首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mature Hereford cows (766) were mated to 97 sires from seven breeds (Jersey, Wagyu, Angus, Hereford, South Devon, Limousin, and Belgian Blue), resulting in 1,215 calves born over 4 yr (1994 to 1997). These cattle comprised Australia's 'Southern Crossbreeding Project." Heifers were slaughtered at an average of 16 mo with hot standard carcass weight of 219 kg and 9 mm fat over the rump. Steers were slaughtered at an average of 23 mo with carcass weight of 319 kg and 13 mm fat over the rump. Meat and fat samples were taken from the carcass on the day after slaughter for subsequent laboratory analysis of i.m. fat content and fatty acid composition. Data were analyzed using uni- and bivariate animal models containing fixed effects of cohort, management group, birth month, and sire breed. March-born calves had fat with a 0.5 degrees C lower melting point, 0.6% higher total monounsaturated fatty acids, and 0.7% higher fatty acid desaturation index than calves born in April. Steers born in 1997 were the only cohort finished on pasture, and they had much more yellow fat than the other cohorts. Four heavy breed crosses (Angus, South Devon, Limousin, and Belgian Blue) averaged 284 kg carcass weight, followed by purebred Hereford (268 kg), Wagyu (244 kg) and Jersey (236 kg). Angus had the greatest fat depth (14.3 mm), ahead of Hereford and Wagyu (11.9 mm), Jersey (10.7 mm), South Devon and Limousin (9.9 mm) and Belgian Blue (8.0 mm). Jersey, Wagyu, and Angus had themost i.m. fat (4.6%), followed by Hereford and South Devon (3.8%), and Limousin and Belgian Blue (3.1%). The highly marbled Jersey and Wagyu had softer fat (6% lower fat melting point) than the other breeds. Angus were more highly marbled, similar to Jersey and Wagyu, but had harder fat similar to the leaner breeds. Heritabilities for all traits were low to moderate (16 to 36%). Genetic correlations between fatty add composition and carcass traits were not significant, indicating little evidence of antagonisms between traits that would prevent genetic progress in both production and quality.  相似文献   

2.
Fatty acid composition and carcass traits of 2,275 Japanese Black steers and heifers were analyzed to estimate the heritabilities and genetic correlations using the REML procedure. Slices of LM at the 6th to 7th rib section were minced and homogenized, and total lipids were extracted for the analysis by a gas chromatograph. Oleic acid accounted for the majority (51.3%), followed by palmitic (26.4%) and stearic (10.8%) acids. Heritabilities of carcass traits were moderate to high, ranging from 0.34 to 0.61, and heritabilities of individual fatty acids varied largely from 0.00 to 0.78. Those of MUFA, SFA, and PUFA were estimated to be 0.68, 0.66, and 0.47, respectively. Predicted breeding values for MUFA in 99 sires ranged from -3.0 to 5.4%. Genetic correlations of fatty acid compositions with carcass traits were generally weak (-0.28 to 0.39). Low but positive genetic correlations were obtained between beef marbling, on which emphasis of selection has been placed, and oleic acid (0.19) or MUFA (0.23). The results indicated the possibility not only for genetic improvement in fat quality traits but also simultaneous improvements with carcass traits by appropriate selection program.  相似文献   

3.
Carcass (n = 568) and longissimus thoracis palatability (n = 460) traits from F1 steers obtained from mating Hereford (H), Angus (A), and U.S. Meat Animal Research Center (MARC) III cows to H, A, Norwegian Red (NR), Swedish Red and White (RW), Friesian (F), or Wagyu (W) sires were compared. Data were adjusted to constant age (471 d), carcass weight (356 kg), fat thickness (1.0 cm), percentage of fat trim (24%), and marbling (Small35) end points. For Warner-Bratzler shear force and trained sensory panel traits, data were obtained on longissimus thoracis steaks stored at 2 degrees C for 14 d postmortem. The following comparisons were from the age-constant end point. Carcasses from H- and A-sired steers (377 and 374 kg, respectively) were the heaviest (P < 0.05) and carcasses from W-sired steers (334 kg) were the lightest (P < 0.05). A greater (P < 0.05) percentage of carcasses from A- and W-sired steers graded USDA Choice (88 and 85%, respectively) than carcasses from other sire breeds (52 to 71%). Adjusted fat thickness for carcasses from A-sired steers (1.3 cm) was highest (P < 0.05), followed by H-sired steers (1.1 cm) and W- and F-sired steers (0.9 cm); NR- and RW-sired steers (0.8 cm) had the lowest (P < 0.05) adjusted fat thickness. Longissimus thoracis area was not different (P > 0.05) among sire breeds (mean = 80.6 cm2). Carcass yield of boneless, totally trimmed retail product was least (P < 0.05) for A-sired steers (60.1%), intermediate for H-sired steers (61.5%), and similar (P > 0.05) for all other sire breeds (62.5 to 62.8%). Longissimus thoracis steaks from carcasses of A- (3.7 kg) and W-sired (3.7 kg) steers had lower (P < 0.05) shear force values than longissimus thoracis steaks from other sire breeds (4.1 to 4.2 kg). Trained sensory panel tenderness, juiciness, or beef flavor intensity ratings for longissimus thoracis steaks did not differ (P > 0.05) among the sire breeds. Sire breed comparisons were affected by adjusting data to other end points. Heritability estimates for various carcass, yield, and palatability traits ranged from very low (h2 = 0.06 for percentage of kidney, pelvic, and heart fat) to relatively high (h2 = 0.71 for percentage of retail product yield). Relative to the other sire breeds, W-sired steers had the highest percentage of USDA Choice, Yield grade 1 and 2 carcasses, but their carcasses were the lightest.  相似文献   

4.
To investigate the effects of bovine growth hormone (bGH) gene polymorphism on carcass traits and fatty acid compositions in Japanese Black cattle caused by nucleotide substitution of CTG (allele A)/GTG (allele B) at codon 127 and of ACG (allele A and B)/ATG (allele C) at codon 172 of bGH, GH genotypes of 135 cattle were determined using allele specific-multiplex polymerase chain reaction (PCR). Allele A gave greater rib thickness and lower melting point of fat (MP) while allele B gave higher C18:1% ( P  < 0.05). Allele C gave higher C18:1, monounsaturated fatty acid (MUFA), unsaturated fatty acid (USFA) percentages ( P  < 0.05). It also gave lower saturated fatty acid (SFA) percentages, higher MUFA/SFA and USFA/SFA ratios, and lower MP ( P  < 0.05). Interactions of sex and GH alleles were analyzed. In heifers, allele A gave higher carcass weight, daily carcass gain, rib eye area, rib thickness, subcutaneous fat thickness, and BMS while allele B gave greater rib eye area and rib thickness ( P  < 0.05). Allele C gave higher C18:1 ( P  < 0.01), MUFA ( P  < 0.01), USFA percentages ( P  < 0.05) and MUFA/SFA and USFA/SFA ratios ( P  < 0.01), and lower C16:0 and SFA percentages ( P  < 0.05) and MP ( P  < 0.01). GH gene polymorphism affected carcass traits and fatty acid compositions although the effects were more pronounced in heifers.  相似文献   

5.
Thirty-three steer calves were used to determine the effect of sire breed (Angus or Charolais), time of weaning [normal weaned at approximately 210 d of age (NW) or late weaned at approximately 300 d of age (LW)], and muscle type [LM and semitendinosus muscle (STN)] on fatty acid composition. The whole plot consisted of a 2 (sire breed) × 2 (time of weaning) treatment arrangement, and the subplot treatment was muscle type. Body weights were recorded at 28-d intervals to determine animal performance. Muscle biopsies were collected on d 127 and 128 of finishing. All calves were slaughtered on d 138, and carcass data were collected. Angus-sired steers had lighter initial BW (271 vs. 298 kg; P = 0.02), and LW steers were heavier (351 vs. 323 kg; P = 0.03) on d 28, but no other differences in BW were noted. Charolais-sired steers had larger LM area (P = 0.03), reduced yield grades (P = 0.01), less 12th-rib fat (P < 0.01), and less marbling (P < 0.01) than Angus-sired steers. Carcass measures overall indicate Angus-sired steers were fatter. Hot carcass weight was heavier (348 vs. 324 kg; P = 0.04) in LW steers than NW steers. No other differences (P > 0.05) were observed for feedlot performance or carcass characteristics. Total lipids were extracted from muscle biopsies, derivatized to their methyl esters, and analyzed using gas chromatography. The LM had greater SFA (43.94 vs. 35.76%; P < 0.01) and decreased unsaturated fatty acids (UFA; 56.90 vs. 66.19%; P < 0.01) compared with the STN. Percent total MUFA was greater in STN than LM (51.05 vs. 41.98%; P < 0.01). Total SFA, UFA, and MUFA did not differ due to sire breed or time of weaning. Total PUFA differed (P = 0.04) due to a sire breed × time of weaning interaction but did not differ due to muscle type, with greater PUFA in NW Charolais than any other sire breed × time of weaning combination. Observed changes in percent MUFA may be a result of greater Δ(9)-desaturase activity. The calculated desaturase index suggests STN has a greater Δ(9)-desaturase activity than LM, but no differences (P > 0.05) between sire breed or time of weaning were observed. These results indicate that sire breed, time of weaning, and muscle type all affect fatty acid composition in beef. This information provides insight into factors for manipulation of beef fatty acids. More research is needed to identify beef cuts based on fatty acid profile and healthfulness.  相似文献   

6.
Carcasses from 59 steers produced from the mating of Braford, Simbrah, Senepol, and Simmental bulls to Brahman- and Romana Red-sired cows and Brahman bulls mated to Angus cows were used in this study. Effects of sire breed and feeding calves vs yearlings on fat depots in the chuck, when steers were fed to 1.0 cm external fat, were determined. Breed of sire and feeding calves vs yearlings had no effect (P greater than .05) on percentage of intermuscular fat. However, carcasses from Braford-sired steers had a higher (P less than .05) percentage of dissectable subcutaneous fat on the chuck than did those from other breed groups. Carcasses from Simmental-sired steers were superior (P less than .05) to those from Braford-sired steers in USDA yield grade and had a higher average marbling score (P less than .05) than the Simbrah-sired group. Estimated kidney, pelvic, and heart (KPH) fat was higher (P less than .05) in carcasses from Brahman-, Simbrah-, and Senepol-sired steers than in Braford-sired steers. Steers fed as calves had higher percentages (P less than .05) of KPH fat and major chuck muscles than did those fed as yearlings. The best single predictor of percentage of intermuscular fat within the chuck was adjusted fat over the ribeye (R2 = .46).  相似文献   

7.
Fatty acid composition of total lipid extracts of muscle and adipose samples from crossbred bulls (N = 34) and steers (N = 35) was determined by gas-liquid chromatography. Samples of semitendinosus, triceps brachii and longissimus muscle and of subcutaneous and perinephric adipose tissue were excised from the right side of each carcass. In addition, thin-layer chromatography was utilized to obtain phospholipid and triacylglycerol fractions from total lipid extracts of semitendinosus and longissimus muscle and subcutaneous adipose tissue from 10 bull and steer cohorts (N = 20). The most prominent sex condition effect was in percentage of total poly-unsaturated fatty acids (PUFA). Bull tissues contained higher (P less than .01) percentages of PUFA than those of steers at all sampling sites. This reflected higher percentages of linoleate (C18:2), linolenate (C18:3) and arachidonate (C20:4) in bull tissues. Most of the PUFA were present as phospholipids in muscle samples. The fatty acid composition of muscle phospholipids was similar regardless of sex condition or muscle sampled. Total lipid extracts of semitendinosus and triceps brachii muscles of both bulls and steers contained from 6 to 10% more unsaturated fatty acids (UFA) compared with M. longissimus. Muscle triacylglycerols contained relatively high percentages of saturated fatty acids (SFA). Semitendinosus and longissimus samples from steers contained higher (P less than .05 and P less than .01, respectively) percentages of total SFA than those from bulls. Steer samples contained slightly higher percentages of palmitic acid (C16:0) compared with bulls at all sampling sites, and this difference was significant for M. longissimus. The fat:lean ratio of muscle tissue is the major factor that determines fatty acid composition.  相似文献   

8.
Steer progeny (n = 122) of tropically adapted breeds [Tuli (TU) and Brahman (BR)] and temperate breeds [Angus (AN) and Hereford (HP)] was evaluated for carcass traits for 3 yr. Multiparous British (Bt) cows were bred to each sire breed. Following weaning in the fall, steers were provided bermudagrass hay and a supplement until rye was available, which they grazed until March. Steers were fed for 100 to 110 d beginning in March. Live weight (LWT); hot carcass weight (HCW); longissimus area (LEA); percentage kidney, pelvic, and heart fat (KPH); actual fat thickness (ACT); adjusted fat thickness (ADJ); marbling score(MARB); maturity score(MAT); quality grade (QG); yield grade (YG); dressing percentage(DP); and LEA per unit of LWT (LEACWT) were collected. Data were analyzed by Proc MIXED using a model that included year, sire breed, and year × sire breed. Sire breed was a significant source of variation for all traits except LEA. The effect of year was significant for all traits, and year × sire breed was significant for only LWT. Least square means for LWT and HCW ranked the breeds similarly; the AN-sired calves (576 kg, 333 kg) and BR-sired calves (574 kg, 334 kg) were heavier than the TU-sired calves (526 kg, 304 kg), and the HP-sired calves had intermediate LWT and HCW (562 kg, 320 kg). The actual and adjusted fat means were larger (P<0.02) for AN-sired calves, HP-sired cavles were intermediate, and the BR- and TU-sired steers were similar with less external fat. The TU-sired calves had the largest LEA relative to weight. The AN- and TU-sired groups had a similar percentage grading Choice (26 and 21%, respectively), and the percentage grading Choice for the other two sire breed groups was 12% for BR and 18% for HP. In conclusion, carcass merit of TU-sired calves provides an acceptable alternative to BR-sired calves for producers desiring a tropically adapted sire breed, but they will likely produce smaller slaughter BW than BR sires if managed similarly.  相似文献   

9.
Indigenous Okinawa Agu pigs are crossed with Large White × Landrace (WL) pigs to improve their meat production, but there is little information regarding the crossbreeding effects. The study aims to compare growth, carcass characteristics, and meat qualities of Agu pigs with those of WL crossbreeds with Agu sires (WLA) or Duroc sires (WLD). WLA pigs showed better growth performance and carcass characteristics and less intramuscular fat (IMF) contents than Agu ones, but they had higher fat deposition, smaller longissimus dorsi muscle area, and higher IMF contents than WLD pigs. Agu pigs showed higher water holding capacity than the other two breeds. The inner layer of Agu backfat contains higher and lower proportions of monounsaturated fatty acids (MUFA) and polyunsaturated fatty acid (PUFA), respectively, than that in WLD animals. WLA animals had intermediate values for the fatty acid content in the inner backfat, although MUFA contents were equal to those of Agu pigs. Fatty acid profiles in IMF were similar to those in the backfat. These results indicate that crossbreeding of Agu with WL pigs improves growth performance and carcass quality. Particularly, WLA pigs have higher IMF contents and MUFA concentrations and lower PUFA concentrations than WLD pigs.  相似文献   

10.
Feedlot and carcass traits were evaluated for steers (n = 231) sired by Angus (A), Brangus (BA), Gelbvieh (G), and Gelbray (GB) bulls (n = 29) out of first cross (F1) Brahman-Hereford cows. Steers were produced over 4 y and were born during spring and fall calving seasons. Brahman inheritance was 25% in A- and G-sired steers, and 44% in BA- and GB-sired steers. After weaning, steers were stockered before entering the feedlot. Steers produced in 1993 and 1994 were fed in Louisiana and individually harvested at a targeted backfat thickness of 10 mm. Steers born in 1995 and 1996 were fed in Oklahoma and group harvested at an average backfat thickness of 10 mm. Data were analyzed separately by feedlot location because of significant location and sire breed x location effects. Angus-sired steers had smaller (P<0.05) longissimus areas (LMA) and higher (P<0.01) marbling scores(MS) and quality grades than G-sired steers across both locations. Tenderness was more desirable (P<0.05) for A-sired steers compared with G-sired steers when fed in Louisiana. Angus- and G-sired steers had larger (P<0.01) LMA than BA- and GB-sired steers across both locations. Tenderness was similar (P>0.10) between steers with 25% and 44% Brahman inheritance. These data suggest that more desirable carcass quality and tenderness can be achieved with the use of A sires, relative to the other sire breeds, when mated to F1 Brahman-Hereford dams. Improved carcass cutability resulted with the use of G sires, and in steers with 25% Brahman inheritance.  相似文献   

11.
This study was conducted to compare carcass EPD predicted using yearling live animal data and/or progeny carcass data, and to quantify the association between the carcass phenotype of progeny and the sire EPD. The live data model (L) included scan weight, ultrasound fat thickness, longissimus muscle area, and percentage of intramuscular fat from yearling (369 d of age) Simmental bulls and heifers. The carcass data model (C) included hot carcass weight, fat thickness, longissimus muscle area, and marbling score from Simmental-sired steers and cull heifers (453 d of age). The combined data model (F) included live animal and carcass data as separate but correlated traits. All data and pedigree information on 39,566 animals were obtained from the American Simmental Association, and all EPD were predicted using animal model procedures. The genetic model included fixed effects of contemporary group and a linear covariate for age at measurement, and a random animal genetic effect. The EPD from L had smaller variance and range than those from either C or F. Further, EPD from F had highest average accuracy. Correlations indicated that evaluations from C and F were most similar, and L would significantly (P < 0.05) re-rank sires compared with models including carcass data. Progeny (n = 824) with carcass data collected subsequent to evaluation were used to quantify the association between progeny phenotype and sire EPD using a model including contemporary group, and linear regressions for age at slaughter and the appropriate sire EPD. The regression coefficient was generally improved for sire EPD from L when genetic regression was used to scale EPD to the appropriate carcass trait basis. The EPD from C and F had similar linear associations with progeny phenotype, although EPD from F may be considered optimal because of increased accuracy. These data suggest that carcass EPD based on a combination of live and carcass data predict differences in progeny phenotype at or near theoretical expectation.  相似文献   

12.
This study evaluated the effect of barley varieties in the diets of finishing steers on carcass composition, fat, and lean color and the fatty acid profile of subcutaneous fat. Crossbred steers (391 kg initial BW) were assigned randomly to one of five finishing diets composed primarily of corn (n = 9), Morex barley (n = 9), Steptoe barley, (n = 9), or two experimental barley varieties SM3 (n = 9) and SM5 (n = 9). Grains were cracked prior to feeding. Diets were formulated (DM basis) to be isonitrogenous (2.24% N) and isocaloric (2.01 Mcal/kg NEm and 1.35 Mcal/kg NEg). Steers were slaughtered according to industry-accepted procedures when it was visually estimated that 70% of carcasses would grade USDA Choice. After a 24-h chill at 4 degrees C, carcass quality and yield grade data were collected by trained, experienced university personnel. Objective color (L*, a*, and b*) of both the LM and subcutaneous fat were measured, and samples of subcutaneous fat were removed from the 10th- to 12th-rib region for fatty acid analysis. Diet did not affect hot carcass weight (P = 0.15), fat thickness (P = 0.58), LM area (P = 0.57), percentage of internal fat (P = 0.52), yield grade (P = 0.96), marbling (P = 0.73), or quality grade (P = 0.10). However, the LM from steers fed diets formulated with Morex and SM5 barley varieties tended to be lighter (higher L* values, P = 0.08) than the LM from steers fed the corn-based diet. Additionally, fat from steers fed corn tended to be more yellow (higher Hunter b* values, P = 0.09) than fat from steers fed barley-based diets. Although grain source had only minimal effects on the fatty acid composition of subcutaneous fat samples, pentadecanoic acid (15:0) was greater (P < 0.05) in fat from steers fed SM3 and Steptoe barley varieties than in fat from steers fed corn. Stearic acid (18:0) concentrations were higher (P < 0.05) in fat samples from steers fed corn than in those fed the experimental barley lines (SM3 and SM5). Conversely, fat samples from steers fed Steptoe and SM5 barley had greater (P < 0.05) gadoleic acid (20:1) concentrations than fat from steers fed corn or Morex variety. Although the variety/line of barley included in the finishing diet may affect LM and fat color, grain-source (barley vs. corn) had little effect on beef carcass quality and yield grades and did not greatly alter the fatty acid composition of subcutaneous fat.  相似文献   

13.
Sixty-eight Angus-based steers (224 +/- 7.6 kg of BW) were used to evaluate the effects of a prolonged dietary vitamin A restriction on marbling and immunocompetency. Steers were allotted randomly to 1 of 2 treatments: LOW (no supplemental vitamin A) and HIGH (diet supplemented with 2,200 IU of vitamin A/kg of DM). Diets contained 60% high-moisture corn, 20% roasted soybeans, 10% corn silage, and 10% of a protein supplement. Steers were penned and fed individually. For the first 141 d, steers were program-fed to achieve a gain of 1.1 kg/d. The last 75 d of the experiment, steers were offered feed for ad libitum intake. At slaughter, serum and liver samples were taken to determine their retinol content. To evaluate immunocompetency, 10 steers per treatment were selected randomly on d 141 and received an ovalbumen vaccine, and 21 d later, the steers were revaccinated. On d 182, blood samples were taken from the vaccinated steers to determine serum antibody titers by ELISA. Steers were slaughtered after 216 d on feed. Carcass characteristics were determined, and LM samples were taken for composition analysis. Subcutaneous fat samples were taken for fatty acid composition analysis. Performance (ADG, DMI, and G:F) was not affected by vitamin A restriction (all P > 0.10). Hot carcass weight, 12th-rib fat, and yield grade did not differ between LOW and HIGH steers (all P > 0.10). Marbling score (LOW = 574 vs. HIGH = 568, P = 0.79) and i.m. fat (LOW = 5.0 vs. HIGH = 4.7% ether-extractable fat, P = 0.57) were not increased by vitamin A restriction. Serum (LOW = 18.7 vs. HIGH = 35.7 mug/dL, P < 0.01) and liver (LOW = 6.3 vs. HIGH = 38.1 mug/g, P < 0.01) retinol levels were lower in LOW steers compared with HIGH steers at slaughter. Response to ovalbumin vaccination was not affected by vitamin A restriction (LOW = 13.1 vs. HIGH = 12.8 log(2) titers, P = 0.60). Slight changes in the fatty acid profile of s.c. fat of the steers were detected. A greater proportion of MUFA (LOW = 41.7 vs. HIGH = 39.9%, P = 0.03) and fewer SFA (LOW = 47.1 vs. 48.7, P = 0.03) were observed in vitamin A-restricted steers. This suggests that vitamin A restriction may affect the activity of desaturase enzyme (desaturase activity index, LOW = 46.9 vs. HIGH = 44.9, P = 0.01). Feeding a low vitamin A diet for 216 d to Angus-based steers did not affect performance, marbling score, or animal health and immunocompetency. Slight changes in the fatty acid profile of s.c. fat were observed, suggesting that vitamin A restriction may have affected desaturase enzyme activity.  相似文献   

14.
As genetic markers, SNP are well suited for the development of genetic tests for production traits in livestock. They are stable through many generations and can provide direct assessment of individual animal's genetic merit if they are in linkage disequilibrium and phase with functional genetic variation. Bovine chromosome 5 has been shown to harbor genetic variation affecting production traits in multiple cattle populations; thus, this chromosome was targeted for SNP-based marker development and subsequent association analysis with carcass and growth phenotypes. Discovery of SNP was performed in a panel of 16 sires representing two sires from each of seven beef breeds and two Holstein sires by PCR amplification and sequencing using primers designed from genomic sequence obtained by low-coverage sequencing of bacterial artificial chromosome (BAC) clones. From 550 SNP, 296 (54%) were tentatively identified as having a minor allele frequency >10%. Forty-five SNP derived from 15 BAC were chosen based on minor allele frequency and were genotyped in 564 steers and their sires. Production and carcass data were collected on the steers as a part of the Germplasm Evaluation (GPE), Cycle VII Project at the U.S. Meat Animal Research Center (Clay Center, NE), which involves of the evaluation of sires from seven of the most popular U.S. breeds. Haplotypes based on seven SNP derived from a BAC containing the bovine genes HEM1 and PDE1B were associated with traits related to carcass fat. Steers homozygous for the major haplotype had 0.15 +/- 0.04 cm less subcutaneous fat, 0.57 +/- 0.18 kg less rib fat, 0.18 +/- 0.07 lower yield grade, 1.11 +/- 0.35% less predicted fat yield, and 0.79 +/- 0.3% greater predicted retail product yield than heterozygotes. The frequency of the major haplotype was 0.70 in the steers, and it ranged from 0.44 (Limousin) to 0.98 (Simmental and Gelbvieh) in a panel consisting of an average of 20 purebred sires from each of the seven breeds. A second set of haplotypes based on four SNP derived from a BAC containing the genes NOL1 and CHD4 was associated with Warner-Bratzler shear force. Steers homozygous for the major haplotype had 0.27 +/- 0.11 kg greater shear force than those heterozygous for the major haplotype and one of two minor haplotypes. The frequency of the major haplotype was 0.59 in the steers and ranged from 0.27 (Hereford) to approximately 0.95 (Angus and Red Angus) in the panel of purebred sires. These results demonstrate the feasibility of targeting QTL regions for SNP-based marker development and that a low level of coverage can identify markers associated with phenotypic traits.  相似文献   

15.
Beef production systems that increase use of unharvested forages and use animals with greater potential for gain affect age and size of animals placed on a finishing regimen. This experiment was conducted to evaluate effects of genetic potential for gain, age at the start of a finishing period, and time on feed on composition, quantity, and quality of beef produced and efficiency of production during finishing. Crossbred cows were bred by AI to Charolais or Line 1 Hereford bulls that represented potentially high (HG) or moderate growth (MG) rates, respectively, to produce spring- or fall-born calves. Steer calves from these matings were placed on an individually fed finishing diet at three ages (A). Spring-born steers were started at 6 or 18 mo of age (A6 and A18), and fall-born steers were started at 12 mo of age (A12). Slaughter times (T) were at 0, 90, 180, and 270 d for A6; 68, 136, and 204 d for A12; and 0, 45, 90, and 135 d for A18. Data collected on each animal included feed intake, growth, chemical composition of the complete body and carcass, and quantitative and qualitative assessment of the meat produced. Four steers of each sire group were slaughtered in each of the 11 A-T treatment groups, and the experiment was repeated for 2 yr in the A12 groups and 3 yr in the A6 and A18 groups (n = 237). Steers sired by HG bulls were larger and produced larger carcasses and more carcass protein than MG-sired steers (S, P < .05 or .01). Steers sired by MG bulls were fatter, had higher quality grades, and accumulated fat at a faster rate than HG-sired steers, and this effect was greater in older steers (G and GA, P < .05 or .01). Sire growth potential did not affect gain, intake, live weight efficiency, tenderness, or taste panel scores (P > .2). Steers sired by HG bulls were more efficient at producing carcass weight and carcass protein at A12 and A18 than were MG-sired steers. At the end of the finishing period, older (A18), HG-sired steers were too large with insufficient fat by current industry standards, and younger (A6), MG-sired steers were too small. Our conclusions are that both HG- and MG-sired steers can produce acceptable carcasses for current market standards with comparable efficiencies of live-weight gain, but the growing and finishing strategy must be adapted to the genotype.  相似文献   

16.
The percentage of MUFA to total fatty acids of beef differs among intermuscular, intramuscular, and subcutaneous fat even within an individual cow. Our objective was to investigate the variation of the percentage of MUFA by geometric and sectional change of marbling flecks in rib eye. Longissimus muscles of 8 Japanese Black steers from a common sire and a common maternal grand sire were used. Three slices (1 from rib roast and 2 from sirloin) from each animal were selected for analysis. Five marbling flecks from each slice were randomly taken to obtain the percentage of MUFA using gas chromatography. High-quality digital images of all slices were taken with a mirror-type camera. The area and location of each marbling fleck were calculated by image analysis. The marbling flecks were categorized by area [small <0.4 cm(2), medium 0.4 to 2.0 cm(2), large >2.0 cm(2)], by location (dorsal and ventral), and by slice section through the LM (front, middle, and back). The effects of classification according to the area, location, and slice section were statistically significant (P < 0.05) for the percentage of MUFA. Least squares means of the percentage of MUFA for marbling flecks of sizes small, medium, and large were 56.8, 58.4, and 60.2%, respectively, indicating that larger marbling flecks had greater MUFA (P < 0.05). Those of dorsal, ventral, front, middle, and back were 59.1, 57.8, 55.4, 59.9, and 60.1%, respectively. The percentages of MUFA of the marbling flecks located in the dorsal part were greater than those in the ventral part (P < 0.05). The percentages of MUFA from middle and back were greater than those from front (P < 0.01). We suggest that the area, location, and slice section of marbling would be the determining factors for the percentage of MUFA of marbling.  相似文献   

17.
The fatty acid composition of adipose tissue in beef has been recognized as an important trait because of its relationship with beef quality, including favorable beef flavor and tenderness. Over the last decade, we have tried to identify the genes responsible for the fatty acid composition in cattle, and have found the following. (i) Genetic polymorphism of stearoyl‐CoA desaturase (SCD) is one of the responsible genes associated with fatty acid composition. The average effects of gene substitution of the SCD type A gene on the monounsaturated fatty acid (MUFA) percentage and the melting point of intramuscular fat were approximately +1.0% and ?1.0°C, respectively. (ii) Intron polymorphism of sterol regulatory element binding protein–1 (SREBP‐1) also affected MUFA. (iii) No effect of SCD or SREBP‐1 genotypes on any representative carcass traits of Japanese Black in the field population was observed. (iv) Additional genetic markers adipocytes fatty acid binding protein 4 (FABP4) and liver X receptor α also affected the fatty acid composition. (v) SCD and FABP4 significantly affected fatty acid composition in Holstein steers. These findings will bring new insight into the fat‐related carcass traits of beef cattle and will thus contribute to the beef industry.  相似文献   

18.
Use of poultry fat in the finishing diets of steers has not been studied as a potential source of added energy. Therefore, 60 Angus crossbred steers were fed 1 of 3 dietary treatments consisting of 1) a corn-soybean meal control diet devoid of added fat; 2) the control diet formulated with 4% tallow; or 3) the control diet formulated with 4% poultry fat. Addition of fat did not (P = 0.17) affect ADG for the 112-d study. The inclusion of tallow in the diet reduced (P < 0.05) ADFI of steers compared with those on the control diet; however, ADFI of steers fed poultry fat did not differ from those fed the control (P = 0.06) or the tallow (P = 0.36) diets. At d 55, steers consuming either fat source had improved (P < 0.05) G:F compared with steers fed the control diet. For the entire 112 d, steers consuming the poultry fat diet gained more efficiently (P < 0.05) than the control steers, and the tallow-fed steers were intermediate and not different from the other groups (P > or = 0.14). The inclusion of fat in the diet did not (P > or = 0.15) affect carcass characteristics. Steaks from the steers consuming diets with added fat were darker (lower L* value; P < 0.05) than the controls; however, dietary treatments did not (P > or = 0.10) affect any other objective color measurements or discoloration scores during retail display. Thiobarbituric acid reactive substances for LM steaks did not differ (P = 0.21) by dietary treatment. The cooked LM steaks from steers fed poultry fat did not (P > or = 0.80) differ in juiciness or flavor intensity from steaks of steers fed the control or tallow diets. There were also no differences (P = 0.18) in off flavors as a result of added dietary fat. In the LM and adipose tissue, percentages of total SFA were increased (P = 0.05) by adding supplemental fat to the diet, regardless of source. In the LM, total MUFA were decreased (P = 0.02) by adding supplemental fat. Conversely, diet did not (P > or = 0.14) affect the proportions of total PUFA in either tissue or total MUFA in the adipose tissue. Results indicated that replacing beef tallow in finishing diets with poultry fat, a more economical energy source, had no detrimental effects on growth performance, carcass characteristics, retail display life, fatty acid profiles, or palatability.  相似文献   

19.
The objective of this experiment was to provide a current evaluation of the seven most prominent beef breeds in the United States and to determine the relative changes that have occurred in these breeds since they were evaluated with samples of sires born 25 to 30 yr earlier. Carcass (n = 649), yield (n = 569), and longissimus thoracis palatability (n = 569) traits from F(1) steers obtained from mating Hereford, Angus, and MARC III cows to Hereford (H), Angus (A), Red Angus (RA), Charolais (C), Limousin (L), Simmental (S), or Gelbvieh (G) sires were compared. Data were adjusted to constant age (445 d), carcass weight (363 kg), fat thickness (1.1 cm), fat trim percent (25%), and marbling (Small(35)) endpoints. For Warner-Bratzler shear force and trained sensory panel traits, data were obtained on LM from steaks stored at 2 degrees C for 14 d postmortem. The following comparisons were from the age-constant endpoint. Carcasses from L-, G-, and H-sired steers (361, 363, and 364 kg, respectively) were lighter (P < 0.05) than carcasses from steers from all other sire breeds. Adjusted fat thickness for carcasses from A-, RA-, and H-sired steers (1.5, 1.4, and 1.3 cm, respectively) was higher (P < 0.05) than for carcasses from steers from all other sire breeds (0.9 cm). Longissimus muscle areas were largest (P < 0.05) for carcasses from L-, C-, S-, and G-sired steers (89.9, 88.7, 87.6, and 86.5 cm(2), respectively) and smallest for carcasses from H- and RA-sired steers (79.5 and 78.4 cm(2)). A greater (P < 0.05) percentage of carcasses from RA- and A-sired steers graded USDA Choice (90 and 88%, respectively) than from carcasses from other sire breeds (57 to 66%). Carcass yield of boneless, totally trimmed retail product was least (P < 0.05) for RA- and A-sired steers (59.1 and 59.2%, respectively) and greatest (P < 0.05) for G, L-, C-, and S-sired steers (63.0 to 63.8%). Longissimus muscle from carcasses of A-sired steers (4.0 kg) had lower (P < 0.05) Warner-Bratzler shear force values than LM from carcasses of G- and C-sired steers (4.5 to 4.3 kg, respectively). Trained sensory panel tenderness and beef flavor intensity ratings for LM did not differ (P < 0.05) among the sire breeds. Continental European breeds (C, L, S, and G) were still leaner, more heavily muscled, and had higher-yielding carcasses than did British breeds (H, A, and RA), with less marbling than A or RA, although British breeds have caught up in growth rate.  相似文献   

20.
Steers (n = 59) produced from the mating of Braford, Simbrah, Senepol, and Simmental bulls to Brahman- and Romana Red-sired cows and Brahman bulls to Angus cows were used in this study. Effects of sire breed and age at feeding on muscle tenderness in the major muscles of the chuck when steers were fed to 1.0 cm 12th rib fat were determined. There were no muscle tenderness effects due to sire breed group, with the exception of the serratus ventralis muscle, which was more tender in Brahman- and Braford-sired steers than in Simmental-sired steers. Additionally, the supraspinatus muscle from the yearlings was lower in shear value than that from the calves. The Brahman-sired steers had serratus ventralis muscles with higher percentages (P less than .05) of intramuscular fat than those of Braford-, Simbrah-, and Simmental-sired steers. Fat deposited within the muscle or between muscles in the chuck was not related to muscle tenderness as measured by Warner-Bratzler shear values. Also, percentages of intramuscular fat of the triceps brachii, serratus ventralis, or supraspinatus muscles were not influenced (P greater than .05) by age at feeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号