe was artificially synthesized pure materials. Two soils with contrasting physicochemical properties selected for study were black soil and latosol, belonging to permanent charged soil and variable charged soil, respectively. Both soils were further treated using AHOs Fe for detecting the differentiation from native soils regarding butachlor retention produced after the soils were surface-coated by AHOs Fe. A sorption experiment was conducted using a batch equilibrium technique, and desorption was carried out immediately following sorption by three sequential dilution. Hysteresis index (HI) values were calculated to investigate desorption hysteresis by developing desorption isotherms concentration dependent and time dependent, respectively.

Results and discussion

The sorption capacity for butachlor increased in the order of AHOs Fe, uncoated soils, and soils with surface coating of AHOs Fe. The sorption capacity of both soils significantly increased after surface coating by AHOs Fe (p?<?0.01), with a bigger increase achieved by black soil (52.0 %) as compared with that by latosol (45.3 %). Desorption of butachlor was coincidently hysteretic on AHOs Fe, and soils both uncoated and coated, whereas variation in desorption hysteresis was different between AHOs Fe and soils with increasing butachlor sorption loading, indicating different sorption mechanisms were operative for AHOs Fe and soils across the entire butachlor concentration range. Hysteresis of butachlor desorption was weakened after the soils were surface coated by AHOs Fe, as suggested by the changed HI values.

Conclusions

With high specific surface area and highly reactive surfaces, the “active” AHOs Fe originally has a relatively high sorption capacity and affinity for butachlor. While in natural soils, where the inevitable association derived from soil organic matter (SOM) would restrain AHOs Fe from sequestrating butachlor directly, AHOs Fe may likely contribute in a mediator way by coordinating active sites both on and within SOM. This may enhance the availability of sorption domains both on and within soils, thereby achieved an enhanced but more reversible retention for butachlor in soils after their surfaces were coated by AHOs Fe. This study has extended the observations of the role of noncrystalline sesquioxides in retention of pesticides such as butachlor from pure clay mineral systems to natural soils.  相似文献   

10.

Purpose

Analyzing organic pollutants in forest soil is challenging because they are strongly physical and chemical bound to soil organic matter (SOM). Within the framework of a forest soil inventory, an analytical protocol for the determination of polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), and organochlorine pesticides (OCP) should be established and validated using one and the same extraction and cleanup procedure. The protocol should be applicable for reliable analysis of a high number of samples in a short timeframe.

Materials and methods

Two different soil samples representative for the humic layer from a typical mixed and coniferous forest soil had been used for the analysis. Three solvents of different polarity, namely cyclohexane (CH), ethylacetate (EA)/CH (1/1, v/v), and acetone (AC)/CH (2/1, v/v), and the six standard extraction techniques (pressurized liquid extraction (PLE), soxhlet extraction, fluidized bed extraction, sonication, shaking, and one-step extraction recommended for analyzing agricultural soil in Germany (VDLUFA 2008)) were compared concerning their extraction efficiency. For additional matrix separation, two different cleanup procedures (gel permeation chromatography (GPC) and solid-phase extraction (SPE) with different sorbents) were tested. Quantification was carried out using gas chromatography combined with mass spectrometry (GC–MS) and two different injection systems (split/splitless injection and programmable temperature vaporizer (PTV) injection). Labeled internal standards, added prior to extraction, were used for method evaluation.

Results and discussion

For the simultaneous extraction of PAH, PCB, and OCP from organic forest soil PLE with acetone/cyclohexane (2/1, v/v) provided the highest extraction efficiency. A two-step cleanup procedure consisting of GPC followed by SPE with silica gel was entirely sufficient for the separation of humic substances without discrimination of analytes. Recovery rates for the different extraction and cleanup steps ranged between 89% and 106%. For quantification, a GC–MS method was developed using two different injection systems and two capillary columns of different selectivity.

Conclusions

By comparing six standard extraction techniques for PAH, PCB, and OCP from forest soil, we obtained the highest extraction efficiency when using PLE with AC/CH (2/1). For sample injection, we achieved best results using an optimized PTV injection system as it highly reduced the breakdown of thermolabile pesticides. Using this combination of technical equipment, it is possible to determine a concentration of the analytes in the trace level range of 1–2 μg kg?1 in humic soil.  相似文献   

11.

Purpose

Recent research has focused on using water treatment residuals (WTRs) as cost-effective materials to remove potential environmental contaminants. To better understand and predict how WTRs affect the mobility and retention of nickel (Ni) in soils with time, it is crucial that the kinetics and thermodynamics of these reactions be understood. Such information is lacking in the literature and would aid in evaluating the suitability of WTR as a soil amendment for adsorbing Ni contaminant. Accordingly, we focused on investigating the retention of Ni in differing soils and the subsequent influence of WTR application on Ni retention.

Materials and methods

To examine the effects of WTR application on the characteristics of Ni retention, equilibrium, and kinetics, sorption batch experiments were performed on three soils having different properties. The sorption data were applied to the first-order kinetic model, and the Arrhenius equation was used to determine the thermodynamic parameters.

Results and discussion

The quantity of Ni sorbed by the soils followed the trend Typic Torrifluvent > Typic Calciorthids > Typic Torripsamment. Soil sorption isotherms shift toward a higher sorption of Ni indicating addition of more sorption sites as a result of WTRs’ application. Data generated at different temperatures for soils and WTR-amended soils fitted well to Freundlich isotherm and first-order kinetic models. The energy of activation (E a) and enthalpy (ΔH #), entropy (ΔS #), and free energy of activation (ΔG #) related to Ni sorption were calculated using the Arrhenius equation. The activation energy (E a) values (51.65–130.0 kJ mol?1) and the positive ΔH # values characterize Ni sorption process onto the sorbents studied as chemisorption with an endothermic nature. The large negative ΔS # values (?262 to ?290 J?mol?1) and the large positive ΔG # values (88.11–89.14 kJ mol?1) indicate the involvement of an associative mechanism in the Ni sorption process.

Conclusions

WTR addition has led to an overall increase in Ni sorption by the amended soils. Such increase in Ni sorption provides evidence that WTR has the potential for land application as a Ni sorbent in soil remediation techniques. The sorption capacity of the soils and WTR-amended soils enhanced with an increase in temperature. Therefore, to truly understand the potential fate and mobility of Ni in the natural environment, temperature, in particular, should be considered.  相似文献   

12.

Purpose

More attention has been given to the determination of background levels of platinum group element (PGE) in an urban environment. But, few studies have been conducted for its environmental behaviour. The necessity to understand the PGE behaviour in environment increases due to the increase in platinum (Pt) emissions. The aim of the study is to evaluate the adsorption and the distribution of Pt within soil and sediment components. This study investigated the Pt adsorption on kaolinite, hematite and humic acid.

Materials and methods

A batch experiment was used to determine sorption of Pt. The experiments were carried out on the three solids and on two mixtures of iron oxide and kaolinite, with two ratios 25:75 and 75:25. An elemental distribution of Pt was determined on the mixtures iron oxide–kaolinite by micro-X-ray fluorescence.

Results and discussion

The highest concentrations of Pt were found on kaolinite, followed by hematite and humic acid. Kaolinite exhibited the highest adsorption capacity. The sorption capacity of both mixtures was lower than that of kaolinite and iron oxide. Moreover, the shape of isotherms, for both mixtures, tends towards that of kaolinite. The elemental distribution maps of mixtures showed, for both ratios, a high enrichment of kaolinite with Pt opposite to a slight enrichment of hematite.

Conclusions

The results showed that Pt is adsorbed mainly on kaolinite, which suggests that Pt was mainly associated with clay in soil. The results allowed the evaluation of the impact of the matrix of soil or sediment on the ability to retain or promote Pt dispersion in an urban environment.  相似文献   

13.

Purpose

The purpose of this study was to investigate relationships between chemical and thermal stabilities of Cu–humic complexes. The study of the chemical stability was based on pedological methods used for the determination of the bond strength of metal ions in soils by chemical leaching agents. The samples with various contents of the Cu(II) ions and their bond strength were put to the thermal analysis in order to correlate their thermo-oxidative behavior with their stability determined by leaching.

Materials and methods

The humic acid was extracted from the South-Moravian lignite by standard alkaline extraction. The humic sample was used in two different forms: as the solid powder and as the hydrogel prepared by the acidic precipitation of humate. Six various concentrations of copper(II) solutions were used for the complexation of the humic powder and the hydrogel, in order to study the influence of their initial concentration on both the determined stabilities of the prepared complexes. Their chemical stability was assessed in terms of the Cu(II) ions release from the humic acid structure into two different extraction agents (MgCl2 and HCl solutions). Their thermo-oxidative behavior was investigated employing the thermogravimetry.

Results and discussion

The complexation capacity of the humic hydrogel was higher in comparison with the humic powder. The amounts extractable from the Cu–humic complexes by the used leaching agents are higher for the humic powder, which shows on the lower chemical stability. The thermal degradation of the prepared complexes proceeds in several steps and this character remains also after the removal of the mobile and the ion-exchangeable fractions by the MgCl2. The elimination of these fractions as well as the extraction of the strongly bound Cu(II) ions shift the thermal degradation to higher temperatures. The incombustible residue increases with the Cu(II) content in the complexes except for the samples extracted by the HCl.

Conclusions

The form of humic sample used for the preparation of the Cu–humic complexes influences both the chemical stability and the thermal one. The main reason is probably a better accessibility of the functional groups in the humic gel, which enables forming stronger binding copper(II) ions. The results showed that the thermal and chemical stabilities are closely related, which corresponds with the shift of the thermal degradation to higher temperatures after removing the less stable fractions from the humic complexes.  相似文献   

14.

Purpose

The herbicide diuron has the unfortunate property of being strongly adsorbed onto soil organic matter particles, and hence, is slowly degraded in the environment because of its reduced bioavailability. The aim of this work was to gain insight into the fate and behaviour of diuron in the soil–water system, and develop and test an environmentally friendly soil decontamination technique that could give rise to an enhancement of diuron mineralisation by sensitive soil endogenous microorganisms, by means of increasing the bioavailability of the pollutant employing cyclodextrin (CD) solutions what would represent an improvement from both economic and environmental standpoints.

Materials and methods

Selected soil colloidal components: montmorillonite, a synthetic humic acid and a synthetic acicular goethite, and two different soils were employed in this study to perform batch adsorption–desorption experiments. Desorption experiments were performed using a 0.01 M Ca(NO3)2 solution with and without hydroxypropyl-β-cyclodextrin (HPBCD) 50 mM. Assays to study the mineralisation of 14C-labelled diuron were performed in respirometers, into which 10 g of soil and 50 mL of mineral salts medium (MMK) were placed, obtaining a final concentration of 50 mg?kg?1 and a radioactivity of approximately 900 Bq per flask.

Results and discussion

Humic acid could be clearly discerned as the major colloidal component responsible for adsorption. HPBCD was used in diuron desorption experiments from soil, showing a strong extracting power on its removal. The mineralisation of diuron in the presence and absence of HPBCD was tested in a soil managed with diuron for several years, involving therefore the presence of microorganisms that have some specificity for diuron. Natural soil attenuation for diuron was improved when a HPBCD solution was used in the presence of micronutrients as a bioavailability enhancer, obtaining 66 % of mineralisation in comparison to that obtained with only micronutrients addition (44 %).

Conclusions

The use of HPBCD solution at a very low concentration of only 10 times the diuron equimolar concentration in soil, acts as a bioavailability enhancer, accelerating the passage of the diuron-desorbing fraction from the soil particle surface to the soil solution, and hence, improving the accessibility of the microorganisms to the herbicide. Diuron mineralisation rate and the extent of its mineralisation were improved when the HPBCD solution was employed in the presence of micronutrients.  相似文献   

15.

Purpose

The aims of this study were to identify potential sources of error in common methods for determination of amorphous oxide concentrations and carbonate concentrations, as applied to a Technosolic material (bauxite residue), and where possible, suggest improvements to the methods.

Materials and methods

An acid ammonium oxalate (AAO) extraction was applied to fresh and weathered bauxite residues, at soil to solution ratios varying from 1:100 to 1:800. Two methods for carbonate concentration were compared: the ‘weight loss’ method, and the ‘difference in total C’ method. These were applied to six weathered bauxite residue samples, with CaCO3 concentrations ranging from 0.1–2 % weight.

Results and discussion

Chemically extractable amorphous content was underreported in bauxite residue at the standard 1:100 extraction ratio, likely due to Al and Si saturation of the oxalate complex. A 1:400 soil: AAO ratio extracted the highest amount of amorphous material. Some crystalline minerals such as sodalite, inherited from the Technosolic parent material, were soluble in the acid ammonium oxalate extractant. The difference in total C method was more precise than the weight loss method for the determination of carbonate concentration in bauxite residues.

Conclusions

The high amorphous content of bauxite residues requires a wider soil to solution ratio (1:400) for acid ammonium oxalate extraction than is used for typical soil materials (1:100). The difference in total C method is recommended for the routine analysis of field samples where small variations in carbonate concentration need to be detected.  相似文献   

16.

Purpose

The purposes of this study were to understand the sorption?Cdesorption characteristics of propachlor in three types of soils with added solid organic matters and the effect of solid organic matters on propachlor mobilization in soil microstructures.

Materials and methods

Three soil types, Eutric gleysols (EG), Hap udic cambisols (HUC), and Haplic alisol (HA), along with the lakebed sludge (SL) and pig manure compost (PMC), were used in the study. The sorption and desorption experiments were carried out using the standard batch equilibration method. Soil column leaching was performed with soil samples packed into PVC columns. Soil thin-layer chromatography was performed using soils and water mixture spread on a 0.5?C0.7-mm thick layer over 20?×?10-cm glass plates.

Results and discussion

Propachlor was shown to be more mobile in EG and HUC than in HA. Application of PMC and SL to soils affected the propachlor mobilization in the soils. Using batch experiment, soil column, and soil thin-layer chromatography, we showed that addition of SL and PMC increased the sorption and decreased desorption of propachlor in the soils. Addition of PMC and SL reduced the total concentration of propachlor in the soil leachate and migration of propachlor in the soil profiles. Physicochemical properties of the three soils were analyzed and showed that the content of organic carbon (in percentage) was higher in Haplic alisol than in Eutric gleysols and Hap udic cambisols.

Conclusion

The soil organic matter played critical roles in modifying the absorption and mobility of organic chemicals (e.g., herbicide and contaminants) in soil ecosystem.  相似文献   

17.

Purpose

The aim of this study was to enhance the soil remediation of timber treatment sites; the potential application of biodegradable chelating agents and humic substances as enhancing agents was assessed in terms of the residual leachability of chromium, copper and arsenic (CCA).

Materials and methods

This study applied four leachability tests on a field-contaminated soil after 48-h washing with ethylenediamine-N,N-disuccinic acid (EDDS), glutamic-N,N-diacetic acid, ethylenediaminetetraacetic acid and humic substances derived from lignite and two other sources.

Results and discussion

It was noteworthy that the reduction in the total metal concentrations after soil washing was not predictive of the leaching behaviour. When assessed by toxicity characteristic leaching procedure (TCLP) and waste extraction test (WET), Cu and As leachability was decreased as a result of their extraction by soil washing. By contrast, when assessed by synthetic precipitation leaching procedure (SPLP) and European Council Waste Acceptance Criteria (ECWAC) tests, Cu and As leachability was found to increase, probably because the effect of destabilization of residual metals during soil washing was more observable in unbuffered leaching solutions. On the other hand, Cr leachability was acceptably low in TCLP and WET but still exceeded drinking water standard in SPLP and ECWAC tests.

Conclusions

The three chelating agents were able to meet the criteria for Cu in all leachability tests, while the limits of As concentrations could only be met by EDDS in TCLP test. The three humic substances reduced the leachate concentrations of Cu and As without destabilizing the residual metals; however, the reduction was insufficient to meet the required limits in all leachability tests considered.  相似文献   

18.

Purpose

The aim of the research was to compare the effect of two types of organic sorbents—humic acid (HA) and biochar (BC)—in sorption-desorption processes of different polar pesticides, which residues are commonly present in arable soils and are potentially harmful for the environment. It also aims to advance the understanding of behavior of both ionizable and nonionizable pesticides in the presence of BC and HA in soils.

Materials and methods

Three different classes of pesticides were investigated: carbamates (carbaryl and carbofuran), phenoxyacetic acids (2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chloro-2-methylphenoxyacetic acid (MCPA)), and aniline derivatives (metolachlor). Investigated humic acid was extracted by Shnitzer’s method from topsoil horizon of arable Gleyic Phaeozem. Biochar was produced from wheat straw in gasification process at 550 °C, remaining 30 s in the reactor. To obtain the experimental goal structural properties of both sorbents were determined and sorption-desorption experiments conducted. To the investigated organic matter samples (HA or BC), 10 or 15 mg L?1 pesticide solutions in 10 mM CaCl2 were added and the mixtures were shaken for 24 h. Afterwards, the samples were centrifuged and supernatants analyzed by LC-MS/MS for the pesticide content. Analogous experiment was performed for desorption studies (samples refilled with 10 mM CaCl2).

Results and discussion

Humic acids exhibited strong affinity for the ionic substances, for which high-percentage uptake (74.6 and 67.9% initial dose of 2,4-D and MCPA, respectively) was obtained. Retention of nonionic carbamates on HA was much weaker (35.4% of carbofuran and 10.2% of carbaryl sorbed). Sorption of carbamates to BC was significantly reduced (76.4–84.3%) by the alkaline hydrolysis. Metolachlor was bound comparably strong both by HA (72.9%) and BC (70.2%), although different mechanisms governed its sorption. Noticeable desorption occurred only in the case of 2,4-D bound to HA (over 50%), whereas other studied compounds were released from HA within the range of 4.4–10.8% of the dose sorbed. Oppositely to HA, desorption of all studied pesticides from BC was completely inhibited, except for 2,4-D (3.7% desorbed).

Conclusions

Investigated humic acid has high affinity to polar, ionic pesticides of high water solubility, which are sorbed via specific interactions with HA functional groups. Studied biochar, due to its moderately hydrophobic character, preferentially attracts nonionic pesticides of relatively high logP values and low water solubility. Hydrophobic bonding is postulated as a main mechanism of their attraction to BC. Besides sorbent structural properties, pH is the main factor governing sorption equilibria in the studied mixtures.
  相似文献   

19.
Can root exudate components influence the availability of pyrene in soil?   总被引:1,自引:0,他引:1  

Purpose

Little information is currently available regarding the influence of different root exudate components (RECs) on the availability of persistent organic pollutants in the soil environment. In this study, we investigated the impacts of different RECs including organic acids, amino acids, and fructose on the availability of pyrene as a representative polycyclic aromatic hydrocarbon (PAH) in soils.

Materials and methods

Citric acid, oxalic acid, malic acid, serine, alanine, and fructose were used in the experiments as representative RECs. Pyrene-spiked soils (TypicPaleudalfs) with present RECs were incubated for 30 days, and the available fraction of pyrene was determined using n-butanol extraction procedure.

Results and discussion

The amount of n-butanol-extractable pyrene in soil increased with the addition of tested RECs and increased when REC concentrations are enhanced within the range of 0–21 g kg?1. The extractability of pyrene in soil with REC treatments and the enhancement ratio (r, %) of the extractable pyrene in soil by the addition of RECs after a 30-day incubation decreased in the following order: organic acids (oxalic acid ≥ citric acid > malic acid) > amino acid (alanine > serine) > fructose. This decrease was observed irrespective of soil sterilization, although the concentrations of extractable pyrene were lower in non-sterilized soils compared to sterilized soils. The concentrations of metal cations and dissolved organic matter (DOM) in solution increased when organic acids were added.

Conclusions

The tested RECs at concentrations of 0–21 g kg?1 clearly enhanced the availability of pyrene in soils, and larger amounts of RECs resulted in higher pyrene availabilities in the tested soils. Microbial biodegradation diminished the amount of available pyrene irrespective of the presence of RECs. The mechanism of REC-influenced availability of pyrene in soil may be related to the metal dissolution and release of DOM from soil solids. The results of this study will be useful in assessing PAH-related risks to human health and the environment and will be instructive in food safety and remediation strategies at contaminated sites.  相似文献   

20.

Purpose

To successfully establish revegetation, there is a need for weed control. Herbicide application and top soil removal (scalping) may be used to suppress weeds. However, scalping alters soil water and nitrogen availability which in turn may affect plant physiology and performance during the early phase of establishment.

Materials and methods

A field trial was established in south east Queensland, Australia, to examine weed control methods, including herbicide application and scalping. Plant survival, mean periodic height gain, specific leaf area and leaf-level physiological traits were measured for Acacia concurrens Pedley and Eucalyptus crebra F. Muell. for 17 months following tree establishment.

Results and discussion

Plant survival and growth of A. concurrens were superior in the scalped area compared to the herbicide area, whereas neither survival nor growth of E. crebra was influenced by weed control methods. In general, there were no or little effect of site preparation practices on carbon and nitrogen isotope composition, specific leaf area, photosynthesis, maximum photosynthesis and instantaneous water-use efficiency. Photosynthetic capacity was not influenced by site preparation practices as reflected through the maximum rate of carboxylation and maximum rate of electron transport.

Conclusions

Despite altering soil nutrient availability in the scalped areas and high weed coverage in the herbicide areas, there was no substantial alteration in plant physiology for both species. E. crebra was less affected by either low nutrient availability in the scalped areas or high weed coverage in the herbicide areas compared to A. concurrens. Therefore, E. crebra could be considered as a valuable species to revegetate degraded lands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号