首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Previous studies show that application of biochar can reduce the bioavailability of heavy metals in soil. A plant growth experiment was carried out to evaluate the effect of tobacco stalk- and dead pig-derived biochars on the extractability and redistribution of cadmium (Cd) and zinc (Zn) in contaminated soil, and the impact on tobacco (Nicotiana tabacum L.) plant growth.

Materials and methods

The top 20 cm of a soil contaminated with Cd and Zn was used in this study. Biochars derived from tobacco stalk and dead pig were applied to the soil at four application rates (0, 1, 2.5, and 5 %), and tobacco plants were grown. After 80-days growth, the pH, electrical conductivity (EC), CaCl2-extractable heavy metals and fractions of heavy metals in soil samples, as well as the plant biomass and the concentrations of heavy metals in the plant were determined.

Results and discussion

The plant growth experiment demonstrated that tobacco stalk biochar and dead pig biochar significantly (P?<?0.05) increased the pH, but had no significant effect on the electrical conductivity (EC) of the soil. The CaCl2-extractable Cd and Zn content decreased as the application rates increased. The concentration of extractable Cd and Zn decreased by 64.2 and 94.9 %, respectively, for the tobacco stalk biochar treatment, and 45.8 and 61.8 %, respectively, for the dead pig biochar treatment at 5 % application rate. After biochar addition, the exchangeable Cd was mainly transformed to fractions bound to carbonates and Fe-Mn oxides, while the Zn was immobilized mainly in the fraction bound to Fe-Mn oxides. Tobacco stalk biochar increased the tobacco plant biomass by 30.3 and 36.2 % for shoot and root, respectively at the 5 % application rate. Dead pig biochar increased the tobacco plant biomass by 43.5 and 40.9 % for shoot and root, respectively, at the 2.5 % application rate. Both biochars significantly (P?<?0.05) decreased the Cd and Zn accumulation by tobacco plant.

Conclusions

As a soil amendment, tobacco stalk biochar was more effective at removing Cd, whereas dead pig biochar was more effective at removing Zn, and a higher application rate was more effective than a lower application rate. Overall, biochar derived from tobacco stalk was more effective, than dead pig biochar, at remediating soil contaminated with Cd and Zn, as well as promoting tobacco growth.
  相似文献   

2.

Purpose

Biochar addition to soils potentially affects various soil properties, and these effects are dependent on biochars derived from different feedstock materials and pyrolysis processes. The objective of this study was to investigate the effects of amendment of different biochars on soil physical and hydraulic properties.

Materials and methods

Biochars were produced with dairy manure and woodchip at temperatures of 300, 500, and 700 °C, respectively. Each biochar was mixed at 5 % (w/w) with a forest soil, and the mixture was incubated for 180 days, during which soil physical and hydraulic properties were measured.

Results and discussion

Results showed that the biochar addition significantly enhanced the formation of soil macroaggregates at the early incubation time. The biochar application significantly reduced soil bulk density, increased the amount of soil organic matter, and stimulated microbial activity at the early incubation stage. Saturated hydraulic conductivities of the soil with biochars, especially produced at high pyrolysis temperature, were higher than those without biochars on the sampling days. The treatments with woodchip biochars resulted in higher saturated hydraulic conductivities than the dairy manure biochar treatments. Biochar applications improved water retention capacity, with stronger effects by biochars produced at higher pyrolysis temperatures. At the same suction, the soil with woodchip biochars possessed higher water content than that with the dairy manure biochars.

Conclusions

Biochar addition significantly affected the soil physical and hydraulic properties. The effects were different with biochars derived from different feedstock materials and pyrolysis temperatures.  相似文献   

3.

Purpose

Biochars are a by-product of the biofuel processing of lignocellulosic and manure feedstocks. Because biochars contain an assemblage of organic and inorganic compounds, they can be used as an amendment for C sequestration and soil quality improvement. However, not all biochars are viable soil amendments; this is because their physical and chemical properties vary due to feedstock elemental composition, biofuel processing, and particle size differences. Biochar could deliver a more effective service as a soil amendment if its chemistry was designed ex ante with characteristics that target specific soil quality issues. In this study, we demonstrate how biochars can be designed with relevant properties as successful soil amendments through feedstock selection, pyrolysis conditions, and particle size choices.

Materials and methods

Biochars were produced by pyrolysis of parent lignocellulosic feedstock sources—peanut hull (PH; Archis hypogaea), pecan shell (PS; Carya illinoensis), switchgrass (SG; Panicum virgatum), pine chips (PC; Pinus taeda), hardwood wastes (wood), and poultry litter manure (PL; Gallus domesticus), as well as blends of these feedstocks at temperatures ranging from 250 to 700 °C. Additionally, blended feedstocks were made into pellets (>2 mm) prior to pyrolysis at 350 °C. Dust-sized (<0.42 mm) biochar was obtained through grinding of pelletized biochars. After chemical characterization, the biochars were evaluated as fertility amendments in a Norfolk soil (fine-loamy, kaolinitic, thermic, Typic Kandiudult) during two different pot incubation experiments.

Results and discussion

PL biochars were alkaline and enriched in N and P, whereas biochar from lignocellulosic feedstocks exhibited mixed pH and nutrient contents. Blending PL with PC resulted in lower biochar pH values and nutrient contents. In pot experiment 1, most biochars significantly (P?<?0.05) raised soil pH, soil organic carbon, cation exchange capacity, and Mehlich 1 extractable P and K. PL biochar added at 20 g?kg?1 resulted in excessive soil P concentrations (393 to 714 mg?kg?1) and leachate enriched with dissolved phosphorus (DP, 22 to 70 mg?L?1). In pot experiment 2, blended and pelletized PL with PC feedstock reduced soil pH and extractable soil P and K concentrations compared to pot experiment 1. Water leachate DP concentrations were significantly (P?<?0.05) reduced by pelletized biochar blends.

Conclusions

Short-term laboratory pot experiments revealed that biochars can have different impacts at modifying soil quality characteristics. Keying on these results allowed for creating designer biochars to address specific soil quality limitations. In the process of manufacturing designer biochars, first, it is important to know what soil quality characteristics are in need of change. Second, choices between feedstocks, blends of these feedstocks, and their accompanying particle sizes can be made prior to pyrolysis to create biochars tailored for addressing specific soil quality improvements. Utilization of these principles should allow for effective service of the designed biochar as a soil amendment while minimizing unwanted ex facto soil quality changes and environmental effects.  相似文献   

4.

Purpose

Biochars have been considered as useful soil amendments due to their beneficial properties in improving soil fertility, carbon (C) sequestration, and soil decontamination. In our study, a series of biochars produced from different types of feedstocks at two pyrolysis temperatures (300 and 500 °C) were characterized to evaluate their different potentials as soil amendments.

Materials and methods

Ten types of feedstocks were used to prepare biochars at the pyrolysis temperatures of 300 and 500 °C, for 2 h. Chemical and physical analyses, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier Transform Infrared (FTIR) analyses were conducted to determine differences in biochar properties. Then, soil incubation studies were used to investigate the relationships between these biochar properties and their different ameliorant values in soil.

Results and discussion

The pH, ash, total C, total potassium, total phosphorus, total base cation concentrations, surface areas, and total pore volumes of biochars produced at 500 °C were higher than at 300 °C, while the reverse applied for yields, total oxygen and total hydrogen, and average pore widths and particle sizes. Cluster analysis suggested that biochars derived from similar feedstock types belonged in the same category. The SEM, XRD, and FTIR analyses of typical biochars from the different categories suggested both variations and similarities in their characteristics. In addition, the results from soil incubation experiments were consistent with the conclusions made from biochar characteristics analysis.

Conclusions

Biochars derived from swine manures, fruit peels, and leaves with high pH and macro-nutrients appeared appropriate to increase soil pH and soil nutrient availability; whereas, biochars from wetland plant residues with high C concentrations and Brunauer–Emmett–Teller were better for soil C sequestration and contaminant adsorption.  相似文献   

5.

Purpose

Diethyl phthalate (DEP) is one of the most commonly used plasticizers as well as a soil contaminant. Using biochar to remediate soils contaminated with DEP can potentially reduce the bioavailability of DEP and improve soil properties. Therefore, a laboratory study was conducted to evaluate the effect of biochar on soil adsorption and desorption of DEP.

Materials and methods

Two surface soils (0–20 cm) with contrasting organic carbon (OC) contents were collected from a vegetable garden. Biochars were derived from bamboo (BB) and rice straw (SB) that were pyrolyzed at 350 and 650 °C. Biochars were added to two types of soil at rates of 0.1 and 0.5 % (w/w). A batch equilibration method was used to measure DEP adsorption-desorption in biochar treated and untreated soils at 25 °C. The adsorption and desorption isotherms of DEP in the soils with or without biochar were evaluated using the Freundlich model.

Results and discussion

The biochar treatments significantly enhanced the soil adsorption of DEP. Compared to the untreated low organic matter soil, the soils treated with 0.5 % 650BB increased the adsorption by more than 19,000 times. For the straw biochar treated soils, the increase of DEP adsorption followed the order 350SB?>?650SB. However, for the bamboo biochars, the order was 650BB?>?350BB. Bamboo biochars were more effective than the straw biochars in improving soils’ adsorption capacity and reducing the desorption ability of DEP.

Conclusions

Adding biochar to soil can significantly enhance soil’s adsorption capacity on DEP. The 650BB amended soil showed the highest adsorption capacity for DEP. The native soil OC contents had significant effects on the soils’ sorption capacity treated with 650BB, whereas they had negligible effects on the other biochar treatments. The sorption capacity was affected by many factors such as the feedstock materials and pyrolysis temperature of biochars, the pH value of biochar, and the soil organic carbon levels.  相似文献   

6.

Purpose

We evaluated the ameliorative effects of crop straw biochars either alone or in combination with nitrate fertilizer on soil acidity and maize growth.

Materials and methods

Low energy-consuming biochars were prepared from canola and peanut straws at 400 °C for 2 h. Incubation experiment was conducted to determine application rate of biochars. Afterward, maize crop was grown in pots for 85 days to investigate the effects of 1 % biochars combined with nitrate fertilizer on soil pH, exchangeable acidity, and maize growth in an Ultisol collected from Guangdong Province, China.

Results and discussion

Application of 0.5, 1.0, and 1.5 % either canola straw biochar (CSB) or peanut straw biochar (PSB) increased soil pH by 0.15, 0.27, 0.34, and 0.30, 0.58, 0.83 U, respectively, after 65-day incubation. Soil pH was increased by 0.49, 0.72, 0.78, and 0.88 U when 1 % CSB or PSB was applied in combination with 100 and 200 mg N/kg of nitrate, respectively, after maize harvest in greenhouse pot experiment. These low-cost biochars when applied alone or in combination with nitrate not only reduced soil exchangeable acidity, but also increased Ca2+, Mg2+, K+, Na+, and base saturation degree of the soil. A total of 49.91 and 80.58 % decreases in exchangeable acidity were observed when 1 % CSB and PSB were incubated with the soil for 65 days, compared to pot experiment where 71.35, 78.64, 80.2, and 81.77 % reductions of exchangeable acidity were observed when 1 % CSB and PSB were applied in combination with 100 and 200 mg N/kg of nitrate, respectively. The higher contents of base cations (Ca2+, Mg2+, K+, Na+) in biochars also influenced the plant growth. The higher biomass in CSB-treated pots was attributed to the higher K content compared to PSB. The higher percent reduction in exchangeable Al3+ by applying 1 % CSB combined with 200 mg N/kg of nitrate consistently produced maximum biomass (129.65 g/pot) compared to 100 mg N/kg of nitrate and 1 % PSB combined with 100 and 200 mg N/kg of nitrate. The exchangeable Al3+ mainly responsible for exchangeable acidity was decreased with the application of biochars and nitrate fertilizer. A highly significant negative relationship was observed between soil exchangeable Al3+ and plant biomass (r 2?=?0.88, P?<?0.05).

Conclusions

The biochars in combination with nitrate fertilizer are cost-effective options to effectively reduce soil acidity and improve crop growth on sustainable basis.
  相似文献   

7.

Purpose

Many amendments have been applied to immobilize heavy metals in soil. However, little information is available on the changes of immobilization efficiencies of heavy metals in contaminated soils over time. This work investigated the immobilization efficiencies of copper (Cu) and cadmium (Cd) in contaminated soils in situ remediated with one-time application of three amendments for 1 year and 4 years.

Materials and methods

Apatite, lime, and charcoal were mixed with the topsoil of each plot with the amounts of 22.3, 4.45, and 66.8 t/ha, respectively. Soil chemical properties and fractions of Cu and Cd were examined after in situ remediation for 1 year and 4 years. Soil sorption and retention capacities and desorption proportions for Cu and Cd were investigated by batch experiments.

Results and discussion

The addition of amendments significantly increased soil pH, but decreased exchange acid and aluminum (Al). The amendments significantly decreased the CaCl2 extractable Cu and Cd and transformed them from active to inactive fractions. After the application of amendments for 1 year, the maximum sorption capacities ranged from 35.6 to 38.8 mmol/kg for Cu and from 14.4 to 17.0 mmol/kg for Cd, which were markedly higher than those of the application of amendments for 4 years (Cu, 29.6–34.7 mmol/kg; Cd, 10.9–16.4 mmol/kg). Desorption proportions (D) of Cu and Cd using three extractants followed the order of \( {D}_{{\mathrm{NaNO}}_3}<{D}_{{\mathrm{CaCI}}_2}<{D}_{{\mathrm{MgCI}}_2} \) . Moreover, the retention capacities (R) of Cu and Cd both increased and followed the order of R apatite?>?R lime?>?R charcoal, resulting in higher Cu and Cd in the amended soils than the untreated soil.

Conclusions

Apatite, lime, and charcoal increased the soil sorption and retention capacities of Cu and Cd and resulted in higher immobilization efficiencies in the amended soils than the untreated soil. However, the immobilization efficiencies of Cu and Cd decreased with the decrease of sorption capacities after 4 years. It was concluded that apatite had the best effect on the long-term stability of immobilized Cu and Cd and can be applied to immobilize heavy metals in contaminated soils.  相似文献   

8.

Purpose

Biochars are increasingly recognized as effective, inexpensive, and environmentally friendly sorbents for abating organic contaminants. In this study, the sorption and competitive sorption characteristics of simazine (SZ), metsulfuron-methyl (ME), and tetracycline (TC) to corn straw biochars and soil were examined to understand the interactions of herbicides and antibiotics with biochars and the potential role of biochars as engineered sorbents.

Materials and methods

Biochars were obtained by pyrolyzing corn straw at 400, 500, and 600 °C for 6 h under oxygen-limited conditions and were characterized via elemental analysis, N2-BET surface area determination, 13C nuclear magnetic resonance spectroscopy, and Fourier transform infrared spectroscopy. Soil was collected from North Tanggu Farm in Tianjin, and its organic carbon, cation exchange capacity, and particle size distribution were analyzed. The batch sorption experiments were performed to obtain the sorption isotherms of SZ, ME, and TC to biochars and soil.

Results and discussion

The biochars that were pyrolyzed at higher temperatures had higher sorption affinities for SZ, ME, and TC, which may be due to the enhancement of hydrophobic interactions, charge transfer (ππ*) interactions, and pore-filling mechanism. The sorption affinities for these compounds to all biochars decreased in the order SZ?>?TC?>?ME, indicating that the neutral molecule with a stronger hydrophobicity is more easily adsorbed by biochars. For soil, the decrease of the sorption affinities followed the order TC?>?SZ?>?ME due to the high sorption affinity of TC with clays in the soil. Moreover, the sorption affinities of TC by biochars were lower than by soil, indicating that corn straw biochars may be not an ideal sorbent for the immobilization of TC. Biochars were much more effective in sorbing SZ and ME than soil, indicating that corn straw biochars can potentially prevent transport of the herbicides to surface and ground water. Nevertheless, the presence of TC significantly hinders biochar adsorption of SZ and ME, implying that the coexisting contaminants should be considered when developing biochars as engineered sorbents.

Conclusions

The observations in this study demonstrated that the sorption of organic contaminants by biochars is dependent on the properties of the biochars and the molecular structures of the contaminants. Corn straw biochars effectively retain SZ and ME and hinder their transportation to surface and ground water; however, the coexisting contaminants should be considered. Our results will be helpful for designing biochars as engineered sorbents for environmental applications.  相似文献   

9.
Effects of repeated application of urea (UN) and calcium nitrate (CN) singly and together with crop straw biochars on soil acidity and maize growth were investigated with greenhouse pot experiments for two consecutive seasons. Canola straw biochar (CB), peanut straw biochar (PB) and wheat straw biochar (WB) were applied at 1% of dried soil weight in the first season. N fertilizers were applied at 200 mg N kg?1. In UN treatments, an initial rise in pH was subjected to proton consumption through urea hydrolysis, afterwards nitrification of NH4+ caused drastic reductions in pH as single UN had soil pH of 3.70, even lower than control (4.27) after the 2nd crop season. Post-harvest soil analyses indicated that soil pH, soil exchangeable acidity, NH4+, NO3? and total base cations showed highly significant variation under N and biochar types (< 0.05). Articulated growth of plants under combined application with biochars was expressed by 22.7%, 22.5%, and 35.7% higher root and 25.6%, 23.8%, and 35.9% higher shoot biomass by CB, PB and WB combined with CN over UN, respectively. Therefore, CN combined with biochars is a better choice to correct soil acidity and improve maize growth than UN combined with biochars.  相似文献   

10.

Purpose

Remediation of metal contaminated soil with biochar is attracting extensive interest in recent years. Understanding the significance of variable biochar properties and soil types helps elucidating the meticulous roles of biochar in immobilizing/mobilizing metals/metalloids in contaminated soils.

Materials and methods

Six biochars were produced from widely available agricultural wastes (i.e., soybean stover, peanut shells and pine needles) at two pyrolysis temperatures of 300 and 700 °C, respectively. The Pb-, Cu-, and Sb-contaminated shooting range soils and Pb-, Zn-, and As-contaminated agricultural soils were amended with the produced biochars. The mobility of metals/metalloids was assessed by the standard batch leaching test, principal component analysis and speciation modeling.

Results and discussion

The changes in soil properties were correlated to feedstock types and pyrolysis temperatures of biochars based on the principal component analysis. Biochars produced at 300 °C were more efficient in decreasing Pb and Cu mobility (>93 %) in alkaline shooting range soil via surface complexation with carboxyl groups and Fe-/Al-minerals of biochars as well as metal-phosphates precipitation. By contrast, biochars produced at 700 °C outperformed their counterparts in decreasing Pb and Zn mobility (100 %) in acidic agricultural soil by metal-hydroxides precipitation due to biochar-induced pH increase. However, Sb and As mobility in both soils was unfavorably increased by biochar amendment, possibly due to the enhanced electrostatic repulsion and competition with phosphate.

Conclusions

It is noteworthy that the application of biochars is not equally effective in immobilizing metals or mobilizing metalloids in different soils. We should apply biochar to multi-metal contaminated soil with great caution and tailor biochar production for achieving desired outcome and avoiding adverse impact on soil ecosystem.
  相似文献   

11.
The aim of this study was to investigate the effect of biochar addition on the denitrification process and N2O emission in Cd-contaminated soil. Four different biochars, i.e., dairy manure and rice straw pyrolyzed at 350 and 550 °C, respectively, were added into a Cd-contaminated soil and incubation experiments were conducted for 8 weeks. Results showed that Cd had an inhibitory effect on denitrifying reductase enzymes and reduced the abundance of functional genes. On the contrary, amendment with the biochars increased denitrifying enzyme activity and gene abundance, and thus, enhanced the denitrification process. Labile carbon (C) in the biochar-amended soil, which was calculated based on the two-pool exponential model, was the key factor to facilitate this process. As a less important factor, elevated soil pH by biochar addition also increased denitrifying activity as well as the nosZ abundance. Decrease of Cd bioavailability by the biochar addition was beneficial to the denitrification process. Addition of the biochars with higher amount of NO3 ?-N, especially the rice straw-derived biochars, increased cumulative N2O emission by more than ten times relative to the Cd-contaminated soil. With the great amount of labile C and NO3 ?-N, the treatment of biochars prepared at 350 °C released the larger amount of CO2 and N2O than other treatments. The biochar addition could totally release the heavy metal stress and restore the Cd-contaminated soil in terms of bacterial community.  相似文献   

12.

Purpose

Effects of phytoextraction by Sedum alfredii H., a native cadmium hyperaccumulator, on metal removal from and microbial property improvement of a multiple heavy metals contaminated soil were studied under greenhouse conditions.

Materials and methods

A rhizobox experiment with an ancient silver-mining ecotype of S. alfredii natively growing in Zhejiang Province, China, was conducted for remediation of a multiple heavy metals contaminated soil. The rhizobox was designed combining the root-shaking method for the separation of rhizospheric vs near-rhizospheric soils and prestratifying method for separation of sublayers rhizospheric soils (0–10 mm from the root) and bulk soil (>10 mm from the root). Soil and plant samplings were carried out after 3 and 6 months of plant growth.

Results and discussion

Cadmium (Cd), zinc (Zn), and lead (Pb) concentrations in shoots were 440.6, 11,893, and 91.2 mg kg?1 after 6 months growth, and Cd, Zn, and Pb removed in the shoots were 0.862, 25.20, and 0.117 mg/plant. Microbial biomass C, basal respiration, urease, acid phosphatase, and invertase activities of the rhizospheric soils were significantly higher than that of unplanted soils after 6 months growth. Microbial biomass carbon (MBC) of 0–2 mm and basal respiration (BR) rate of 0–8 mm sublayer rhizospheric soils were significantly higher than that of bulk soil after 6 months growth. So were the three enzyme activities of 0–4 mm sublayer rhizospheric soils. BR rate and urease were significantly negatively correlated with soluble Cd, so were MBC, acid phosphatase, and intervase activities with soluble Zn, MBC, BR rate, and three enzyme activities with soluble Pb.

Conclusions

Harvesting shoots of S. alfredii could remove remarkable amounts of Cd, Zn, Pb, and lower water-soluble Cd, Zn, and Pb concentrations in the rhizospheric soils. MBC, BR rate, and enzyme activities of the metal polluted soil, especially the rhizospheric soils increased with phytoextraction process, which is attributed to the stimulation of soil microbes by planting as well as the decrease in soil-soluble metal concentration.  相似文献   

13.

Purpose

In this study, we investigated the effect of biochar (BC) and fungal bacterial co-inoculation (FB) on soil enzymatic activity and immobilization of heavy metals in serpentine soil in Sri Lanka.

Materials and methods

A pot experiment was conducted with tomatoes (Lycopersicon esculentum L.) at 1, 2.5, and 5 % (w/w) BC ratios. Polyphenol oxidase, catalase and dehydrogenase activities were determined by idometric, potassium permanganate oxidisable, and spectrophotometric methods, respectively. Heavy metal concentrations were assessed by 0.01 M CaCl2 and sequential extraction methods.

Results and discussion

An increase in BC application reduced polyphenol oxidase, dehydrogenase, and catalase activity. The application of FB increased soil dehydrogenase activity, with the maximum activity found in 1 % BC700?+?FB treatment. Moreover, the CaCl2 extractable metals (Ni, Mn, and Cr) in 5 % BC700 amended soil decreased by 92, 94, and 100 %, respectively, compared to the control. Sequential extraction showed that the exchangeable concentrations of Ni, Mn, and Cr decreased by 55, 70, and 80 % in 5 % BC700, respectively.

Conclusions

Results suggest that the addition of BC to serpentine soil immobilizes heavy metals and decreases soil enzymatic activities. The addition of FB to serpentine soil improves plant growth by mitigating heavy metal toxicity and enhancing soil enzymatic activities.
  相似文献   

14.

Purpose

Biochar can be used to reduce the bioavailability and leachability of heavy metals, as well as organic pollutants in soils through adsorption and other physicochemical reactions. The objective of the study was to determine the response of microbial communities to biochar amendment and its influence on heavy metal mobility and PCBs (PCB52, 44, 101, 149, 118, 153, 138, 180, 170, and 194) concentration in application of biochar as soil amendment.

Materials and methods

A pot (macrocosm) incubation experiment was carried out with different biochar amendment (0, 3, and 6 % w/w) for 112 days. The CaCl2-extractable concentration of metals, microbial activities, and bacterial community were evaluated during the incubation period.

Results and discussion

The concentrations of 0.01 M CaCl2-extractable metals decreased (p?>?0.05) by 12.7 and 20.5 % for Cu, 5.0 and 15.6 % for Zn, 0.2 and 0.5 % for Pb, and 1.1 and 8.9 % for Cd, in the presence of 3 and 6 % of biochar, respectively, following 1 day of incubation. Meanwhile, the total PCB concentrations decreased from 1.23 mg kg?1 at 1 day to 0.24 mg kg?1 at 112 days after 6 % biochar addition, representing a more than 60 % decrease relative to untreated soil. It was also found out that biochar addition increased the biological activities of catalase, phosphatase, and urease activity as compared with the controls at the same time point. Importantly, the Shannon diversity index of bacteria in control soils was 3.41, whereas it was 3.69 and 3.88 in soils treated with 3 and 6 % biochar soil. In particular, an increase in the number of populations with the putative ability to absorb PCB was noted in the biochar-amended soils.

Conclusions

The application of biochar to contaminated soils decreased the concentrations of heavy metals and PCBs. Application of biochar stimulated Proteobacteria and Bacteroides, which may function to absorb soil PCB and alleviate their toxicity.
  相似文献   

15.

Purpose

There is a growing interest in the use of soil enzymes as early indicators of soil quality change under contrasting agricultural management practices. In recent years, there has been increasing interest in the use of biochar to improve soil properties and thus soil quality. In addition, earthworms can also be used to ameliorate soil properties. However, there is no literature available on how biochar and earthworms interact and affect soil enzymes. The general objective of the present study was to test the suitability of adding biochar and earthworms in two tropical soils with low fertility status in order to improve their characteristics and productivity.

Materials and methods

Biochars were prepared from four different materials [sewage sludge (B1), deinking sewage sludge (B2), Miscanthus (B3) and pine wood (B4)] on two tropical soils (an Acrisol and a Ferralsol) planted with proso millet (Panicum milliaceum L.). In addition, in order to investigate the interaction between earthworms and biochar, earthworm Pontoscolex corethrurus was added to half of the mesocosms, while excluded in the remaining half. The activities of invertase, β-glucosidase, β-glucosaminidase, urease, phosphomonoesterase and arylsulphatase were determined. The geometric mean of the assayed enzymes (GMea) was used as an integrative soil quality index.

Results and discussion

Overall, earthworms and especially biochar had a positive effect on soil quality. GMea showed B1, B2 and B3 performing better than B4; however, results were soil specific. Plant productivity increased under both biochar and earthworm addition. Fruit productivity and plant growth was enhanced by B1 and B2 but not by B3 or B4.

Conclusions

Enhancements of productivity and soil enzymatic activities are possible in the presence of earthworms and the combination of the practices earthworm and biochar addition can be suggested in low fertility tropical soils. However, scientists should proceed carefully in the selection of biochars as the results of this study show a high specificity in the biochar–soil interaction.  相似文献   

16.

Purpose

Soil acidification is universal in soybean-growing fields. The aim of our research was to evaluate the effects of soil additives (N fertilizers and biochar) on crop performance and soil quality with specific emphasis on ameliorating soil acidity.

Materials and methods

Four nitrogen treatments were applied as follows: no nitrogen (N0), urea (N1), potassium nitrate (N2), and ammonium sulfate (N3), each providing 30 kg N ha?1. Half plot area of the N1, N2, and N3 treatments was also treated with biochar (19.5 t ha?1) to form N-biochar treatments (N1C, N2C, N3C). Both bulk and rhizosphere soils were sampled separately for the following analyses: pH, exchangeable base cations (EBC), exchangeable acidity (EA), total inorganic N (IN), total N (TN), and microbial phospholipid fatty acids (PLFAs). Soybean biomass and nutrient contents were also determined. Correlation analysis was applied to analyze the relationships between soil chemical properties and soybean plant parameters.

Results and discussion

With N-biochar additions (N1C, N2C, N3C), soil chemical properties changed as follows: pH increased by 0.6–1.2 units, EBC, IN, and TN increased by 175–419, 38.5–54.7, and 136–452 mg kg?1, respectively, and PLFAs increased by 23.6–40.9 nmol g?1 compared to the N0 in the rhizosphere. Microbial PLFAs had positive correlations with soil pH; EBC; exchangeable K, Ca, Na, and Mg; TN; IN; NH4 +; and NO3 ? (r?=?0.66–0.84, p?<?0.01). There were negative correlations between PLFAs and EA or exchangeable Al (r?=??0.64, ?0.66, p?<?0.01), which indicated that the additives increased microbial biomass by providing a suitable environment with less acid stress and more nutrients. The additives increased soil NH4 + and NO3 ? by promoting soil organic N mineralization and reducing NH4 + and NO3 ? leaching. Moreover, the soybean seed biomass and the nutrient contents in seeds increased with N-biochar additions, especially in the N3C treatment.

Conclusions

N-biochar additions were effective in ameliorating soil acidity, which improved the microenvironment for more microbial survival. N-biochars influenced N transformations at the plant–soil interface by increasing organic N mineralization, reducing N leaching, and promoting N uptake by soybeans. The soil additive ammonium and biochar (N3C) were best in promoting soybean growth.
  相似文献   

17.

Purpose

Environmental chemistry of antimony (Sb) is still largely unknown. Many questions remain about its availability to plants and effects of fertilizers on mobility of Sb in the rhizosphere soil. In this work, we focused on the following problems: (1) uptake of Sb by wheat seedlings grown in soil enriched with this metalloid and (2) impact of soil amendments on the plant growth, Sb uptake from soil, and its transfer from roots to upper plant parts.

Materials and methods

To obtain further information on the possible transfer of Sb into plants, greenhouse pot experiments were carried out. Soil was spiked with 15 mg kg?1 of Sb and amended with either chicken manure or natural growth stimulator Energen. Wheat Triticum aestivum L. seedlings were grown in the soil during 17 days. Plants together with rhizosphere soil were collected several times in the course of the experiment. The ICP-OES and ICP-MS techniques were applied to determine the concentrations of macro- and trace elements in the plant and soil material.

Results and discussion

Growth of wheat seedlings in Sb-spiked soil resulted in Sb accumulation in roots and leaves of the plants. Energen and especially chicken manure were capable of stimulating transfer of Sb to more mobile and, as a consequence, more available to the plants form, thus enhancing both uptake of Sb from soil and its transfer from roots to upper plant parts. The accumulation of Sb by plants led to a decrease of Sb concentration in the rhizosphere soil with time, and the most significant decrease was observed after amendment of soil with fertilizers.

Conclusions

Fertilizers may be used to increase phytoextraction of Sb and its removal from contaminated soils. However, such an amendment of soil should be done with caution in order to exclude or at least reduce the negative effects on plants.  相似文献   

18.

Purpose

Biochar is increasingly being used as a soil amendment to both increase soil carbon storage and improve soil chemical and biological properties. To better understand the shorter-term (10 months) impacts of biochar on selected soil parameters and biological process in three different textured soils, a wide range of loading rates was applied.

Materials and methods

Biochar derived from eucalypt green waste was mixed at 0, 2.5, 5, 10 % (wt/wt) with a reactive black clay loam (BCL), a non-reactive red loam (RL) and a brown sandy loam (BSL) and placed in pots exposed to the natural elements. After 10 months of incubation, analysis was performed to determine the impacts of the biochar rates on the different soil types. Also, microbial biomass was estimated by the total viable counts (TVC) and DNA extraction. Moreover, potential nitrification rate and community metabolic profiles were assayed to evaluate microbial function and biological process in biochar-amended soils.

Results and discussion

The results showed that biochar additions had a significant impact on NH4 and NO3, total C and N, pH, EC, and soil moisture content in both a soil type and loading-dependent manner. In the heavier and reactive BCL, no significant impact was observed on the available P and K levels, or the total exchangeable base cations (TEB) and CEC. However, in the other lighter soils, biochar addition had a significant effect on the exchangeable Al, Ca, Mg, and Na levels and CEC. There was a relatively limited effect on microbial biomass in amended soils; however, biochar additions and its interactions with different soils reduced the potential nitrification at the higher biochar rate in the two lighter soils. Community metabolic profile results showed that the effect of biochar on carbon substrate utilization was both soil type and loading dependent. The BCL and BSL showed reduced rates of substrate utilization as biochar loading levels increased while the opposite occurred for the RL.

Conclusions

This research shows that biochar can improve soil carbon levels and raise pH but varies with soil type. High biochar loading rates may also influence nitrification and the function and activity of microbial community in lighter soils.
  相似文献   

19.

Purpose

Organic matter amendment is usually used to improve soil physicochemical properties and to sequester carbon for counteracting climate change. There is no doubt that such amendment will change microbial activity and soil nitrogen transformation processes. However, the effects of straw and biochar amendment on anammox and denitrification activity and on community structure in paddy soil are unclear.

Materials and methods

We conducted a 30-day pot experiment using rice straw and rice straw biochar to deepen our understanding about the activity, microbial abundance, and community structure associated with soil nitrogen cycling during rice growth.

Results and discussion

Regarding activity, anammox contributed 3.1–8.1% of N2 production and denitrification contributed 91.9–96.9% of N2 production; straw amendment resulted in the highest denitrification rate (38.9 nmol N g?1 h?1), while biochar amendment resulted in the highest anammox rate (1.60 nmol N g?1 h?1). Both straw and biochar amendments significantly increased the hzsB and nosZ gene abundance (p < 0.05). Straw amendment showed the highest nosZ gene abundance, while biochar amendment showed the highest hzsB gene abundance. Phylogenetic analysis of the anammox bacteria 16S rRNA genes indicated that Candidatus Brocadia and Kuenenia were the dominant genera detected in all treatments.

Conclusions

Straw and biochar amendments have different influences on anaerobic ammonia oxidation and denitrification within paddy soil. Our results suggested that the changes in denitrification and anammox rates in the biochar and straw treatments were mainly linked to functional gene abundance rather than microbial community structure and that denitrification played the more major role in N2 production in paddy soil.
  相似文献   

20.

Purpose

This study was aimed to investigate the potential of biochar (BC), a waste byproduct of a bioenegy industry, Sri Lanka, as a soil amendment to immobilize and reduce the phytotoxicity of Cr in tannery waste-polluted soil (TWS).

Materials and methods

The TWS and bioenergy waste BC were characterized for physio-chemical parameters. A pot experiment was conducted by adding three BC application rates, 1, 2.5, and 5 % (w/w) to investigate the immobilizing capacity and bioaccumulation of chromium (Cr) in tomato plants (Lycopersicon esculentum L.). Soils and plants were digested via microwave digestion and analyzed for total Cr. Further, sequential extraction was conducted to assess the fractionation of Cr before and after the application of bioenergy waste BC on TWS.

Results and discussion

The total Cr concentration in TWS was 12,285 mg/kg. The biomass of tomato plants grown in the 5 % BC amendment doubled compared to the biomass in BC-unamended soil. Bioaccumulation of Cr in plants grown in 5 % BC-amended TWS showed a decrease by 97 % compared to that of the BC-unamended soil. The CaCl2 extractability of Cr indicated that the bioavailability of Cr in the 5 % BC amendment has decreased by 68 % compared to the control. Sequentially extracted Cr in the exchangeable fraction decreased by 98 % in the 5 % BC amendment.

Conclusions

Pore diffusion, and adsorption via π-π electron donor-acceptor interactions were the primary mechanisms to be involved in the Cr retention in BC. Results suggested that the addition of BC to TWS reduces the mobility, bioavailability, and phytotoxicity of Cr in tomato plants.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号