首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
<正>为达到小麦节水高产撒播种植新农艺的目的,在广泛调研市场的基础上,从农机与农艺相结合的角度出发,针对小麦条播存在的水平均匀度、播深一致性差,前期垄间蒸发大,冬前苗弱,抗冬寒春旱能力差等问题以及市场上简易小麦旋耕撒播机的弊端,研制了一种适用于小麦等深撒播的联合作业播种机。该机一次进地可以完成施肥、土壤旋耕、等深撒播、起埂、镇压等全部作业,可以实现小麦均匀撒播,且播深一致。1机具技术方案  相似文献   

2.
针对当前播种机仿形效果差、播种深度稳定性差影响播种质量等问题,采用机械执行部件优化与电气控制相互配合的方法,设计了小麦宽苗带等深播种装置。设计出等高位宽幅播种开沟器和刮土整备器,优化了开沟器与覆土器;通过PLC系统对地表的镇压轮垂直反力的监测,采用闭环控制实现播种深度的实时控制。并对装置进行试验,试验结果表明:理论播种深度为25、30、35mm时,实际播种深度均值为25.7、29.4、35.7mm,播深稳定性系数为92.6%、93.2%、90.8%,播种深度一致,满足了播深稳定性要求。  相似文献   

3.
秸秆后覆盖小麦播种机设计与试验   总被引:3,自引:0,他引:3  
针对华北平原麦-玉两熟区,小麦在玉米秸秆覆盖地撒播易出现秸秆堵塞、麦种架空、晾籽等问题,利用正转旋耕抛土模型以形成土壤、秸秆顺序覆盖,设计了一种秸秆后覆盖小麦播种机,可一次完成旋耕、均匀撒播、覆土、覆盖秸秆、镇压等作业。旋耕刀采用对称螺旋线排列;通过抛土运动分析确定了被抛物料运动的最大高度为0.52 m,水平方向最大位移为0.79 m,并确定了导土板的位置参数;通过性能试验优选分种装置与水平方向夹角为35°,分种板间的距离为50 mm。在河北涿州试验站进行了整机田间试验,结果表明:正转旋耕装置能有效抛土、抛秸秆,避免秸秆、根茬堵塞分种装置,耕深稳定在148~152 mm内,耕深稳定性系数为95.5%,多功能行走轮滑移率约为5.3%,机具通过性能符合国家标准(GB/T 20865—2007)要求;机具作业后秸秆覆盖量平均为1.07 kg/m2,达到作业前秸秆覆盖量的80%;播深稳定在30~35 mm内,播深合格率为91.1%,不同位置幅宽内10 cm×25 cm矩形框内麦种数量稳定在29~30粒,符合农艺要求。  相似文献   

4.
电动小麦撒播机技术研究   总被引:1,自引:0,他引:1  
0前言近年来,在稻、麦两熟制种植地区,常规的种植方式普遍存在着水稻收获期推迟、小麦种植时间较晚的问题,大多数小麦种植错过最佳播种期,严重影响了小麦高产栽培技术的推广应用。为了抢抓小麦种植农时,目前已有相当一部分地区采取了稻田套种小麦的种植方式,但一般都是人工撒播。由于稻田人工撤麦作业条件差,播种量、作业幅宽和人员行走速度都无法控制,从而出现了稻田撒麦不均匀的问题,造成小麦出苗均匀性差,直接影响到小麦产量。为此,研究开发一种电动撒播机,可以提高稻田撒播小麦的均匀性,减轻劳动强度,提高作业效率,增加小麦种植产量。  相似文献   

5.
针对小麦播种时发生地轮传动失效而造成漏播和播量不均等问题,设计了一种电控小麦播种系统。系统工作时能够结合设置的播种参数和检测的作业速度信号获得排种器的理论转速,并通过采集驱动器的脉冲输出频率计算出排种器的实时转速,将理论转速与实际转速形成的偏差e及偏差变化率ec作为输入变量,利用模糊PID自整定控制器进行电机转速的精准控制,使排种器到达目标转速,从而提高播种精度。室内试验结果表明:在中速及中高速状态下,小麦播种机电控系统的性能最为稳定,平均偏差在2.5%以内,控制精度为1.49%,并求得排种器在不同工作长度下排种量与转速的函数关系。田间试验结果表明:应用本电控系统进行田间小麦播种作业时,小麦播种机的总排种量变异系数为1.14%,各行排种量变异系数为2.89%,播种均匀性变异系数为5.64%,播深合格率为90%,电控播种系统能有效地提高小麦播种机的播种均匀性。  相似文献   

6.
7.
为解决小麦播种过程中播深一致难以控制的问题,设计了一种具有播深控制装置的双轴旋耕播种机.机组采用前旋耕刀组正转深旋,后旋耕刀组反转浅旋抛土,后置播深控制装置铲土板与旋耕刀组联合作用产生平整种床,后刀轴旋耕刀反旋所抛土壤部分越过挡土板均匀覆盖在种层上完成覆土,实现小麦种子3~ 5mm的播深均匀一致.通过建立刀尖轨迹运动方...  相似文献   

8.
小麦机械深松对比试验研究项目效果明显   总被引:1,自引:0,他引:1  
<正>免耕保护性耕作的核心技术有4项:一是秸秆还田,二是免耕播种,三是机械植保,四是定期深松。招远市自2006年开始实施小麦、玉米免耕保护性耕作机械化技术,至2011年已满5年,前3项技术已得到普遍应用,2011年已达到8万亩。第4项技术机械深松却一直未采用,以致部分地块出现了土壤板结、杂草丛生和病虫害加剧的情况,需要进行机械深松试验研究和推广应用。2011年9月至2013年6月,招远市农机部门承担了农业部下达的机械化深松对比试验研究项目,圆满  相似文献   

9.
10.
为适应 "缩距增行" 农艺措施,减少缺苗断垄现象,提高播种均匀性,对现有播种机中影响小麦播种均匀性的关键部件进行了改进,设计了落种均匀器和笼型橡胶胎对行镇压驱动轮.通过对比试验分析表明,改进后的播种机能够显著提高播种均匀性,为小麦播种机关键部件的设计提供了参考依据.  相似文献   

11.
马铃薯播种漏播检测自动补种装置设计与试验   总被引:1,自引:0,他引:1  
针对勺式马铃薯播种机作业中排种勺空穴漏播需人工检测与补种的难题,提出了一种基于激光对射传感器的漏播检测方法,设计了一种马铃薯播种漏播检测自动补种装置,并验证了装置的漏播检测性能和自动补种性能.采用两对激光对射传感器和接触式行程开关传感器分别探测漏播空勺和准确补种位置,依靠步进电机驱动补种装置进行精确补种.试验结果表明:...  相似文献   

12.
油麦兼用型气送式集排器匀种涡轮设计与试验   总被引:1,自引:0,他引:1  
针对油麦兼用型气送式免耕播种机宽幅播种时各行排量一致性受地表坡度变化影响的问题,设计了一种利用输送气流驱动转动、安装于分配装置的匀种涡轮,分析了匀种涡轮进口工作角和出口工作角对输送气流速度的影响,确定了影响3种匀种涡轮工作特性的关键参数。应用CFD仿真中的6自由度动网格模型及台架试验,对比分析3种匀种涡轮对输送气流分布及匀种涡轮转速的影响,结果表明:进口工作角和出口工作角均为锐角的匀种涡轮可提高种子的输送及搅拌性能。选择叶片数量为4、6、8、10的匀种涡轮进行了分配装置内流场分布仿真试验,结果表明,增加匀种涡轮叶片数量可提高匀种涡轮出口处输送气流分布的稳定及均匀性。利用智能种植机械测试平台模拟田间作业不同地表坡度时,安装不同数量叶片的匀种涡轮对各行排量一致性的影响,结果表明:转速为20~50 r/min,沿播种机作业方向的前后与侧向单向组合摆动、前后与侧向往复组合摆动角相对平整地表在-5°~5°变化,叶片数量为8时,油菜及小麦各行排量一致性变异系数最小,分别为4.99%~5.82%和3.85%~4.92%;前后与侧向单向组合摆动角绝对值为5°时,叶片数量为8的匀种涡轮比无匀种涡轮排种油菜和小麦时各行排量一致性变异系数分别降低7.53、11.98个百分点,满足地表坡度变化时油菜及小麦的排种要求。  相似文献   

13.
机械式小麦射播排种器设计与试验   总被引:1,自引:0,他引:1  
针对现阶段小麦播种机接触式播种形式存在的覆土后种子深度均匀性差,播种效果易受播种部件影响的问题,同时为简化播种工艺,设计了一种适用于华北地区壤土的非接触式小麦机械射播排种器。阐述了对排种器整体结构和射播工作原理,对排种器关键部件尺寸进行设计,分析了小麦种子在排种器内部携种加速过程及投种过程,得出影响小麦射播效果的因素,并进行仿真与试验台试验。选取排种器转速、前进速度、射播高度为试验因素,播种深度变异系数、排种量变异系数、射播速度、射播深度为指标进行单因素试验与正交试验,并进行了验证试验。试验结果表明,机具前进速度为1.0m/s,排种器转速为1100r/min,射播高度为100mm时,播种深度变异系数为8.3%,排种量变异系数为13.9%,射播速度为35.2m/s,射播深度为34mm。试验验证了所设计的机械式射播排种器在华北平原地区壤土作业时,满足小麦播种的作业要求。  相似文献   

14.
设计一种新型风送式水稻撒播机以满足机械撒播需要。采用Fluent中的Mixture多相流模型,对风送管内气、固两相流进行数值模拟,对比平嘴、圆弧嘴、扁喇叭嘴3种喷嘴结构对出口气流速度及种子浓度分布的影响,并制作样机,进行试验验证。试验表明:数值仿真模拟符合试验规律,平嘴风送管能满足水稻撒播均匀性的要求;公顷播量为120kg时,在(0.2×0.2)m~2的区域内播种17粒左右,标准偏差为1.49,波动量较小,能满足撒播均匀性的要求。  相似文献   

15.
为评价播期和播深对冬小麦越冬前生长性状的影响,以农大211冬小麦为试验材料,于2015-2017年在中国农业大学北京上庄实验站进行了4个播期水平(9月23日、10月3日、10月13日和10月23日)、3个播深水平(2、4、6 cm)的随机区组大田试验,探究不同栽培措施对越冬前冬小麦各生长指标(单株叶面积、主茎叶龄、分蘖...  相似文献   

16.
针对目前小麦播种机在复杂的田间作业过程中存在的播深一致性和稳定性难以控制等问题,从调节覆土量确定小麦播深的控制角度出发,提出了一种基于播深反馈的模糊PID控制方法,设计了小麦播种机高精度播深控制系统,实现了播深的自动调控,保证了小麦播深的均匀一致性。该系统主要由车载终端、播深检测模块、播前镇压辊检测模块以及播前镇压辊调节机构等4部分组成,能够实现小麦播种机播深的实时检测及调整。通过播深检测模块获取实时播深并作为反馈输入,结合播深预设值,根据专家模糊规则和Mamdani推理法对PID参数进行在线整定得到控制输出量,控制驱动器调整播前镇压辊位置,不断调整作业过程中的覆土量,从而实现对播深的实时精确控制,确保播深的一致性。田间试验结果表明:播种作业过程中,播深存在小范围波动。当设定播深为30mm、车速为3~5km/h时,播深平均值为30.13mm,播深标准差为0.18mm,播深合格率均值为93%,播深变异系数均值为2.93%。该系统实现了小麦播种机播深均匀一致的实时自适应调控。  相似文献   

17.
针对水稻收获前稻田以及丘陵山区播种绿肥,存在机具无法下田作业、人工撒播劳动强度大的问题,基于农用多旋翼无人机平台,设计离心甩盘式绿肥种子撒播装置。该装置可与多品牌无人机方便、快速组配挂接,主要由挂接机构、种箱、排种机构、撒种机构及自动控制系统构成,设计螺旋输送式排种机构可实现连续稳定定量排种,优化撒种机构使得撒播更加均匀顺畅,控制系统可跟随无人机飞行速度控制排种机构排种量,并根据不同品种绿肥种子设定撒种机构甩种盘转速,从而实现多品种绿肥种子定量排种、均匀撒播。选取典型绿肥品种紫云英种子为试验物料,以撒播均匀性变异系数Y1和单位面积撒种量误差Y2为评价指标,螺旋输送器转速A、甩种盘转速B、飞行速度C为试验因素,开展三因素三水平正交试验。结果表明:螺旋输送器转速A和甩种盘转速B对两评价指标影响极显著,飞行速度C对两评价指标影响显著,影响撒播均匀性变异系数Y1的主次因素为B、A、C,影响单位面积撒种量误差Y2的主次因素为A、B、C,最佳因素水平组合A2B2C2,即A为190r/min、B为1700r/min、C为5m/s时,Y1为28.47%,Y2为11.81%。田间试验表明,在最佳参数组合下,整体出苗良好。该研究为改进完善无人机离心甩盘式绿肥撒播装置,以及大面积推广绿肥种植提供了理论依据和装备支撑。  相似文献   

18.
为了给华北平原丘陵地区的冬小麦节水灌溉提供科学依据,试验分析了4个不同灌水深度处理对冬小麦光合日变化、株高、叶面积指数和籽粒产量的影响。试验以灌水深度为控制因子,设4个处理,即:地表灌溉(T1)、灌水深度为根系分布的60%(T2)、灌水深度为根系分布的75%(T3)、灌水深度为根系分布的90%(T4),每个处理4次重复。结果表明:不同灌水深度条件下,冬小麦净光合速率、蒸腾速率和气孔导度日变化呈"M"形的双峰曲线,存在明显的"午休"现象,而胞间CO2浓度则呈"W"形的双峰曲线,深层灌的午睡现象不如地表灌的明显,且4项光合指标在同一时刻均要比地表灌的高;随灌水深度的增加,株高逐渐增大,叶面积指数呈先增大后减小的趋势,而灌水深度过大则会使影响植株后期的株高增长,使叶面积指数下降增快;适当增加灌水深度可明显提高小麦收获指数,使产量增加,但产量并不是随灌水深度的增加而增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号