首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Modern agricultural science has greatly reduced the use of tillage. Monitoring conservation versus conventional tillage effects on soil microbes could improve our understanding of soil biochemical processes and thus help us to develop sound management strategies. The objective of this study was to investigate the effects of conservation tillage on the spore community structure and the diversity of soil arbuscular mycorrhizal (AM) fungi and to find out the main factors that influence these parameters.

Materials and methods

A long-term field experiment established in a sandy loam soil in Northern China has received continuous tillage management treatments for 3?years, including conventional tillage (CT), no tillage (NT), and alternating tillage (AT). Topsoil samples (0?C15?cm) from four individual plots per treatment were collected for the analysis of chemical properties and fungal parameters. AM fungal spores were isolated using the wet-sieving method and identified to species level based on morphology by light microscopy. The community structure and the diversity of AM fungi were evaluated using the following parameters: spore density, relative abundance, species richness, Shannon?CWiener index (H??), evenness (E), and Simpson's index (D). Jaccard index (J) of similarity was calculated to compare AM fungal species composition under different treatments.

Results and discussion

Twenty-eight species of AM fungi within four genera, Glomus, Acaulospora, Scutellospora, and Entrophospora, were recovered from the 12 plots within the three tillage management treatments. Higher spore density, species richness, and species diversity (H??, E, and D) of AM fungi were observed in the two conservation tillage treatments, and the redundancy analysis showed that the species richness significantly correlated to soil organic carbon content (P?<?0.05). The positive effects of NT and AT on the species richness were very close, while the AT had relatively greater beneficial impacts on the spore density and the evenness of AM fungi compared to the NT. The lowest Jaccard index (J) of similarity in species composition was also observed between the AT and CT treatments.

Conclusions

Soil organic carbon, the spore density, and species richness and diversity of AM fungi increased in the two conservation tillage treatments. The species richness of AM fungi significantly correlated to soil organic carbon content (P?<?0.05). Compared with the CT treatment, the AT rather than the NT significantly increased the spore density and the evenness of AM fungi (P?<?0.05). Thus, alternating tillage practice may be more beneficial to agroecosystem in this region.  相似文献   

2.
The influence of mycelium of two arbuscular mycorrhizal (AM) fungi, Glomus intraradices and Glomus mosseae, on other soil microorganisms, was examined in root-free soil with and without organic substrate amendment in terms of cellulose. The AM fungi were grown in symbiosis with cucumber in a compartmented growth system, which allowed AM fungal external mycelium to grow into root-free compartments. The fungicide Benomyl was applied to the root-free compartments to create an alternative non-mycorrhizal control treatment. Whole cell biomarker fatty acids were employed to quantify different groups of soil microorganisms including the two AM fungi. Abundance of most microbial groups were reduced by external mycelium of both AM fungi, though differential effects on the microbial community composition were observed between the two AM fungi as revealed from principal component analysis. Inhibition of other soil microorganisms was more pronounced in root-free soil with mycelium of G. mosseae than with mycelium of G. intraradices. In general, cellulose increased the amount of biomarker fatty acids of most groups of soil microorganisms, but cellulose did not affect the influence of AM fungi on other soil microorganisms. Benomyl suppressed growth of the external mycelium of the two AM fungi and had limited non-target effects on other microbial groups. In conclusion, our results show differential effects of external mycelium of AM fungi on other soil microbial communities, though both AM fungi included in the study overall inhibited most microbial groups as examined using whole cell biomarker fatty acids.  相似文献   

3.
Arbuscular mycorrhizal (AM) fungi are key organisms of the soil/plant system, influencing soil fertility and plant nutrition, and contributing to soil aggregation and soil structure stability by the combined action of extraradical hyphae and of an insoluble, hydrophobic proteinaceous substance named glomalin-related soil protein (GRSP). Since the GRSP extraction procedures have recently revealed problems related to co-extracting substances, the relationship between GRSP and AM fungi still remains to be verified. In this work the hypothesis that GRSP concentration is positively correlated with the occurrence of AM fungi was tested by using Medicago sativa plants inoculated with different isolates of Glomus mosseae and Glomus intraradices in a microcosm experiment. Our results show that (i) mycorrhizal establishment produced an increase in GRSP concentration - compared to initial values - in contrast with non-mycorrhizal plants, which did not produce any change; (ii) aggregate stability, evaluated as mean weight diameter (MWD) of macroaggregates of 1-2 mm diameter, was significantly higher in mycorrhizal soils compared to non-mycorrhizal soil; (iii) GRSP concentration and soil aggregate stability were positively correlated with mycorrhizal root volume and weakly correlated with total root volume; (iv) MWD values of soil aggregates were positively correlated with values of total hyphal length and hyphal density of the AM fungi utilized.The different ability of AM fungal isolates to affect GRSP concentration and to form extensive and dense mycelial networks, which may directly affect soil aggregates stability by hyphal enmeshment of soil particles, suggests the possibility of selecting the most efficient isolates to be utilized for soil quality improvement and land restoration programs.  相似文献   

4.
The effects of organic manure, mineral fertilizer (NPK), and P-deficiency fertilization (NK) on the individual biomass of young wheat plants, arbuscular mycorrhizal (AM) colonization in wheat root systems, population sizes of soil organic phosphorus mineralizing bacteria (OPMB) and inorganic phosphate solubilizing bacteria (IPSB) as well as soil P-mineralization and -solubilization potential were investigated in a long-term (18-year) fertilizer experiment. The experiment included five treatments: organic manure, an equal mixture of organic manure and mineral fertilizer, fertilizer NPK, fertilizer NK, and the control (without fertilization). Plant biomass, population sizes of soil OPMB and IPSB were greatly increased (P<0.05) by the application of organic manure and slightly increased by the balanced application of mineral fertilizer, while undiminished AM colonization in wheat root system was only observed in the case of the NK treatment. Compared to balanced fertilization, P-deficiency fertilization resulted in a significant increase (P<0.05) of OPMB-specific mineralization potential (soil P-mineralization potential per OPMB cell) and highest IPSB-specific solubilization potential (soil P-solubilization potential per IPSB cell), suggesting that OPMB and IPSB are likely more metabolically active in P-deficiency fertilized soils after long-term fertilizer management, and mycorrhizal plants are more dependent on AM in P-poor soils than in P-fertilized soils. Our results also showed the different effects of mineral fertilizer versus organic manure on soil P-mineralization and -solubilization potentials, as well as specific potentials of OPMB and IPSB in arable soils.  相似文献   

5.
Arbuscular mycorrhizal (AM) fungi are root symbionts that enhance plant growth and improve soil fertility and soil structure in drylands. Even though AM fungi are obligate biotrophs, organic matter (OM) can stimulate their growth, but the mechanisms behind this are still unknown. Here, we compared the effect of nutrient patches of different OM sources to intrinsic components of OM such as inorganic nutrient supply and an improved soil water-holding capacity (WHC; via application of hydrophilic polymers), on AM fungal growth. Fatty acids extracted from in-growth mesh bags incubated in the field were used as biomarkers for AM fungi and other soil microbes. We found an enhancement of AM fungal growth in certain nutrient patches. Two out of three OM types stimulated AM fungal growth strongly, and also the addition of inorganic nutrients enhanced AM fungi, though to a lesser extent than OM. Enhanced soil WHC, on the other hand, did not influence AM fungal growth. AMF were more strongly enhanced by the mineral nutrients relative to other soil organisms. Intrinsic nutrients might be an important factor for AMF growth stimulation in OM additions, but there was no evidence that nutrients alone can explain this phenomenon.  相似文献   

6.
The present study of arbuscular mycorrhizal (AM) fungi is focused on the identification of AM ecotypes associated with different plants species (Poa annua, Medicago polymorpha, and Malva sylvestris) growing in three contaminated soils with different organic matter, phosphorus, and trace element (TE; Cu, Cd, Mn, and Zn) contents. Soils were amended with biosolid and alperujo compost. Shifts in AM fungal community structure, diversity, richness, root colonization, and plant TE uptake were evaluated. Soil properties and plant species had a significant effect on AM fungal community composition as well as on root colonization. However, AM fungal diversity and richness were only affected by soil properties and especially by soil organic matter that was a major driver of AM fungal community. As soil quality increased, Glomeraceae decreased in favor of Claroideoglomeraceae in the community, AM fungal diversity and richness increased, and root colonization decreased. No effect due to amendment (exogenous organic matter) addition was found either in AM fungal parameters measured or TE plant uptake. Our results revealed that the role of TE contamination was secondary for the fungal community behavior, being the native organic matter content the most significant factor.  相似文献   

7.
Arbuscular mycorrhizal fungi (AMF) produce a protein, glomalin, quantified operationally in soils as glomalin-related soil protein (GRSP). GRSP concentrations in soil can range as high as several mg g−1 soil, and GRSP is highly positively correlated with aggregate water stability. Given that AMF are obligate biotrophs (i.e. depending on host cells for their C supply), it is difficult to explain why apparently large amounts of glomalin would be produced and secreted actively into the soil, since the carbon could not be directly recaptured by the mycelium (and benefits to the AMF via increased soil structure would be diffuse and indirect). This apparent contradiction could be resolved by learning more about the pathway of delivery of glomalin into soil; namely, does this occur via secretion, or is glomalin tightly bound in the fungal walls and only released after hyphae are being degraded by the soil microbial community? In order to address this question, we grew the AMF Glomus intraradices in in vitro cultures and studied the release of glomalin from the mycelium and the accumulation of glomalin in the culture medium. Numerous protein-solubilizing treatments to release glomalin from the fungal mycelium were unsuccessful (including detergents, acid, base, solvents, and chaotropic agents), and the degree of harshness required to release the compound (autoclaving, enzymatic digestion) is consistent with the hypothesis that glomalin is tightly bound in hyphal and spore walls. Further, about 80% of glomalin (by weight) produced by the fungus was contained in hyphae and spores compared to that released into the culture medium, strongly suggesting that glomalin arrives mainly in soil via release from hyphae, and not primarily through secretion. These results point research on functions of glomalin and GRSP in a new direction, focusing on the contributions this protein makes to the living mycelium, rather than its role once it is released into the soil.  相似文献   

8.

Purpose

The aim of this study was to understand the effect of nitrogen fertilization on soil respiration and native soil organic carbon (SOC) decomposition and to identify the key factor affecting soil respiration in a cultivated black soil.

Materials and methods

A field experiment was conducted at the Harbin State Key Agroecological Experimental Station, China. The study consisted of four treatments: unplanted and N-unfertilized soil (U0), unplanted soil treated with 225?kg?N?ha?1 (UN), maize planted and N-unfertilized soil (P0), and planted soil fertilized with 225?kg?N?ha?1 (PN). Soil CO2 and N2O fluxes were measured using the static closed chamber method.

Results and discussion

Cumulative CO2 emissions during the maize growing season with the U0, UN, P0, and PN treatments were 1.29, 1.04, 2.30 and 2.27?Mg?C?ha?1, respectively, indicating that N fertilization significantly reduced the decomposition of native SOC. However, no marked effect on soil respiration in planted soil was observed because the increase of rhizosphere respiration caused by N addition was counteracted by the reduction of native SOC decomposition. Soil CO2 fluxes were significantly affected by soil temperature but not by soil moisture. The temperature sensitivity (Q 10) of soil respiration was 2.16?C2.47 for unplanted soil but increased to 3.16?C3.44 in planted soil. N addition reduced the Q 10 of native SOC decomposition possibly due to low labile organic C but increased the Q 10 of soil respiration due to the stimulation of maize growth. The estimated annual CO2 emission in N-fertilized soil was 1.28?Mg?C?ha?1 and was replenished by the residual stubble, roots, and exudates. In contrast, the lost C (1.53?Mg?C?ha?1) in N-unfertilized soil was not completely supplemented by maize residues, resulting in a reduction of SOC. Although N fertilization significantly increased N2O emissions, the global warming potential of N2O and CO2 emissions in N-fertilized soil was significantly lower than in N-unfertilized soil.

Conclusions

The stimulatory or inhibitory effect of N fertilization on soil respiration and basal respiration may depend on labile organic C concentration in soil. The inhibitory effect of N fertilization on native SOC decomposition was mainly associated with low labile organic C in tested black soil. N application could reduce the global warming potential of CO2 and N2O emissions in black soil.  相似文献   

9.
Sugar beet waste has potential value as a soil amendment and this work studied whether fermentation of the waste by Aspergillus niger would influence the growth and P uptake of arbuscular mycorrhizal (AM) fungi. Plants were grown in compartmentalised growth units, each with a root compartment (RC) and two lateral root-free compartments (RFC). One RFC contained untreated soil while the other RFC contained soil, which was uniformly mixed with sugar beet waste, either untreated (SB) or degraded by A. niger (ASB) in a rock phosphate (RP)-supplied medium. The soil in each pair of RFC was labelled with 33P and 32P in order to measure P uptake by the AM fungal mycelium, of which length density was also measured. Whole cell fatty acid (WCFA) signatures were used as biomarkers of the AM fungal mycelium and other soil microorganisms. The amount of biomarkers of saprotrophic fungi and both Gram-positive and Gram-negative bacteria was higher in SB than in ASB treatments. Whilst ASB increased growth and activity of AM mycelium, SB had the opposite effect. Moreover, shoot P content was increased by the addition of ASB, and by inoculation with AM fungi. Modification of soil microbial structure and production of exudates by A. niger, as a consequence of fermentation process of sugar beet waste, could possibly explain the increase of AM growth in ASB treatments. On the other hand, the highest P uptake was a result of the solubilisation of rock phosphate by A. niger during the fermentation.  相似文献   

10.
Specific stability of organic matter in a stormwater infiltration basin   总被引:1,自引:0,他引:1  

Purpose

In stormwater infiltration basins, sediments accumulate at the soil surface and cause a gradual filling up of soil pores. These sediments are composed of a mixture of natural and anthropogenic (as oil products) organic matters (OMs). The degradation kinetics of these sediment OMs and their biological stability has been neglected. This study aimed to characterize sediments OMs to assess their evolution and their capacity to degrade.

Materials and methods

To characterize OMs from the sediment layer, we measured at several places in the infiltration basin, total OM and carbon (C) contents, C distribution and biochemical fractions of the OM in the different size fractions, the sediment’s C mineralization potential, soil microbial biomass, and organic pollutants (polycyclic aromatic hydrocarbons (PAHs)) in the sediment layer.

Results and discussion

OM contents were high and varied from 66 to 193 g?kg?1 from the inlet to the outlet of basin. Depending on rainfall intensity and volume, organic particles were deposited at varying distances in the basin by decantation; this was confirmed by analysis of sediment C distribution in the different size fractions. Despite high amounts of OM, organic C had a low biodegradability. Mineralization potentials were low compared to natural soil (i.e., from 0.3 to 1.1 g CO2–C kg?1 total organic carbon). Biochemical fractionation of the organic fractions indicated that they were mainly composed of a soluble fraction, which contributed to reducing OM biodegradability. The activity of the sediment microbial biomass was low. PAH contents seemed to be partly responsible for the high biostability of OMs.

Conclusions

There was limited capacity for biodegradation of sediment OMs probably due to inhibitory effects of soluble PAHs and consequently low microbial activity.  相似文献   

11.
Thermo‐stable, operationally defined soil protein, known as glomalin, may make an important contribution to carbon storage in soils. The term glomalin is used because this putative protein, or group of proteins, was originally thought to be produced only by Glomus fungi. There is currently little information on the glomalin‐related soil protein (GRSP) content of tropical soils, particularly allophanic soils that are known to have different carbon dynamics to temperate climate soils. We have measured the Bradford‐reactive GRSP content of soils sampled from forests and grasslands on the tropical island of Martinique and compared the observations with soil composition. Two operationally defined fractions of GRSP were measured, namely easily‐extractable and total GRSP. The contents of GRSP in moist soils were in the range of 2–36 g kg?1, accounting for about 8% of soil organic carbon, and were greater in topsoils than in corresponding subsoils. Both the GRSP contents and the fraction of soil organic carbon attributed to GRSP were greater than those reported for temperate climate soils. Both total and easily extractable GRSP contents were positively correlated to soil organic carbon content. The fraction of soil organic carbon that could be attributed to soil protein decreased with increasing allophane content for allophanic soils. No other trends of GRSP content with soil properties or land use were found. GRSP extraction was decreased about seven‐fold by air‐drying of soils, confirming the irreversible change in the soil microstructure of allophanic soils. Total and easily extractable GRSP were correlated and we conclude that both are good probes of thermo‐stable soil protein content for these soils. No attempt was made to verify the fungal origin of the protein detected.  相似文献   

12.

Purpose

There have been a number of studies on the succession of vegetation; however, the succession of soil microbes and the collaborative relationships between microbes and vegetation during land restoration remain poorly understood. The objectives of this study were to characterize soil microbial succession and to explore the collaborative mechanisms between microbes and vegetation during the restoration of abandoned land through quantitative ecology methods.

Materials and methods

The present research was carried out in the succession of a 5-year abandoned land and its conversion to Hippophae rhamnoides shrubs, Larix principis-rupprechtii plantation, and a naturally regenerated forest (mixed forest). Soil bacterial, archaeal and fungal characteristics were tested by real-time quantitative PCR assays and terminal restriction fragment length polymorphism. The richness, diversity, and evenness indices were employed to analyze plant and microbial communities’ structure. The stability of plant and microbial communities was tested using Spearman’s rank correlation. The relationships between the regeneration scenarios and environmental factors were determined through canonical correspondence analysis.

Results and discussion

The aboveground biomass was significantly different among the sites. Soil bacterial, archaeal, and fungal rRNA gene abundances did not increase significantly with increasing soil organic carbon content. There were higher correlation coefficients between plant and total microbial communities on the richness, diversity, and evenness indices and ratios of positive to negative association compared to ones between plant and individual bacteria, archaea, and fungi. Soil bulk density, clay, pH, and litter were the primary significant environmental factors affecting the structure of plant and microbial communities. The positive relationships between plant and soil bacteria, fungi, and total microbe communities, as well as the negative relationships between plant and archaea, were demonstrated.

Conclusions

The results suggested that plants promote the growth of soil bacteria and fungi during the process of community succession on a small scale; however, plants inhibit the growth of soil archaea.  相似文献   

13.

Purpose

The aim of this study was to quantify the release of the hydrophobic contaminant emamectin (EMA) from marine sediments in response to inputs of organic material (OM) and/or oil, in the presence or absence of two different bioturbating species. Specifically, it was designed to test whether oil would decrease the release of EMA and whether OM and/or the presence of bioturbating macrofauna would increase the release of EMA from sediment.

Materials and methods

Experimental sediments were spiked with EMA (5 μg kg?1 wet sediment). The different treatments were prepared by the addition of OM (310 g algae m?2) and/or an aliphatic oil (29.6 g oil m?2). In addition, two bioturbating species, Brissopsis lyrifera or Ennucula tenuis, were added in some aquaria, resulting in a total of 12 treatments with four replicates each. Water samples for analyses of silicate and EMA and sediment samples for analyses of total organic carbon (TOC) were taken at the start and end of the experimental exposure. In addition, oxygen was measured during the experimental period of 8 days. Fluxes were calculated and compared between treatments using generalised linear models (GLMs).

Results and discussion

The EMA release flux was significantly increased in treatments with added OM, possibly reflecting the presence of soluble complexes formed between EMA and dissolved OM. The presence of B. lyrifera caused a small, but statistically significant, increase in EMA release from sediment. This species would be expected to have a stronger effect on bioirrigation and particle mixing than E. tenuis, particularly when the population density of the latter species is low (as in the present experiment). There were no consistent effects of oil in this experiment, but the presence of oil decreased the EMA release flux when co-occurring with added OM and/or B. lyrifera. Increased retention of hydrophobic contaminants in the presence of oil is consistent with the existing literature on contaminant fate.

Conclusions

The results from this study highlight the need to consider both the infauna present in polluted areas and the level of organic enrichment of the sediment when modelling the environmental fate of hydrophobic contaminants. It also highlights that labile OM and refractory oil appear to differ in their effects on the remobilisation of hydrophobic organic contaminants, by reducing and increasing release, respectively.  相似文献   

14.
为揭示冬麦免耕覆盖栽培管理措施对土壤丛枝菌根真菌多样性的影响,以农田土壤生态系统为研究对象,利用Illumina MiSeq平台通过高通量测序的方法,对连续免耕覆盖栽培及有机肥管理下冬麦土壤丛枝菌根真菌群落组成及其与土壤环境因子间的相互关系进行研究。结果表明,丛枝菌根(AM)真菌在97%相似度下共获得4 515个AM真菌的操作分类单元(OTUs),分属于1门3纲4目8科10属155种。不同处理中,类球囊霉属(Paraglomus),球囊霉属(Glomus)和近明球囊霉(Claroideoglomus)为优势属,受农业综合管理措施中有机肥施用、免耕覆盖因子的影响,近明球囊霉、有隔球囊霉属相对丰度在不同处理间存在显著差异(P<0.05)。与耕作、不覆盖相比,免耕、覆盖措施提高了AM真菌多样性指数,但降低了AM真菌属的丰富度;与无肥条件相比,有机肥施用提高了AM真菌丰富度指数,但降低了AM真菌多样性指数。多元分析结果表明,土壤全磷及速效磷含量是影响AM真菌群落组成中优势属丰度变化的主要因素。免耕覆盖、有机栽培改变了土壤AM真菌的多样性及丰富度,土壤中丰度较低的AM真菌菌属更容易受到有机肥施用的影响;有机肥与免耕、覆盖管理的交互作用对AM真菌近明球囊霉属相对丰度有显著影响(P<0.05)。AM真菌群落对耕作覆盖、有机肥施用管理活动的响应受到农业综合管理活动及其相关因素交互作用的影响。本研究结果为合理农作物免耕覆盖、有机栽培管理提供了理论依据。  相似文献   

15.

Purpose

Cover crop residue is generally applied to improve soil quality and crop productivity. Improved understanding of dynamics of soil extractable organic carbon (EOC) and nitrogen (EON) under cover crops is useful for developing effective agronomic management and nitrogen (N) fertilization strategies.

Materials and methods

Dynamics of soil extractable inorganic and organic carbon (C) and N pools were investigated under six cover crop treatments, which included two legume crops (capello woolly pod vetch and field pea), three non-legume crops (wheat, Saia oat and Indian mustard), and a nil-crop control (CK) in southeastern Australia. Cover crops at anthesis were crimp-rolled onto the soil surface in October 2009. Soil and crop residue samples were taken over the periods October?CDecember (2009) and March?CMay (2010), respectively, to examine remaining crop residue biomass, soil NH4 +?N and NO3 ??CN as well as EOC and EON concentrations using extraction methods of 2?M KCl and hot water. Additionally, soil net N mineralization rates were measured for soil samples collected in May 2010.

Results and discussion

The CK treatment had the highest soil inorganic N (NH4 +?N?+?NO3 ??CN) at the sampling time in December 2009 but decreased greatly with sampling time. The cover crop treatments had greater soil EOC and EON concentrations than the CK treatment. However, no significant differences in soil NH4 +?N, NO3 ??CN, EOC, EON, and ratios of EOC to EON were found between the legume and non-legume cover crop treatments across the sampling times, which were supported by the similar results of soil net N mineralization rates among the treatments. Stepwise multiple regression analyses indicated that soil EOC in the hot water extracts was mainly affected by soil total C (R 2?=?0.654, P?<?0.001), while the crop residue biomass determined soil EON in the hot water extracts (R 2?=?0.591, P?<?0.001).

Conclusions

The cover crop treatments had lower loss of soil inorganic N compared with the CK treatment across the sampling times. The legume and non-legume cover crop treatments did not significantly differ in soil EOC and EON pools across the sampling times. In addition, the decomposition of cover crop residues had more influence on soil EON than the decomposition of soil organic matter (SOM), which indicated less N fertilization under cover crop residues. On the other hand, the decomposition of SOM exerted more influence on soil EOC across the sampling times among the treatments, implying different C and N cycling under cover crops.  相似文献   

16.

Purpose

Long-term fertilization can influence soil biological properties and relevant soil ecological processes with implications for sustainable agriculture. This study determined the effects of long-term (>25 years) no fertilizer (CK), chemical fertilizers (NPK) and NPK combined with rice straw residues (NPKS) on soil bacterial and fungal community structures and corresponding changes in soil quality.

Materials and methods

Soil samples were collected from a long-term field site in Wangcheng County established in 1981 in subtropical China between mid summer and early autumn of 2009. Terminal restriction fragment length polymorphism (T-RFLP) and the real-time quantitative polymerase chain reaction (real-time qPCR) of bacterial and fungal community and microbial biomass (MB-C, -N and -P) were analyzed.

Results and discussion

Redundancy analysis of the T-RFLP data indicated that fertilization management modified and selected microbial populations. Of the measured soil physiochemical properties, soil organic carbon was the most dominant factors influencing bacterial and fungal communities. The bacterial and fungal diversity and abundance all showed increasing trends over time (>25 years) coupling with the increasing in SOC, total N, available N, total P, and Olsen P in the fertilized soils. Compared to chemical fertilizer, NPKS resulted in the greater richness and biodiversity of the total microbial community, soil organic C, total N, MB-C, -N and -P. The high biodiversity of microbial populations in NPKS was a clear indication of good soil quality, and also indicated higher substrate use efficiency and better soil nutrient supplementation. Otherwise, unfertilized treatment may have a soil P limitation as indicated by the high soil microbial biomass N: P ratio.

Conclusion

Our results suggest that NPKS could be recommended as a method of increasing the sustainability of paddy soil ecosystems.  相似文献   

17.
In this work the arbuscular mycorrhizal (AM) fungal communities colonizing a polluted ash dump island, downtown Venice, were studied by using a multimodal approach. The island, Sacca San Biagio, was covered with a thick layer of municipal solid waste residues produced by an incinerator operating from 1973, to 1984. Such residues contained high levels of heavy metals (Cu, Pb and Zn). We characterized the AMF communities present in soils on Sacca San Biagio island by using molecular methods. Nine AM fungal sequence types were detected in the roots of three plant species, representative of the dominant flora, by using partial SSU ribosomal RNA genes. The most abundant sequence types corresponded to Glomus intraradices/Glomus fasciculatum, and to Glo18, a sequence detected so far only in planta. Two sequences were new to science. Glomalin-related soil protein (GRSP), extracted from rhizosphere soil of dominant plant species, ranged from 1.6 to 2.3 mg g−1. The occurrence of an active AM fungal community able to live in such harsh environment was evinced by the correlation between mycorrhizal colonization and GRSP content.  相似文献   

18.

Purpose

We investigate the coevolution of soil organic matter (SOM) and soil properties in a semiarid Mediterranean agroecosystem, as well as the 1-year evolution of the different pools of soil organic and inorganic carbon and their influence on soil respiration after the application of a single high dose of three different organic amendments.

Material and methods

We applied a single high dose (160?Mg?ha?1 in dry weight (DW)) of three types of organic amendments: aerobically digested sewage sludge (AE), anaerobically digested sewage sludge (AN), and municipal solid waste compost (MSWC), in a calcareous Mediterranean soil. The study area is located in the southeast of Madrid (Spain), characterized by a Mediterranean climate with a marked seasonal and daily contrast. We analyzed different forms of soil organic and inorganic carbon and soil respiration rates. The measurements have been performed quarterly for 1?year.

Results and discussion

The results showed that the coevolution of SOM and soil largely depends on the origin and composition of the organic amendments used. The AN sludge affected the soil chemistry more. The organic matter (OM) provided by AE treatments underwent more intense mineralization processes than AN, with the OM from MSWC being more stable. This behavior could be explained by the different pools of carbon involved in each case. The treatments contributed differently to soil respiration rates following the sequence: AE > AN > MSWC. The application of organic amendments in calcareous Mediterranean soils also modified the inorganic carbon pools.

Conclusions

SOM and soil coevolution after organic amendments application depends on the origin and chemical composition of the inputs. The decision-making process of urban organic waste application with regard to agricultural policy must take into account the different behavior in soil of the different types of amendments.  相似文献   

19.
We investigated the Collembola community at an arable field where mineral and organic fertilizers have been applied at low and high rates for 27 years. As food resources for Collembola, the soil microbial community was analyzed using phospholipid fatty acids (PLFAs). A special focus was put on AM fungi, which were estimated by the marker 16:1ω5 in PLFA (viable hyphae) and neutral lipid fatty acid (NLFA – storage fat in spores) fractions. Additionally, whole cellular lipids in crop plant tissues and manure were assessed. Greater Collembola species richness occurred in plots where mineral fertilizer was added. In contrast, soil microbial biomass including AM fungal hyphae increased with addition of organic fertilizer, while the amount of AM fungal spores and biomass of saprotrophic fungi were not affected by fertilizer type. The lipid pattern in wheat roots was altered by fertilizer type, application rate and their interaction, indicating different rhizosphere communities. In sum, the availability and composition of food resources for Collembola changed considerably due to farm management practice. The major diet of three dominant Collembola species, Isotoma viridis, Willemia anophthalma and Polyacanthella schäffer was determined by lipid profiling. Multivariate analysis demonstrated species specific lipid patterns, suggesting greater importance of species than management practice on the diet choice. Nevertheless, feeding strategy was affected by fertilizer type and availability of resources, as trophic biomarker fatty acids indicated feeding on wheat roots (and to some extent saprotrophic fungi) with mineral and a shift to soil organic matter (litter, detritus) with organic fertilization. Although AM fungi dominated the soil fungal community, the AMF marker 16:1ω5 was not detected in Collembola lipids, indicating that these were not consumed. The very low amount of saprotrophic fungi in the soil and the fact that Collembola as major fungal grazers did not feed on AM fungi indicates that the fungal energy channel in the investigated arable field is of little importance to the faunal food web.  相似文献   

20.
Soil samples collected from a long-term (19-year) experimental field with seven treatments were analyzed for fatty acids methyl esters (FAMEs) to determine fertilization regime effects on microbial community structure in sandy loam soils. The amounts of FAMEs in bacteria, actinomycetes, and fungi were highest with the two organic manure (OM)-fertilized treatments (OM and 1/2 OMN – half OM plus half mineral fertilizer), lowest with the NK treatment, and fell in the middle levels with three mineral P-fertilized treatments (NPK, NP and PK) and the control with no fertilizer (CK), with the exception of fungi which showed no significant difference among the five treatments without OM fertilization. Principal component analysis of FAME patterns indicated that NPK was not significantly different from CK, but the two manure-containing treatments and the P-deficiency treatment (NK) were significantly different from CK and NPK. Redundancy analysis plot showed that FAME amounts significantly correlated to soil organic C and total N contents, while soil available P and total P contents, which were greatly decreased by the NK treatment, also had positive and substantial effects on soil microbial FAMEs. The results demonstrated the importance of P fertilization as well as organic manure in maintaining soil microbial biomass and impacting community structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号