共查询到20条相似文献,搜索用时 18 毫秒
1.
Summary A method of assessing the enzymatic hydrolysis of ester sulphate in soil organic matter was developed. Soil organic matter extracted using a mild, chelating resin extraction procedure was incubated with a sulphatase from Helix pomatia in 0.05 M sodium acetate buffer (pH 4–8) at 37°C for 2h and the sulphate released was determined by a high performance liquid chromatography-conductivity detector system. The effect of some soil factors on the enzymatic hydrolysis of ester sulphate was examined. The study showed that part of the ester sulphate in soil organic matter was biochemically reactive. In the three Podzols studied, the ester sulphate hydrolysed accounted for 2%–12% of the hydriodic acid-reducible organic sulphate extracted. The largest amount of hydrolysable ester sulphate was found in the soil with a low pH, high inorganic sulphate and high hydriodic acid-reducible organic sulphate. 相似文献
2.
Effects of organic matter removal, soil compaction, and vegetation control on Collembolan populations 总被引:5,自引:0,他引:5
Collembola can be among the most numerous meso-invertebrates in the forest floor and, through their interaction with primary decomposers in the decomposition food web, may affect litter decomposition and consequently site productivity. This study was conducted to determine whether Collembolan abundance could be impacted by organic matter removal, compaction, and vegetation control on a loblolly pine (Pinus taeda L.) plantation. Monthly soil and litter samples were taken over 2 years and the fauna extracted from them using modified Tulgren funnels. Organic matter removal and vegetation control generally caused a significant decrease in Collembolan populations, while compaction did not significantly affect Collembolan populations. These results indicate that habitat was the primary influence on population abundance in this experiment, possibly via its influence on desiccation. Sensitivity of collembolan populations to habitat changes caused by organic matter removal indicates a potential effect on long-term site productivity. 相似文献
3.
Use of organic carbon and loss-on-ignition to estimate soil organic matter in different soil types and horizons 总被引:2,自引:0,他引:2
Summary Loss-on-ignition (LOI) and the organic C content have been used to estimate soil organic matter. Organic matter is often estimated from organic C by applying a factor of 1.724. Several authors have examined the relationship between LOI, used as an estimate of organic matter, and C by simple linear regressions. In the present study, this approach was examined in relation to two sets of data. LOI overestimates organic matter in soils with significant proportions of clay minerals because of bound water, and correcting for bound water gives some LOI: C ratios of less than 1. It is concluded that differences in the nature of the organic matter in different soils and horizons make the simple regression approach unsuitable. More attention needs to be paid to studies of the nature of the organic matter. 相似文献
4.
Soil degradation due to tillage has been reported Africa-wide. Other main causes of soil degradation are overgrazing, extensive cultivation of marginal lands, widespread clearing of vegetation for agriculture, deforestation, exploitation of unsuitable agricultural technologies, mis-management of arable lands, and frequent drought. Hence, declining soil fertility and increasing population pressure on lands are fragile bases on which to build expectations for improved crop production. This paper recognizes conservation tillage systems as one means for preventing food shortages and natural resources degradation throughout the continent. Conservation tillage has the potential for increasing soil organic matter content and enhancing soil aggregation. Conservation tillage systems can create an aggregated, fertile surface layer that is important from a soil erosion reduction perspective and thus for a sustainable agriculture in Africa. Some indigenous tillage systems in Africa can be adapted to meet objectives of conservation tillage systems. Further, recent technological developments in tillage and seeding machinery will certainly enhance the rate of farmer’s acceptance and adoption of conservation tillage. 相似文献
5.
高寒山区地形序列土壤有机碳和无机碳垂直分布特征及其影响因素 总被引:4,自引:0,他引:4
地形、生物气候条件具有明显差异的青藏高原约占我国陆地面积的五分之一,开展该地区土壤有机碳和无机碳分布特征的研究对于理解青藏高原土壤碳循环过程与陆地碳库的精确预测以及应对全球气候变化具有重要意义。研究选取位于祁连山中段的阴、阳坡地形序列土壤,分析了不同坡向间以及同一坡向内随海拔高度变化土壤有机碳和无机碳的垂直分布特征及其影响因素。结果表明:阴、阳坡有机碳含量均随土壤深度增加而下降,但阳坡下降的速率(66%~91%)明显高于阴坡(31%~77%);阴坡土壤中碳酸钙基本淋失,通体无机碳含量较低(5.0 g kg-1),阳坡B层土壤无机碳含量是A层的2倍,表现为明显富集。阴坡和阳坡1 m土体总碳密度相当(分别为16.1~33.9 kg m-2和11.8~32.8 kg m-2),其中,阴坡以有机碳为主(占总碳密度的82%~99%),而阳坡有机碳和无机碳密度变化均较大(分别占总碳密度的27%~81%和19%~73%)。因此,坡向是影响高寒山区土壤碳垂直分布和组成的重要因素。此外,降雨量和植被类型对地形序列土壤有机碳和无机碳含量的空间变异也具有重要影响:降雨量每增加1 mm,表层(0~20 cm)土壤有机碳含量增加0.4 g kg-1,而淀积层(40~80 cm)土壤无机碳含量下降0.2 g kg-1;植被类型在一定程度上影响了土壤有机碳的富集程度。本研究揭示了青藏高寒山区土壤碳循环及其碳库预测应充分考虑微地形对坡面尺度下土壤碳垂直分布、碳库组成和空间变异的影响。 相似文献
6.
Influence of management practices on soil organic matter changes in the Northern China plain and Northeastern China 总被引:4,自引:0,他引:4
Yan Xu Fengrong Zhang Xiying Hao Jingkuan Wang Ru Wang Xiangbin Kong 《Soil & Tillage Research》2006,86(2):230-236
Soil organic matter (SOM) is strongly related to soil type and management practices. Changes in government policy have brought drastic changes in farm management practices in the last two decades in rural China. This study investigates changes in SOM in two different soils: Ustepts and Udolls. Ustepts, in the North China Plain where the climate is warm and sub-humid, developed from an alluvial flood plain with organic matter <10 g kg−1. Udolls, in Northeastern China where the climate is cool and sub-humid, developed from loess-like materials with organic matter >20 g kg−1. Two locations for Ustepts and three locations for Udolls were used to collect 567 soil samples in 1980–1982 and again in 2000 for SOM analysis. Soil organic matter increased for Ustepts and decreased for Udolls soils over the sampling period, resulting from differences in fertilizer rates and crop residue input to soil. Higher fertilizer input and crop intensity and initially very low SOM content in Ustepts all contributed to greater OM input than oxidation release. In contrast, lower fertilizer input and crop intensity, and initially high SOM content in the Udolls, led to lower OM input than oxidation release. Increasing SOM content through higher mineral fertilizer input is a valuable option for sustainable agriculture production in areas where SOM is low and there is a shortage or potential shortage of food supply. 相似文献
7.
B. Elberling E.G. Gregorich A.D. Sparrow L.G. Greenfield 《Soil biology & biochemistry》2006,38(10):3095-3106
Terrestrial ecosystems in the Antarctic dry valleys function under extremely cold and dry climatic conditions that severely constrain C and N cycling and, like other polar regions, are likely to be sensitive to environmental change. To characterize the distribution and dynamics of soil organic C (SOC) and N in the various landscape elements of an Antarctic dry valley, we measured soil profile organic C and organic N stocks, inorganic N (NH4-N and NO3-N), soil CO2 effluxes, water contents and soil temperatures in the Garwood Valley, a relatively small valley in southern Victoria Land. We also conducted laboratory measurements of basal respiration on soils collected from the Valley. SOC and respiration rates were low and SOC was highly stratified in the soil profile, with the largest values observed near the surface. Significant variations of SOC stocks and soil CO2 effluxes were observed between landscape elements and spatial variability was closely related to the distance from the lake, the major site of primary production. The fastest rate of SOC turnover (residence time c. 30 years) was found in the soils at the lake edge, slower rates were found in landscape elements close to the lake (c. 52-67 years), and the slowest rates in other landscape elements (c. 84-123 years) further away. A mass balance of organic C indicates that the quantity of C fixed in the lake, accumulated on the lake edge, exposed and subsequently displaced on a 14-year basis can explain the near-surface SOC turnover within the entire valley. We conclude that the displacement of organic matter derived from the lake is an important external source for the microbial processes in these soils at a landscape scale. However, further investigations are needed in order to evaluate the importance of displaced C compared to other nutrients (e.g. N) on the spatial control of observed soil respiration rates. 相似文献
8.
施肥结构对砂质潮土有机质及氮磷钾养分变化的影响 总被引:1,自引:0,他引:1
通过在砂质潮土上10年长期定位试验,研究了不同施肥结构对作物产量和土壤有机质及N、P、K等养分在土体中变化的影响。结果表明,单施N肥小麦减产21.1%~34.3%,玉米则增产155.9%~209.7%;单施P肥小麦增产29.3%~39.7%,玉米减产50.4%~63.0%;而N、P肥配施小麦、玉米分别增产3.43~5.79倍和3.04~4.23倍。施有机肥能显著提高作物产量和土壤养分含量,而N、P肥单施或配施仅能维持较低有机质水平,且土壤K耗竭严重。单施N肥N素易于下淋,而N、P肥配施有利于N在土壤上层的保持。有机肥配施N肥或N、P肥是较好的施肥结构。 相似文献
9.
D. Jordan V. C. Hubbard F. Ponder Jr E. C. Berry 《Biology and Fertility of Soils》2000,31(3-4):323-328
Earthworms may alter the physical, chemical, and biological properties of a forest soil ecosystem. Any physical manipulation
of the soil ecosystem may, in turn, affect the activities and ecology of earthworms. The effects of removing organic matter
(logs and forest litter) and severely compacting the soil on native earthworm species were measured in a central USA hardwood
region (oak-hickory) forest in the Missouri Ozarks (USA). Soils in this region are characterized by a cherty residuum that
is primarily of the Clarksville series (Loamy-skeletal, mixed, mesic Typic Paledults). Earthworms were collected from 0–15 cm
depth each spring and fall for 2 years by handsorting, and densities were determined on a per meter square basis. Two native
earthworm species, Diplocardia ornata and Diplocardia smithii, were dominant on this site. Organic matter removal decreased the average individual biomass of both species. However, both
species responded differently to soil compaction. Soil compaction affected D. ornata adversely and D. smithii favorably. This suggested that the degree of soil compaction was not as restrictive with respect to D. smithii (2 mm diameter) as to D. ornata (5 mm diameter). Moreover, the apparently improved soil environmental conditions resulting from the remaining organic matter
in compacted soil enhanced the population and growth of D. smithii. Sampling position on the landscape affected D. ornata but not D. smithii. Soil microbial biomass C and soil microbial biomass N were decreased under soil compaction when the organic matter was removed.
Other factors influencing the ecology and activity of these two species will require further study.
Received: 6 January 1999 相似文献
10.
Anders Nordgren 《Biology and Fertility of Soils》1992,13(4):195-199
Summary A bioassay of microbially available soil N and P is described. It is based on the addition of glucose together with N or P to soil, followed by monitoring of the respiration rate. The addition of glucose + N resulted in an immediate increase in the soil respiration rate followed by a short period of exponential increase, reflecting the growth of microorganisms on the added substrate. The exponential phase levelled off, when lack of P prevented further growth of the soil microorganisms. The soil respiration rate then remained constant for several hours before decreasing, when glucose became limiting. The addition of glucose + P resulted in a lower plateau of the soil respiration rate, indicating that microbial growth was more limited by N than P in this forest soil (0.28 and 0.79 mg CO2 g-1 organic matter h-1, respectively). Additions of the limiting nutrient resulted in a proportional increase in the constant level of the soil respiration rate. This was used to calculated the increase in the soil respiration rate per mg N (0.71 mg CO2 h-1) or mg P (4.6 mg CO2 h-1) added to this particular soil. Microbially available N was then calculated in two ways from the regression equation (0.15 or 0.40 mg g-1 organic matter) and P (0.13 or 0.17 mg g-1 organic matter). A comparison with 2 M KCl extraction showed that in nutrient-poor forest soils the microbially available N was 6.3 or 18.5 times higher than the KCl extractable N. 相似文献
11.
Effects of liming on organic matter decomposition and phosphorus extractability in an acid humic Ranker soil from northwest Spain 总被引:3,自引:0,他引:3
L. M. Condron H. Tiessen C. Trasar-Cepeda J. O. Moir J. W. B. Stewart 《Biology and Fertility of Soils》1993,15(4):279-284
Summary A laboratory incubation experiment was carried out over 17 weeks to determine the effect of liming on soil organic matter. The amount of lime as calcium hydroxide [Ca(OH)2] required to completely neutralise exchangeable Al was found to be five times the standard lime requirement. This large amount of lime had a limited overall effect on the short-term stability of soil organic matter, causing the release of 1300 g g-1 of C (1.7% total soil C) above the control during the incubation. Liming may have altered the potential availability of soil organic matter and organic P, as shown by a marked reduction in the extractability of soil organic P with sodium bicarbonate and sodium hydroxide. The latter was unlikely to be due to the formation of calclium-P artefacts, and may be attributed to the combined chemical effects of added calcium hydroxide and precipitation of exchangeable Al on the nature and solubility of soil organic constituents and organomineral complexes. The addition of lime increased the degradation of added oak leaf litter by 50%, from 3.2 to 4.7 mg g-1, as determined by CO2 evolution. The enhanced litter degradation indicated increased microbial activity in limed soil, but this improvement had only minor effects on the stability of native organic matter. This study highlights the need for further research into the relationships between the chemical nature of organic P in soil and the physical, chemical, temporal, and agronomic factors that control its turnover and availability. 相似文献
12.
The impact of soil erosion on the nutrient dynamics in alpine grassland soils is still an essential problem. Selecting a grass-covered hillslope in eastern Tibet Plateau, the cesium-137 (137Cs) technique was used to determine the impacts of soil erosion on soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), and total potassium (TK). The 137Cs data revealed that there were distinct soil redistribution patterns in different hillslope positions because of the influences of slope runoff, plant coverage and grazing activity. For the upper slope, soil erosion first decreased downward, followed by soil deposition in its lower part. In contrast, for middle and toe slopes, there was an increasing soil erosion along a downslope transect. Across the lower slope, soil erosion showed an irregular variation. Influenced by the selective transport of water erosion, SOC, TN and TP storage decreased with increasing soil erosion in upper, middle and toe slopes. In contrast, SOC, TN and TP storage varied little with soil erosion in the lower slope. On the whole hillslope, TK storage also varied little with soil erosion due to the large amount of potassium elements derived from soil parent materials. Particularly noteworthy was the greatest storage of SOC, TN and TP in the lower slope where most obvious net soil erosion occurred, which is closely related to the humus accumulation combined with gravel separation as well as weathering and pedogenesis of parent rocks induced by soil freeze-thaw. 相似文献
13.
Korodjouma Ouattara Badiori Ouattara Ayemou Assa P. Michel Sdogo 《Soil & Tillage Research》2006,88(1-2):217-224
Soil moisture characteristic curves were determined in long-term trials at the agronomic research center of Saria (latitude 12°16′ N, longitude 2°09′ W) in West-central Burkina Faso. The agronomic treatments combined soil tillage with organic and chemical fertilizers. The twin values for soil moisture and water potential showed that on ploughed plots, moisture content was higher at low suction and lower at high suction than the hand hoed plots. Moisture contents were higher for extreme suctions (pF < 1.5 and >3) on plots that received high dose of animal manure. The bush fallow plots behaved as a ploughed plot at low suction and like a hand hoed plot at the high suction. Field capacities were around 9.50% (g/g) and 8% (g/g), respectively, for hand hoed and ploughed plots, while the wilting points for both were of 5–6% (g/g). Organic matter input improved field capacity and soil water content at wilting point but not the useful available water (UAW). The UAW ≥10 mm on the fallow and the control, while it was <9 mm on the other treatments in 0–20 cm soil layer. Soil structural modifications induced by tillage and organic matter input explained these differences in soil hydrologic regime. 相似文献
14.
T. Murata N. Nagaishi R. Hamada H. Tanaka K. Sakagami T. Kato 《Biology and Fertility of Soils》1998,27(4):342-348
The effect of short-term bark compost (Ba) and leaf litter (Li) applications on the labile soil organic matter (SOM) status
was investigated. The SOM status studied in this paper includes soil microbial biomass, soil available N, hot water extractable
C (HwC) and N (HwN) and soil neutral sugar-C composition. The soil microbial biomass C (MBC) and N (MBN), soil available N,
HwC and HwN increased upon application of Ba and Li. No quantitative relationship was observed between application of organic
material and MBC, MBN or soil available N. A positive linear correlation was observed between MBN and HwC but not between
MBN and soil available N. Among the various soil neutral sugar C, xylose C (Xyl) content in Ba plots showed a remarkable increase
but mannose C (Man) did not differ among Fer (fertilizer), Ba or Li plots. Soil neutral sugar C had a positive linear correlation
with soil available N, MBN and HwC. The proportion of MBN : TN is positively correlated with the Xyl/Man ratio. The increase
in the proportion of MBN in SOM seems to occur with the increase of SOM derived from plant debris.
Received: 20 October 1997 相似文献
15.
Marion Kissling K. Tessa Hegetschweiler Hans-Peter Rusterholz Bruno Baur 《Applied soil ecology》2009,42(3):303-314
Understanding the effects of disturbance by human trampling on ecosystem processes is essential for the management of recreational areas. Discussions on recreational impacts are based either on data from trampling experiments or on field survey data from sites subjected to long-term recreational use, but rarely on a combination of both. We examined whether results from a short-term trampling experiment reflect the impact of long-term trampling around frequently used fire places. We compared short- and long-term effects of human trampling on above-ground forest vegetation and soil physical, chemical and microbial characteristics. We found both similarities and differences in short- and long-term trampling effects. Both short- and long-term trampling reduced plant cover, plant height and species density, though long-term effects were more pronounced than short-term effects. In both approaches, leaf litter biomass decreased, whereas soil density increased with trampling intensity. Other soil characteristics including soil moisture, total soil organic matter content and total organic nitrogen content were not or only marginally affected by short- and long-term trampling. Furthermore, soil microbial biomass and the activity of dehydrogenase did not change in both approaches. In contrast, the activity of β-glucosidase was only reduced by short-term trampling, whereas activity of phosphomonoesterase was reduced only by long-term trampling. Soil compaction was one factor reducing microbial activities at low and medium trampling intensities in our experiment and in the highly compacted area around the fire rings. We conclude that it could be problematic to use the results of short-term trampling experiments to predict general long-term trampling effects. Our results imply also that the restoration of degraded sites might be hampered by the low nutrient turnover resulting from the reduced litter layer and changes in enzyme activities, mitigating a successful re-establishment and growth of plants. 相似文献
16.
Tropical subsoils contain large reservoirs of carbon (C), most of which is stored in soil organic matter (SOM). Subsoil OM is thought to be particularly stable against microbial decomposition due to various mechanisms and its position in the soil profile, potentially representing a long-term C sink. However, few experiments have explicitly investigated SOM stability and microbial activity across several orders of magnitude of soil C concentrations as a function of soil depth. The objective of this study was to evaluate the biological stability of SOM in the upper 1.4 m of tropical forest soil profiles. We did so by measuring CO2 evolution during a 90-day laboratory incubation experiment on a sample set that was previously characterized for C and nutrient concentrations and microbial biomass. We concurrently measured the energy content of SOM using differential scanning calorimetry (DSC) as an index of the energy available for microbial metabolism, with the hypothesis that the biological stability of SOM would be inversely related to the energy contained within it. Cumulative CO2 evolution, mean respiration rates, and the energy density of SOM (energy released during combustion normalized to soil C) all declined with soil depth (P < 0.01). Biological indices of C stability were well correlated with measures of SOM energy. There was no change in the mean respiration rate as a function of depth when normalized to soil C, and a trend toward increased respiration per-unit microbial biomass (P = 0.07). While reduced microbial respiration in subsoils suggests an increase in the biological stability of SOM, we suggest this is driven principally by concurrent declines in energy availability as measured by DSC and the size of the microbial biomass pool. On a per-unit biomass basis, subsoil OM may be as prone to decomposition and destabilization as surface SOM. 相似文献
17.
Jørgen Eriksen 《Biology and Fertility of Soils》1996,22(1-2):149-155
In agricultural systems with low S inputs, soil organic matter is a major source of S and the transformations between organic and inorganic S pools are important for the supply of S to plants. This study was conducted to determine the effect of S fertilizer on the size and activity of organic S pools. For 5 years S fertilizer with a known composition of stable S isotopes was applied to a rotation on a loamy soil and a coarse sandy soil at rates higher than the plant demand. Total organic S in soil organic matter was not affected by sulphur application, but a small increase occurred in the sulphate ester fractions (P<0.05). Inorganic sulphate concentrations in the soil reflected the S application in the year of sampling, whereas S applied in earlier years was not recognized. Organic matter below the plough layer in both soils was enriched with S, possibly as a result or organic matter leaching or an increased clay content in the subsoils. At 0–20 cm, the C:S ratio in organic matter was ca. 100 for both soils, decreasing to 73 and 46 at 60–80 cm for the coarse sandy soil and the loamy soils, respectively. In both soils, isotope data showed that ca. 30% of organic-bonded S at 0–20 cm originated from fertilizer S applied during the last 5 years, irrespective of the S application rate. At 20–40 cm the rate of incorporations was lower and at 40–60 cm no incorporation of fertilizer S into organic matter was recognized. The fertilizer application did not induce net changes in the total organic S fraction, but isotope data indicated that a considerable part of the organic S pool was involved in S cycling in the field. 相似文献
18.
Biological soil crust and surface soil properties in different vegetation types of Horqin Sand Land,China 总被引:1,自引:0,他引:1
Physical and chemical properties (including coverage, thickness, hardness, moisture, particle size distribution, organic matter and nutrient contents etc.) of biological soil crust and 0–5.0 cm surface soil under the crust in three types of vegetation (semi-shrub Artemisia frigida, shrub Salix gordejevii and tree Populus simonii) were surveyed in 2005 and 2006 in Horqin Sand Land to understand the effects of different vegetation types on development of soil crust and surface soil properties under crust. The results showed that 1) no physical soil crust or biological soil crust (BSC) formed on mobile dunes without vegetation, though most ground surface in originally mobile dunes had been covered by BSC fifteen years after planted vegetation was established; 2) BSC development was best in shrub S. gordejevii sites, second in semi-shrub A. frigida sites, and weakest in tree P. simonii sites; 3) development of BSC was better in moss crust distributed mainly beneath or near plant canopies than in lichen crust distributed mainly between plant canopies in all three vegetation types; 4) surface soil properties 0–5.0 cm under BSC were improved significantly in all three vegetation types compared to those in mobile sand land. The magnitude of improvement was greater in S. gordejevii sites than in A. frigida and P. simonii sites, and greater in moss crust sites than lichen crust sites, but the magnitude of improvement decreased significantly with increasing surface soil depth; 5) based on the above-mentioned results, we suggest that S. gordejevii should be favored in future planting in Horqin Sand Land. 相似文献
19.
中国地带性土壤有机质含量与酸碱度的关系 总被引:44,自引:1,他引:44
利用中国第二次土壤普查确定的886个典型地带性土种剖面资料,通过统计分析研究了全国及6个地理区域(华东、华南、西南、东北、华北和西北)地带性土壤表层有机质含量与pH的关系。结果表明,土壤表层有机质含量和pH在不同地理区域间有明显差异;土壤有机质含量有随pH升高而降低的趋势,二者间呈极显著的负相关关系(r=-0.332~-0.530,p<0.001),在控制温度、降雨和海拔条件下,二者间的偏相关关系也均达到1%的显著水平(r偏=-0.217~-0.322);指数方程(SOM=aebpH,a和b为常数)可以较好地描述土壤表层有机质含量与pH的关系,土壤pH变异可以分别解释有机质含量总变异的12.2%~22.9%。 相似文献
20.
《Communications in Soil Science and Plant Analysis》2012,43(11):1091-1099
Abstract Cauliflower (Brassica oleracea Botrytis cv. Snow Crown) was grown in field microplots of an organic soil containing residual fertilizer Cu varying from 81 to 1063 ppm (w/w) as a result of three levels of Cu applications made in the previous two seasons. The variation in soil‐Cu was found to have no significant influence on the yield, nutrition or copper status of the crop. 相似文献