首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Samples of suspended and fine channel bed sediment were used to examine the spatial and temporal variability in the amount of fine-grained sediment and associated contaminants temporarily stored in the Na Borges River (319 km2) in Mallorca and the relationship of such channel storage to the fluxes of fine sediment and associated contaminant through the system. This Mediterranean groundwater-dominated river drains a predominantly agricultural catchment, although urbanisation during the twentieth century has changed the catchment hydrology. A re-suspension technique was used to obtain estimates of channel storage at monthly intervals during the 2004–2005 hydrological year at eight locations along the main stem of the stream (i.e. 26 km). The estimates of fine sediment storage ranged between 0 and 13,000 g m− 2, with a mean value of 2400 g m− 2. Only Cu exceeded the critical threshold (36 μg g− 1), established by existing guidelines for the contaminant content of fluvial sediment. The results demonstrated significant spatial and temporal variability, in response to the influence of urban point sources, agricultural practises, seasonal groundwater interactions and the first-flush effect. The amount of fine sediment entering storage during the study period was 515.2 t, representing the net increase in storage over the study period. As a result, the mean specific storage was 21 t km− 1. Suspended-sediment load and temporary fine sediment storage are the two basic components of the channel sediment budget that interact to determine sediment transport through a channel system, and they can therefore be used to compute the total input of sediment and associated contaminants to the system. Accordingly, storage values were compared with estimates of suspended sediment load and associated contaminant load values at three measuring stations along the river. During the study period, storage in the main channel system represented 87% of the sediment input and 68% of the contaminant input, indicating that deposition was more important than transport. The low gradient of the main channel and the low return period (i.e. 0–2.5 years) of the flood events that occurred during the study period meant that remobilised bed sediment and associated contaminants were redeposited downstream rather than being flushed to the catchment outlet as suspended sediment. Furthermore, the river bed is dry during the summer months, allowing sealing and crusting processes to stabilise the sediment deposited during the wet season and thereby reduce its availability for remobilisation at the beginning of the next wet season. Together, these factors promote sediment deposition and storage, with the result that sediment progressively accumulate over several hydrological years until a major flood event (i.e. return period ≈ 5 years) evacuates the stored sediment.  相似文献   

2.
Analysis of sediment sources is an important component in the development of catchment sediment budgets and in determining links between erosion from sources and sediment delivery to catchment outlets. In this study 137Cs and 210Pbex were used to determine surface and sub-surface source contributions of fine sediment in a small upland headwater catchment (1.6 km2) in south-eastern Australia. The findings from this analysis are employed in an adjustment procedure to better differentiate sediment source erosion processes by utilising channel survey and erosion pin data. This improved the precision of estimates of sediment-source erosion-process contributions from hillslopes and channel/gully walls. A mean of 74% of in-channel deposits and suspended sediment exiting the study catchment was derived from sub-surface sources and when adjusted for erosion process this increased to 81%, which may be attributed to channel and gully wall erosion alone. Net erosion of the channel floor was low and constitutes only a small part of the total channel source input to sediment flux. Variability in sediment source contributions within the catchment was high, with rapid transition from hillslope to channel source dominance of sediment flux with distance downstream in the study catchment.  相似文献   

3.
A Holocene sediment budget was constructed for the 758 km2 Dijle catchment in the Belgian loess belt, in order to understand long-term sediment dynamics. Hillslope sediment redistribution was calculated using soil profile information from 809 soil augerings, which was extrapolated to the entire catchment using morphometric classes. As large parts of the forests within the catchment prove to have undergone little or no erosion since medieval times, a correction was applied for the presence of forests. Total Holocene erosion amounts 817 ± 66 Mt for the catchment, of which 327 ± 34 Mt was deposited as colluvium. This corresponds with a net Holocene soil erosion rate of 10.8 ± 0.8 × 103 Mg ha− 1 for the entire Dijle catchment. Alluvial deposits were studied through 187 augerings spread over 17 cross-valley transects. The total alluvial sediment deposition equals 352 ± 11 Mt or 42% of total eroded sediment mass. Results indicate that at the scale of a medium-sized catchment the colluvial sediment sink is as important as the alluvial sediment sink and should not be neglected. As a result the estimation of erosion through alluvial storage and sediment export would yield large errors. Dating of sediment units show an important increase in alluvial deposition from medieval times onwards, indicating the important influence of agricultural activities that developed from that period. Mean sediment export rates from the catchment for the last 1000–1200 years range between 0.8 and 1.3 Mg ha− 1 a− 1 and are consistent with present suspended sediment measurements in the Dijle. Erosion for agricultural land for this period is 9.2 ± 2.2 Mg ha− 1 a− 1. Sediment budgets for the various tributary catchments provide an insight in the sources and sinks of sediment at different scales within the catchment.  相似文献   

4.
Soil erosion in southeast Spain is a complex process due to strong interactions between biophysical and human components. Significant progress has been achieved in the understanding of soil hydrological behavior, despite the fact that most investigations were focused on the experimental plot scale. Although experimental plots allow exploring the effect of multiple biophysical and anthropogenic factors, they provide limited insights in the combined effect of all factors acting together at the landscape scale. In this study, area-specific sediment yields (SSY) have been estimated based on the volume of sediment trapped behind 36 check dams in the southeast of Spain. Low SSY-values were reported (mean = 1.40 t ha−1 year−1: median = 0.61 t ha−1 year−1). SSY variability could be explained for 67% by catchment characteristics such as drainage area, soil characteristics, land cover, average catchment slope, and annual rainfall. The low SSY values are probably caused by the agricultural abandonment that occurred over the past decades and allowed the recovery of natural vegetation. Furthermore, our results suggest that the soils have eroded in the past to such an extent that nowadays not much sediment is detached by overland flow due to residual enrichment of clay and stones. Also, sediment is to a large extent trapped locally in the catchment, as indicated by the negative relationship between SSY and catchment area.  相似文献   

5.
Sediment budgets have been established for two small (<4 km2), lowland, agricultural catchments, by using 137Cs measurements, sediment source fingerprinting and more traditional monitoring techniques to quantify the individual components of the budget. The gross and net erosion rates for the fields on the catchment slopes were estimated using 137Cs measurements within selected fields, which encompassed a representative range of slope angles, slope lengths and land use. These estimates were extrapolated over the entire catchment, using a simple topographically driven soil erosion model (Terrain-Based GIS, TBGIS) superimposed on a DEM, to derive catchment average gross and net erosion rates. Suspended sediment yields were measured at the catchment outlets and sediment source fingerprinting techniques were used to establish the relative contributions from the catchment surface, subsurface tile drains and eroding channel banks to the sediment yields. In-channel and wetland storage were quantified using both direct measurements and 137Cs measurements. The sediment budgets established for the catchments highlighted the importance of subsurface tile drains as a pathway for sediment transfer, accounting for ca. 60% and 30% of the sediment output from the two catchments. Erosion from channel banks contributed ca. 10% and 6% of the sediment output from the two catchments. Although the suspended sediment yields from these catchments were considered high by UK standards (ca. 90 t km−2 year−1), the sediment delivery ratios ranged between 14% and 27%, indicating that a major proportion of the mobilised sediment was stored within the catchments. In-field and field-to-channel storage were shown to be of similar magnitude, but storage of sediment in the channel system and associated wetlands was relatively small, representing <5% of the annual suspended sediment yield.  相似文献   

6.

Purpose

The importance of bank erosion was quantified during three periods (October 2006–April 2007, May 2007–April 2008 and May 2008–April 2009) in the 486 km2 catchment area of River Odense, Denmark. A catchment sediment budget was established including other sediment sources such as tile drains and surface runoff, in-channel and overbank sinks and storage and the resulting bed load and suspended sediment load exported from the catchment.

Material and methods

Bank erosion and sedimentation were measured using ca. 3,000 erosion pins established in 180 pin plots, each consisting of three vertical lines of pins. Thirty-six representative reaches, each with a length of 100 m, were selected by a stratified random procedure in GIS. Bed load and suspended sediment export from the catchment were measured using a bed load sampler and from continuous measurements of turbidity at the outlet gauging station.

Results and discussion

The gross sediment input from bank erosion during the three study periods amounted to 21,100–25,200 t in the River Odense catchment, which is considerably higher than the estimated input of sediment from tile drains and surface runoff, which amounted to 220–500 t and 0–100 t, respectively. The measured bed load (20–490 t) was five to 60 times lower than the suspended sediment export from the catchment (1,240–2,620 t) during the three study periods, with the largest difference occurring in the driest year. Sediment sinks and storage were of high importance for the catchment sediment budget as the measured in-channel storage of sediment on stream banks was as high as 16,200–20,100 t, and the overbank sediment sink was estimated at 360–3,100 t.

Conclusions

Bank erosion was the dominant sediment source (90–94 %) in the River Odense catchment during the three study years. In-channel and overbank sediment sinks and storage dominated the sediment budget as 79–94 % of the sediment input from all sources was not exported from the catchment during the three study years. Such a large attenuation of sediment in river channels and on floodplains is extremely important for fluvial habitats and ecology. Moreover, it has strong implications for attempts to document changes in sediment export following implementation of mitigation measures.  相似文献   

7.
A major landslide that occurred in 1569 in the Huangtuwa gully catchment within the Rolling Loess Plateau region of China, resulted in the creation of a landslide-dammed lake at the outlet of the small 0.1 km2 tributary valley of the Houxiaotan Gully. All the sediment transported to the outlet of this catchment was deposited in the lake. After about 30 years the dam failed and the lake deposits were dissected as the stream cut down to its former base level. Substantial remnants of the sediment deposits that accumulated over the ca. 30 year period are, however, preserved as terraces near the outlet of the catchment and a vertical section through these sediment deposits was investigated using stratigraphic and pollen tracing techniques. Individual flood couplets could be clearly distinguished and these permitted the establishment of a chronology for the sediment deposits and the estimation of the sediment yields associated with individual events and individual years. Pollen analysis undertaken on samples collected from the individual flood couplets also provided information on the variation of the pollen content of the sediment and the proportion of Artemisia pollen during the period represented by the deposits. Interpretation of the information assembled from the sediment section has made it possible to reconstruct the erosional history of the Houxiaotan catchment during the 31 year period following the landslide. The average sediment yield of the catchment in the late 16th century was very similar to its present-day sediment yield. The sediment yield from the catchment and the relative contribution of the inter-gully areas, as compared to the gully system, declined immediately after the landslide as a result of abandonment of the cultivated land within the catchment. The restoration of cultivation in the catchment after about 17 years resulted in an increase in sediment yield from ca. 9000 t km− 2 yr− 1 to ca. 30,000 t km− 2 yr− 1 and a substantial increase in the proportion of sediment contributed by the cultivated inter-gully areas. Scope exists to apply a similar approach to the sediment deposits that accumulated in other former landslide-dammed lakes within the Rolling Loess Plateau region of China, in order to develop an improved understanding of the erosion history of the region.  相似文献   

8.
The Ca l?Isard catchment (1.32 km2), a sub-basin of the Vallcebre experimental catchments, yields large amounts of sediments (about 580 Mg km− 2 year− 1) that are produced in relatively small but very active eroded areas (badlands). Several lines of evidence suggest that there is a delay between sediment production, caused by intense summer rainstorms, and sediment transport, occasioned by the main floods produced by large precipitation events following wet antecedent conditions. First, a calibration–validation exercise was carried out with sediment yield data obtained using containers provided with slot divisors in a badlands micro-catchment (1240 m2). Then, the model was applied to the main badlands areas in the Ca l?Isard sub-catchment for a 4-year period and the simulated sediment yields were compared with the records at the gauging station. The test was performed with the Generalized Likelihood Uncertainty Estimation (GLUE) approach for assessing the uncertainty associated with model predictions, which assumes that many parameter sets can give acceptable simulations. The results demonstrated the capacity of KINEROS2 to simulate badland erosion, although it showed limited robustness. A clear temporal mismatch between erosion and sediment transport and the relevance of sediment stores in the catchment were confirmed, while the total weights of sediment were generally under-predicted. The limited suitability of the area used for calibration or the role of sediment sources not simulated in the approach may account for this shortcoming.  相似文献   

9.
Sediment transport in the Ribera Salada stream was estimated from continuous suspended and bedload monitoring between 2005 and 2008. The Ribera Salada basin is a mountainous perennial river in the Southern Pyrenees and is representative of the extensive forestry land use in this upland region. Water and sediment fluxes have been analysed with the aim of determining the thresholds, duration, ranges and relative contributions of the two sediment transport modes (suspended and bedload), and their variability in relation to the basin's annual hydrology. The stream's hydrology in the first two sampling years was average in the context of a 10-yr series of the basin, while 2007–2008 can be classified as a wet year. The specific total sediment load during the study period amounted to 12 t km2y1, a low value compared with similar Mediterranean counterparts. The maximum load (31.5 t km2y1) was observed during the wettest year of the monitoring programme. During average years most of the total load (> 90%) was transported in suspension; consequently, suspended sediment transport is more frequent through time. In contrast, bedload occurs sporadically during floods that exceed certain hydraulic thresholds, corresponding to a flow equalled or exceeded 4% of the time, that yields an average shear stress of ∼ 35 N m2. Under such conditions bedload transport becomes relevant and, if the threshold is frequently exceeded as in relatively wet years such as 2007–2008, may constitute the majority of the total sediment load (74%). This paper provides new evidence of the distinct role of sediment transport modes in stable fluvial environments where only sporadic inputs of surplus energy (flow discharge) determine the dominant mode, magnitude and duration of their respective contribution.  相似文献   

10.
Estimation of sediment load from Himalayan basins is of considerable importance for the planning, designing, installation and operation of hydro-power projects, including management of reservoirs. In the present study, an assessment of physical and chemical load, sediment yield and erosion rate has been undertaken at eight different locations in the Sainj and Tirthan watersheds. The analysis revealed that the maximum load was transferred during the monsoon season. Moreover, the estimated average chemical erosion rate of the Sainj (83 t km− 2 yr− 1) and Tirthan (80 t km− 2 yr− 1) watersheds were higher than that of the Indian average (69 t km− 2 yr− 1) representing all the rivers. Both watersheds were eroding physically and chemically at a faster rate than that of the world global average erosion rate (185 t km− 2 yr− 1). The flattish nature of the channels in some segments of these watersheds showed a lower transport of sediments, where as the constricted segments having steep bed slopes increased the velocity of flow and the sediment transport rate. These findings have important implications for water resource management in the context of sediments mobilization, erosion, channel management, ecological functions and operation of the hydro-power projects in the Lesser Himalayan region.  相似文献   

11.
This paper examines the relations between rainfall, runoff and suspended sediment transport in the Isábena basin during a quasi-average hydrological year. The Isábena is a mesoscale river basin that drains a mountainous area comprising patches of highly erodible materials (badlands). The paper includes an analysis of the different hydrological and sedimentary responses of the catchment to a similar rainfall. Thirty-four floods were studied, with a very variable response observed. Runoff coefficients ranged from 0.32% to 33%. The sedimentary response was also highly variable, with maximum suspended sediment concentrations (SSC) oscillating between < 0.1 and 90 g l− 1 and flood sediment loads varying from 27 to 54,000 t per hydrological event. Most sediment load was concentrated in spring when competent floods occur frequently. Pearson correlation matrix and backward stepwise multiple regression indicate that the hydrological response of the catchment is strongly correlated with total precipitation, event duration, and rainfall of the previous days. Very low correlation was observed with rainfall intensity. The relation between rainfall and sediment transport followed the same trend. Sediment variables (e.g., total load and SSC) were significantly correlated with variables such as total rainfall and rainfall over the previous days, although the significance level was lower in comparison with the runoff related variables. There was again no correlation between sediment variables and rainfall intensity. On-going research in the area suggests that, apart from rainfall, factors such as sediment availability in the badlands and accumulation of sediment in the channels influences the river's sedimentary response. The non-linear hydrosedimentary response is reflected in the wide range of runoff coefficients and sediment loads that have been observed in response to similar amounts of precipitation.  相似文献   

12.
Extent and conservation of tropical dry forests in the Americas   总被引:1,自引:0,他引:1  
This paper shows the results of an assessment on the current extent of Neotropical dry forests based on a supervised classification of MODIS surface reflectance imagery at 500-m resolution. Our findings show that tropical dry forests extend for 519,597 km2 across North and South America. Mexico, Brazil and Bolivia harbor the largest and best-preserved dry forest fragments. Mexico contains the largest extent at 181,461 km2 (38% of the total), although it remains poorly represented under protected areas. On the other hand, Brazil and Bolivia contain the largest proportion of protected tropical dry forests and the largest extent in continuous forest fragments. We found that five single ecoregions account for more than half of the tropical dry forests in the Americas (continental and insular) and these ecoregions are: the Chiquitano dry forests, located in Bolivia and Brazil (27.5%), the Atlantic dry forests (10.2%), the Sinaloan dry forests in Mexico (9.7%), the Cuban dry forests (7.1%) and the Bajio dry forests in Mexico (7%). Chiquitano dry forests alone contain 142,941 km2 of dry forests. Of the approximately 23,000 km2 of dry forest under legal protection, 15,000 km2 are located in just two countries, Bolivia and Brazil. In fact, Bolivia protects 10,609 km2 of dry forests, where 7600 km2 are located within the Chiquitano dry forest ecoregion and protected by a single park. Low extent and high fragmentation of dry forests in countries like Guatemala, Nicaragua, Ecuador, Costa Rica and Peru means that these forests are at a higher risk from human disturbance and deforestation.  相似文献   

13.
As one part of the ‘Three Norths’ forest protection system, dense farmland shelterbelt networks in northeastern China could greatly modify water and sediment flows. In this paper, catchment soil erosion rate and sediment yield (SY) that are impacted by farmland shelterbelts were estimated using WaTEM/SEDEM model. The shelterbelts reduced catchment soil erosion and SY to some extent. The mean soil erosion rate and specific sediment yield (SSY; defined as the ratio of SY to catchment area; t km?2 yr?1) of the 25 reservoir catchments decreased from 351.6 and 93.9 t km?2 yr?1 under the supposed scenario without shelterbelts to 331.1 t km?2 yr?1 and 86.3% t km?2 yr?1 under the current situation with shelterbelts. The sediment trap efficiencies (STEs) varied from 0.01% to 23.6% with an average value of 7.6%. The STEs were significantly correlated with shelterbelt density, catchment perimeter, topographic factors, RUSLEP‐factor and land use patterns including patch density (PD), patch cohesion index (COHESION), Shannon's diversity index (SHDI) and aggregation index (AI). The multiple regression equation involving factors of catchment's topography and morphology and land use pattern has a satisfactory performance, and mean slope gradient (MSG) and AI explained most of the variability of shelterbelts’ STE. This information can help land managers to better design shelterbelts and to reduce water‐derived soil loss at catchment scale.  相似文献   

14.
《CATENA》2010,80(3):205-213
A major landslide that occurred in 1569 in the Huangtuwa gully catchment within the Rolling Loess Plateau region of China, resulted in the creation of a landslide-dammed lake at the outlet of the small 0.1 km2 tributary valley of the Houxiaotan Gully. All the sediment transported to the outlet of this catchment was deposited in the lake. After about 30 years the dam failed and the lake deposits were dissected as the stream cut down to its former base level. Substantial remnants of the sediment deposits that accumulated over the ca. 30 year period are, however, preserved as terraces near the outlet of the catchment and a vertical section through these sediment deposits was investigated using stratigraphic and pollen tracing techniques. Individual flood couplets could be clearly distinguished and these permitted the establishment of a chronology for the sediment deposits and the estimation of the sediment yields associated with individual events and individual years. Pollen analysis undertaken on samples collected from the individual flood couplets also provided information on the variation of the pollen content of the sediment and the proportion of Artemisia pollen during the period represented by the deposits. Interpretation of the information assembled from the sediment section has made it possible to reconstruct the erosional history of the Houxiaotan catchment during the 31 year period following the landslide. The average sediment yield of the catchment in the late 16th century was very similar to its present-day sediment yield. The sediment yield from the catchment and the relative contribution of the inter-gully areas, as compared to the gully system, declined immediately after the landslide as a result of abandonment of the cultivated land within the catchment. The restoration of cultivation in the catchment after about 17 years resulted in an increase in sediment yield from ca. 9000 t km 2 yr 1 to ca. 30,000 t km 2 yr 1 and a substantial increase in the proportion of sediment contributed by the cultivated inter-gully areas. Scope exists to apply a similar approach to the sediment deposits that accumulated in other former landslide-dammed lakes within the Rolling Loess Plateau region of China, in order to develop an improved understanding of the erosion history of the region.  相似文献   

15.
Storm event and annual export of suspended sediment (SS) and particulate phosphorus (PP) was measured during three hydrological years (June 1993 to May 1996) in Gelbæk stream, a Danish lowland stream draining a 11.6 km2 arable catchment area. The contribution of subsurface drainage water, surface runoff and stream bank and bed erosion to catchment SS and PP losses was estimated using three different strategies: 1) Simultaneous and comparative monitoring of subsurface water. 2) A mass-balance and budget approach dividing the Gelbæk catchment into two subcatchments. 3) Application of the fingerprinting technique to single storm events. Subsurface drainage water proved to be a significant SS and PP source. Subsurface drainage water from half of the catchment area accounted for 9.8–15% of the total annual SS loss from the Gelbæ catchment and 9.6–18.2%, of the annual PP loss. The mass-balance and budget approach showed stream bank and bed erosion to be the major source of SS and PP in this channelized and highly managed lowland stream. These findings were consistent with the fact that the annual loss of SS and PP from an upper culverted stream sub-catchment was significantly lower than that estimated from a mass-balance for a lower sub-catchment with an open stream channel. Comparison of the tracer content (e.g.117Cs) of SS collected during four storm events with that of topsoil and subsoil using a simple mixing model revealed subsoil to be a major source of SS.  相似文献   

16.
This paper reports the results of an investigation of the erosional response of the 3·86 km2 Zhaojia Gully catchment in the rolling loess plateau region of Zichan County, Shaanxi Province, China. In the absence of direct measurements, information derived from reservoir deposits and from caesium-137 measurements on both the catchment soils and reservoir deposits was used to obtain a retrospective assessment of the longer-term (ca. 30 year) erosional response of the catchment and of the relative contributions of the rolling plateau surface and the gully areas to the sediment output from the basin. Net erosion rates on cultivated land occupying the gentle crest slopes and steeper lower slopes of the rolling plateau and the steep gully slopes were estimated to be 4500 t km−2 year−1, 8584 t km−2 year−1 and 15851 t km−2 year−1, respectively. Estimates of annual sediment yield from the study catchment based on analysis of sediment deposits in the two sediment-trap reservoirs ranged between 4627 and 32472 t km−2 year−1. Almost all the sediment transported from the catchment was contributed by 2–4 large floods each year. Measurements of the caesium-137 content of recent sediment deposits in a sediment-trap reservoir allowed the relative contributions of the total sediment yield derived from the rolling plateau and gully areas of the catchment to be estimated at 23 and 77 per cent, respectively. Analysis of the sediment deposits dating from 1973–1977 in another sediment trap reservoir allowed individual flood event couplets to be identified and indicated that the sediment associated with the first one or two floods in a season, when the soils of the plateau area were relatively dry, was derived primarily from the gully areas. The cultivated soils of the rolling plateau contributed an increased proportion of the total sediment yield during the latter stages of the flood season when the soils were wetter, and surface runoff and erosion were more widespread. Based on analysis of the caesium-137 content of the sediment deposited in this sediment-trap reservoir, the relative contributions of sediment from the rolling plateau and gully areas over the period 1973–1977 were estimated to be 21 and 79 per cent, respectively. The results obtained demonstrate the potential for using caesium-137 measurements and analysis of reservoir deposits to document the erosional response of a drainage basin. © 1997 John Wiley & Sons, Ltd.  相似文献   

17.
Soil cover and rainfall intensity (RI) are recognized to have severe impacts on soil erosion and an interaction exists between them. This study investigates the effect of rainfall intensity (RI) and soil surface cover on losses of sediment and the selective enrichment of soil organic carbon (SOC) in the sediment by surface runoff. A field rainfall simulator was used in the laboratory to produce 90 min rainfall events of three rainfall intensities (65, 85 and 105 mm h− 1) and four cover percentages (0%, 25%, 50% and 75%) on soil material at 9% slope. A strong negative exponential relation was observed between cover percentage and RI on sediment loss under 85 and 105 mm h− 1 of rain, while under RI of 65 mm h− 1, the highest sediment loss was observed under 25% cover. Overall, higher RI and lower cover produced higher sediment and consequently higher nutrient loss, but resulted in a lower SOC enrichment ratio (ERSOC) in the sediment. The amount of runoff sediment rather than the ERSOC in the sediment was the determinant factor for the amount of nutrients lost. The values of ERSOC were high and positively correlated with the ER values of particles smaller than 20 µm (p < 0.01). Although the sediment contained substantially more fine fractions (fine silt and clay, < 20 µm), the original soil and runoff sediment were still of the same texture class, i.e. silt clay loam.  相似文献   

18.
Soil erosion is a severe problem on China's Loess Plateau due to its fine‐grained soils and the increasing frequency of extreme rainfall events. Accordingly, this study used a 100‐year frequency rainstorm dataset to analyse sediment deposition and sources in a 27‐km2 catchment with a dam field area of 0·14 km2 based on the hypothesis that sediments were intercepted by the dam (before collapse) during the rainstorm event and deposited in the dam field. This study applied composite fingerprinting, which revealed the sediment source contributions and estimated sediment deposition. Sediment deposition (626·4 kg m−2) decreased linearly or exponentially with increasing distance from the dam. Composite fingerprints based on the optimal parameters revealed relative sediment contributions of 44·1% ± 25·5%, 37·7% ± 35·0%, 9·0% ± 11·4% and 9·2% ± 11·5% by bare ground, croplands, grassland and forests, respectively. The 5‐year cumulative sediment deposition from normal rainfall was 2·3 × 104 t less than the extreme rainstorm. Bare grounds and croplands were the dominant sediment sources following both the extreme rainstorm and normal erosive rainfall events but varied at different areas of the check‐dam. Erosion patterns and start times depended on land use type, thereby affecting sediment profiles in the dam field. Furthermore, severe erosion from bare ground that were all gully slopes and gully walls occurred throughout the rainfall, whereas grasslands and forest erosion occurred earlier and croplands later. Finally, extreme rainfall promoted mass wasting on slopes, gully slopes and gully walls, which are important in determining extreme rainstorm erosion pattern variation. This study aimed to reveal erosion pattern variation under extreme rainstorm events. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
We describe an approach for evaluating the representativeness of eddy covariance flux measurements and assessing sensor location bias (SLB) based on footprint modelling and remote sensing. This approach was applied to the 12 main sites of the Fluxnet-Canada Research Network (FCRN)/Canadian Carbon Program (CCP) located along an east-west continental-scale transect, covering grassland, forest, and wetland biomes. For each site, monthly and annual footprint climatologies (i.e. monthly or annual cumulative footprints) were calculated using the Simple Analytical Footprint model on Eulerian coordinates (SAFE). The resulting footprint climatologies were then overlaid on to images of the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) derived from LANDSAT Thematic Mapper (TM) imagery, which were used as surrogates of land surface fluxes to estimate SLB. Results indicate that (i) the sizes of annual footprint climatology increased exponentially with increasing cumulative footprint percentages and, for a given percentage of footprint climatology, the footprint areas were significantly different among the sites. Typically, the 90% annual footprint climatology areas varied from 1.1 km2 to 5.0 km2; (ii) using either NDVI or EVI as the flux surrogate, the SLB was less than 5% for most sites with respect to the reference area of interest (Ar) at 90% annual footprint climatology (scenario A) and a circular area with radius of 1 km centred at the individual tower (scenario B), with several exceptions; (iii) the SLB decreased with increasing size of footprint climatology for all sites for both scenarios A and B; (iv) out of 12, eight flux towers represented most of the ecosystem surrounding the towers for an area of 0.3 km2 up to 10 km2 with a satisfactorily low bias of <5%, whereas four towers represented areas ranging from only 0.75 to 4 km2; and (v) the seasonal differences in monthly SLB using NDVI as a flux surrogate were about 1-4% for most sites for both scenarios A and B.  相似文献   

20.
《CATENA》2005,64(1):27-60
Forest clearance between the 1890s and the early 1920s, subsequent scrub growth, and commencement of an afforestation program in 1979, modified the pattern and rate of sediment delivery to valley floors via shallow landslides and gully complexes in a steep headwater catchment (4.8 km2) in New Zealand. Analysis of the historical record, air photograph interpretation, and field survey indicates that both erosion types occurred across the catchment in the 1938 storm, aggrading channel beds and widening the active channel zone. In contrast, a 1 in 100 year event in 1988 (Cyclone Bola) induced numerous shallow landslides, but erosion of gully complexes was largely restricted to subcatchments that retained pasture, and the geomorphic impact of this event on channels was small. The changing volume and calibre of materials delivered to the valley floor, and the distribution of gully complexes, altered patterns and rates of channel adjustment after the events, and the resulting sediment flux. Development of gully complexes maintained coupling processes with channels for periods up to 102 years, forming wide channels in downstream reaches. Upstream–downstream connectivity along the trunk stream was altered by the formation of a large debris fan at the confluence with a tributary subjected to gully complex erosion. In contrast, slopes subjected to shallow landslides became decoupled from channels within 10 years, accelerating channel degradation and narrowing. Effective conveyance of a large volume of fine-grained materials promoted immediate aggradation of gentle-gradient channels downstream. As gully complex areas stabilized following an increase in forest and scrub cover, channel courses became significant sediment sources. Although shallow landslide activity will continue to induce intermittent aggradation in the future, it is inferred that average sediment yield will continue to diminish to levels approaching those experienced prior to clearcutting, and the pattern of sediment flux will recover by 2030.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号