首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The occurrence and distribution of Dothistroma needle blight (DNB) on Pinus mugo was studied in 2014–2015 around the Slovakia. In total, 42 localities were investigated both native and planted ones. Symptoms of DNB were observed on 35 localities only on planted shrubs. All these 35 localities are new P. mugo DNB stands. No DNB symptoms were observed in natural and naturally regenerated plantations. DNA was extracted from a total of 236 isolates and eight needle samples. Based on the ITS-rDNA comparisons and using species specific primers, both pathogenic Dothistroma species were detected: D. septosporum and D. pini. Isolates of D. septosporum had ITS sequences identical to D. septosporum from Europe and both mating types were identified with slight predominance of MAT2. The ratio of D. septosporum mating types varies significantly between sites, ranging from an equal proportion of each mating type to single mating type populations. D. pini ITS sequence grouped with D. pini from Ukraine, Russia and Switzerland and only MAT2 was found.  相似文献   

2.
The reniform nematodes of the genus Rotylenchulus are semi-endoparasites of numerous herbaceous and woody plant roots and distributed in regions with Mediterranean, subtropical and tropical climates. In this study, we provide morphological and molecular characterisation of three out of 11 valid species of the genus Rotylenchulus: R. macrodoratus, R. macrosoma, and R. reniformis from Greece (Crete), Italy and Spain. The overall prevalence of reniform nematodes in wild and cultivated olives in Greece, Italy, and Spain was 11.5%, 19.0% and 0.6%, respectively. In Greece, R. macrodoratus and R. macrosoma were detected in cultivated olive with a prevalence of 8.2% and 6.2%, respectively, but none of them were found in wild olive. This is the first report of R. macrosoma in Greece. Only one reniform nematode species was detected in olive from Italy and Spain, viz. R. macrodoratus and R. macrosoma, respectively. The parasitism of R. macrosoma on hazelnut in northern Spain was also confirmed for the first time. This study demonstrates that R. macrodoratus and R. macrosoma have two distinct rRNA gene types in their genomes, specifically the two types of D2-D3 for R. macrosoma and R. macrodoratus, the two types of ITS for R. macrodoratus and the testing of the ITS variability in other R. macrosoma populations in different countries. Rotylenchulus macrosoma from Greece and Spain showed differences in nucleotide sequences in the ITS region and D2-D3 of 28S rRNA gene.  相似文献   

3.
Two hymenopteran parasitoids of the cactus scale Diaspis echinocacti (Bouché) (Hemiptera: Diaspididae) on Opuntia ficus-indica (L.) Mill. (Cactaceae) are recorded in Greece. Aphytis debachi Azim, 1963 (Aphelinidae) is first recorded for Europe and Plagiomerus diaspidis Crawford, 1910 (Encyrtidae) is first recorded for Greece. Preliminary data on phenology and natural enemies of the scale D. echinocacti on O. ficus-indica are presented. Parasitism of D. echinocacti by P. diaspidis reached 86% in southern Greece (Kalamata) and parasitism by A. debachi reached 9.3% and 12% in Kalamata and Athens, respectively. Two predators, Cybocephalus fodori Endrödy-Youga (Coleoptera: Nitidulidae) and a mite species (Prostigmata: Bdellidae), were found to be associated with D. echinocacti.  相似文献   

4.
Bacterial leaf/fruit spot and canker of stone fruits, caused by Xanthomonas arboricola pv. pruni, is a recurrent disease in Italy. A set of 23 strains has been isolated in peach and plum orchards in an intensively stone fruit cultivated area located in north-eastern Italy. They were all identified as X. arboricola pv. pruni by means of phytopathological and serological features: hypersensitive reaction on bean pods, pathogenicity test on immature peach or plum fruitlets, identification by immunofluorescence assay and conventional PCR. Phylogenetic analysis based on sequencing of the gyrB housekeeping gene of the isolates showed that they formed a unique clade, well characterised and separated from other xanthomonads. An insight into the genetic population features was attempted by rep-PCR analysis, using the ERIC, REP and BOX primers. The combined rep-PCR fingerprints showed a slight intra-pathovar variation within our isolates, which grouped in five close clusters. Copper resistance has been assessed in vitro for our whole X. arboricola pv. pruni collection, highlighting that two isolates show a level of resistance in vitro up to 200 ppm of copper. Nonetheless, the copLAB gene cluster, present in many other species of Xanthomonads, was not detected in any isolate, confirming the presence of a still unknown mechanism of copper detoxification in our Xanthomonads arboricola pv. pruni tolerant/resistant strains.  相似文献   

5.
Infection by Pyrenophora teres f. teres (Ptt) or P. teres f. maculata (Ptm), the causal agents of the net and spot forms of net blotch of barley, respectively, can result in significant yield losses. The genetic structure of a collection of 128 Ptt and 92 Ptm isolates from the western Canadian provinces of Alberta (55 Ptt, 27 Ptm), Saskatchewan (58 Ptt, 46 Ptm) and Manitoba (15 Ptt, 19 Ptm) were analyzed by simple sequence repeat (SSR) marker analysis. Thirteen SSR loci were examined and found to be polymorphic within both Ptt and Ptm populations. In total, 110 distinct alleles were identified, with 19 of these shared between Ptt and Ptm, 75 specific to Ptt, and 16 specific to Ptm. Genotypic diversity was relatively high, with a clonal fraction of approximately 10 % within Ptt and Ptm populations. Significant genetic differentiation (PhiPT = 0.230, P = 0.001) was found among all populations; 77 % of genetic variation occurred within populations and 23 % between populations. Lower, but still significant genetic differentiation (PhiPT = 0.038, P = 0.001) was detected in Ptt, with 96 % of genetic variation occurring within populations. No significant genetic differentiation (PhiPT = 0.010, P = 0.177) was observed among Ptm populations. Isolates clustered in two distinct groups conforming to Ptt or Ptm, with no intermediate cluster. The high number of haplotypes observed, combined with an equal mating type ratio for both forms of the fungus, suggests that P. teres goes through regular cycles of sexual recombination in western Canada.  相似文献   

6.
Root-knot nematodes (RKNs) are one of the most important biotic factors limiting crop productivity in many crop plants. The major RKN control strategies include development of resistant cultivars, application of nematicides and crop rotation, but each has its own limitations. In recent years, RNA interference (RNAi) has become a powerful approach for developing nematode resistance. The two housekeeping genes, splicing factor and integrase, of Meloidogyne incognita were targeted for engineering nematode resistance using a host-delivered RNAi (HD-RNAi) approach. Splicing factor and integrase genes are essential for nematode development as they are involved in RNA metabolism. Stable homozygous transgenic Arabidopsis lines expressing dsRNA for both genes were generated. In RNAi lines of splicing factor gene, the number of galls, females and egg masses was reduced by 71.4, 74.5 and 86.6%, respectively, as compared with the empty vector controls. Similarly, in RNAi lines of the integrase gene, the number of galls, females and egg masses was reduced up to 59.5, 66.8 and 63.4%, respectively, compared with the empty vector controls. Expression analysis revealed a reduction in mRNA abundance of both targeted genes in female nematodes feeding on transgenic plants expressing dsRNA constructs. The silencing of housekeeping genes in the nematodes through HD-RNAi significantly reduced root-knot nematode infectivity and suggests that they will be useful in developing RKN resistance in crop plants.  相似文献   

7.
Leaves of durum wheat infested with mines of the cereal leaf miner Syringopais temperatella Lederer (Lepidoptera: Scythridae) were collected from fields in Israel in spring 2016 and 2017. The parasitoids and moths reared from the leaf mines in the lab were identified and counted according to sex. The sex ratios of S. temperatella were 1:0.73 (♀ :♂) in 2016 and 1:0.41 in 2017. A cross-correlation analysis revealed that males appeared three days ahead of females (p<0.05). The following parasitoids were reared: Eulophidae (Cirrospilus vittatus Walker, Diglyphus chabrias (Walker), D. isaea (Walker), D. sensilis Yefremova, D. pusztensis (Erd?s & Novicky), Necremnus tidius (Walker), Neochrysocharis formosus (Westwood), Pnigalio gyamiensis Myartseva & Kurashev, P. pectinicornis Linnaeus), Pteromalidae (Norbanus sp.) and Braconidae (Habrobracon stabilis (Wesmail), Apanteles sp.); and Icheumonidae (Campoplex sp.). In all cases, the parasitoids emerged substantially prior to the mass appearance of the moths. The hatching dynamics of ecto- and endoparasitoids were also asynchronous. Most species of ectoparasitoids hatched three days ahead of the endoparasitoids (p<0.05). Syringopais temperatella recorded on clover revealed a similar dynamics of male appearance ahead of female, with a of female-to-male ratio of 1:0.25, and fewer parasitoid species.  相似文献   

8.
Type IV pili of X. fastidiosa are regulated by pilG, a response regulator protein putatively involved in chemotaxis-like operon sensing stimuli through signal transduction pathways. To elucidate the roles of pilG in pathogenicity of X. fastidiosa, the pilG-deletion mutant XfΔpilG and complemented strain XfΔpilG-C were generated. While all strains had similar growth curves in vitro, XfΔpliG showed significant reduction in cell-matrix adherence and biofilm production compared with wild-type X. fastidiosa and XfΔpilG-C. The genes pilE, pilU, pilT, and pilS were down-regulated in XfΔpliG when compared with its complemented strain and wild-type X. fastidiosa. Finally, no Pierce’s disease symptoms were observed in grapevines inoculated with XfΔpilG, whereas grapevines inoculated with the wild-type X. fastidiosa and complemented strain of XfΔpilG-C developed typical Pierce’s Disease (PD) symptoms. The results indicate that pilG has a role in X. fastidiosa virulence in grapevines.  相似文献   

9.
Pinewood nematode (PWN), Bursaphelenchus xylophilus, the causal agent of pine wilt disease (PWD), was detected in Spain in 2008. This gives rise to serious concern, as the disease has caused severe environmental and economic losses in Portugal and in Asian countries. We studied interspecific variation in susceptibility to pine wilt disease and differences in constitutive chemical compounds in the xylem tissue of the seven pine species -P. canariensis, P. halepensis, P. pinaster, P. pinea, P. sylvestris, P. radiata and P. taeda. Two-year-old trees were inoculated with B. xylophilus. Water potential and nematode densities were measured for each species on specific dates; whereas, wilting symptoms were recorded weekly until the end of the assay. Chemical compounds in the xylem were determined prior to inoculation. Three different resistance groups can be established in terms of the pine species susceptibility to PWN: non- to slightly-susceptible (P. canariensis, P. halepensis, P. taeda and P. pinea), susceptible (P. pinaster and P. radiata), and highly-susceptible (P. sylvestris). Nematodes migrated downward to the roots in all seven species. Constitutive xylem nitrogen, total polyphenols, and marginally phosphorus were negatively correlated with mortality caused by PWN. The most susceptible species, Pinus sylvestris, presented high levels of constitutive lipid-soluble substances and low levels of manganese, pointing to a possible relation between these components and PWN susceptibility. The results suggest P. sylvestris, P. pinaster and P. radiata forests could be severely damaged by PWN in Spain and highlight how constitutive chemical compounds such as nitrogen might play a role in resistance mechanisms against PWN.  相似文献   

10.
The complex of Diaporthe (asexual morph) species occurring on soybean constitutes an important pathogenic group associated with diseases such as pod and stem blight, seed decay and stem canker. Stem canker, caused by Diaporthe aspalathi, has been reported as the most aggressive form of canker and its occurrence has limited soybean crop productivity in the southern United States. The main form of pathogen control is the use of stem canker resistant soybean varieties. In this study, strains of Diaporthe and Phomopsis were isolated from stem and seeds of soybean in different locations in South America during the years 1989–2014. Genomic DNA from 26 isolates were analyzed by PCR-restriction fragment length polymorphism (RFLP) and Amplified Fragment Length Polymorphism (AFLP) techniques, and sequencing of internal transcribed spacer (ITS) regions of ribosomal DNA. The molecular analysis of ITS sequences by alignment with those of ex-type strains deposited in GenBank and morphological characteristics allowed the identification of Phomopsis longicolla, D. phaseolorum var. sojae, D. caulivora and D. aspalathi. An analysis of the pathogenicity of 13 isolates of D. aspalathi inoculated in soybean genotypes carrying different resistance genes to stem canker (Rdm1, Rdm2, Rdm3, Rdm4, Rdm5 and Rdm?) enabled us to identify the occurrence of at least three races of D. aspalathi occurring in Brazil. Among the isolates identified as D. aspalathi, both molecular and phenotypic analyses showed clustering depending on the date of collection and pathogenicity, which revealed the existence of variability of the pathogen.  相似文献   

11.
The aim of this study was to identify the Colletotrichum species associated with anthracnose symptoms in coffee (Coffea arabica L.) plantations in northern Puebla, Mexico. In 2013, five surveys were conducted in different production areas and at different altitudes. Symptomatic leaves, shoots, and ripe and unripe fruits of the coffee variety Red Caturra were collected. Isolates were obtained and the Colletotrichum species were identified morphologically and characterized by multilocus sequence analyses of the ACT, CAL, GAPDH, and TUB2 genes and the rDNA region. Additionally, pathogenicity tests were conducted using six isolates. We identified C. gigasporum, C. gloeosporioides, C. karstii (two isolates), C. siamense, and C. theobromicola. This is the first report of these five species infecting leaves of coffee. The symptoms caused by these species were characterized, but the species causing Coffee Berry Disease was not found. This is the first report of a complex of species affecting coffee plants in the same geographical area in Mexico, and suggests that other complexes of species may be important pathogens in coffee-producing areas elsewhere.  相似文献   

12.
The vector competence of Frankliniella occidentalis for Chrysanthemum stem necrosis virus (CSNV) was evaluated. Three vector strains with distinct competences for Tomato spotted wilt virus (TSWV) transmission were investigated, including an artificially selected strain (TsH) that has a particularly high competence (>90 %). Newly hatched larvae of F. occidentalis were given an acquisition access period of 5 days on CSNV-infected D. stramonium leaves, and reared to maturity. Their transmission efficiencies were examined using a leaf disk assay using Petunia x hybrida leaves. Following the leaf disk assay, the virus accumulation in the vectors was examined via a double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) of their bodies. The results showed that the CSNV acquisition and transmission efficiency of the TsH strain did not differ from those of the others, indicating that the competence of F. occidentalis as a vector for CSNV is not related to that for TSWV. The CSNV transmission and acquisition efficiencies of two F. intonsa strains (Hiroshima and Fukuoka) were also evaluated. In Hiroshima strain, 35 % of adults were viruliferous, but only two transmitters (3 %) were observed. In Fukuoka strain, 6 % were viruliferous, and no transmitters were observed. These results indicate that F. intonsa cannot be a major vector for CSNV. The accumulation of CSNV in the adults of F. occidentalis and F. intonsa evaluated using DAS-ELISA showed a significant difference in ELISA values among transmitter, viruliferous non-transmitter, and non-viruliferous individuals. These results clearly demonstrated that only transmitters that accumulated a threshold quantity of virus can transmit CSNV to plants.  相似文献   

13.
Tomato (Solanum lycopersicum L.) ARGINASE2 (ARG2) and THREONINE DEAMINASE2 (TD2) are involved in plant defense. These enzymes act in the midgut of herbivores fed on tomato plants to degrade the essential amino acids Arg and Thr, respectively. Although it has been demonstrated that overexpression of the SlARG2 gene in tomato enhanced its resistance against M. sexta larvae, knock-down the expression of SlTD2 reduced the resistance of tomato to lepidopteran herbivores; it remains unclear whether overexpression of SlTD2 could enhance the resistance of the host plants to herbivores, or whether combined overexpression of SlARG2 and SlTD2 could lead to synergistically enhanced resistance to insects. Here, we generated transgenic Arabidopsis plants overexpressing SlARG2 (SlARG2 OE) and SlTD2 (SlTD2 OE) individually as well as in combination (SlARG2-SlTD2 OE). Overexpression of these genes did not affect Arabidopsis development, seed yield, or Arg and Thr content. Insect-feeding bioassay was performed by feeding diamondback moth (Plutella xylostella L.) larvae on detached leaves of wild-type, SlARG2 OE, SlTD2 OE, and SlARG2-SlTD2 OE plants. Larvae fed on SlARG2 OE leaves showed approximately 31% to 35% reduction in weight and 6% to 10% reduction in survival rate compared to those fed on wild-type leaves. Although larvae fed on SlTD2 OE leaves showed no reduction in survival rate, they gained less weight. Whereas larvae fed on SlARG2-SlTD2 OE leaves showed neither reduction in weight nor reduction in survival rate. We further investigated the arginase enzymatic activity of the SlARG2 OE and SlARG2-SlTD2 OE transgenic plants. The SlARG2 OE line most resistant to diamondback moth larvae displayed the highest arginase activity. Our data indicate that overexpression of SlARG2 or SlTD2 in Arabidopsis can enhance its resistance against diamondback moth, whereas combined overexpression of SlARG2 and SlTD2 did not generate synergistically increased resistance to diamondback moth.  相似文献   

14.
Biological control of phytophagous bugs in soybean crops is efficiently performed by egg parasitoids, such as Telenomus podisi and Trissolcus basalis. Based on this, the use of agrochemicals in these crops must be managed consciously, making use of pesticides that are selective to the egg of these parasitoids, in order to ensure a balanced ecosystem. The aim of this study was to assess the selectivity of 15 registered pesticides to the immature stages (pre and post-parasitism) of T. podisi and T. basalis, following the method proposed by the “International Organization for Biological and Integrated Control” (IOBC). Pesticides were classified as class 1 – harmless (RP?<?30%); class 2 – slightly harmful (30%?≤?RP?≤?79%); class 3 – moderately harmful (80%?≤?RP?≤?99%); and class 4 – harmful (RP?>?99%). During pre-parasitism, the insecticides imidacloprid+beta-cyfluthrin, deltamethrin, lambda-cyhalothrin+thiamethoxam, acephate, and fenitrothion reduced parasitism of both parasitoids. The others: flubendiamide, diflubenzuron, Bacillus thuringiensis, lufenuron, and the herbicide isopropylamine were selective, i.e. harmless (class 1), to both parasitoids, except for pyraclostrobin+metconazole, which significantly reduced T. basalis parasitism, being considered slightly harmful (class 2). In post parasitism, all the aforementioned pesticides were harmless to T. podisi and T. basalis. Moreover, in pre-parasitism, T. basalis was found to be more sensitive to the tested pesticides when compared to T. podisi. Still, more studies must be conducted to provide a better understanding of the impact of agrochemicals on these parasitoid species in semi-field conditions.  相似文献   

15.
The virulence spectrum of 300 isolates of Xanthomonas oryzae pv. oryzae (Xoo), representing 17 districts of Punjab, Pakistan was elucidated through inoculation on a set of six rice IRRI-differentials. The virulence level was assessed by using principal component and cluster analysis. Among six principal components (PCs), PC-1 exhibited 59.3 % of the total variance. The highly virulent isolates clusters on the positive side of the ordination away from the point of intersection of PC1 and PC2 and classifies the Xoo isolates from slow disease to the highest disease causing entities. The 300 isolates were categorized into 29 pathotypes (Pt1-29) wherein the highly virulent pathotype (Pt-1), comprises of 39 Xoo isolates were widespread in 12 districts. The majority of Xoo isolates were moderately to least virulent (21.7–43 %) and average disease progress curves confirmed the field reactions of these pathotype clusters for an efficient recognition of Xoo isolates. Interaction of the pathogen with differentials harboring different resistant genes was well investigated in the current study for future management approaches for which the surveillance of the new Xoo pathotypes may expedite the disease resistant rice breeding programme in the country.  相似文献   

16.
17.
A new dagger nematode, Xiphinema tica n. sp., is described and illustrated from several populations extracted from soil associated with several crops and wild plants in Costa Rica. The new dagger nematode is characterised by a moderate body size (3276–4240 μm), a rounded lip region, ca 13.5 μm wide, separated from body contour by a shallow depression, amphidial fovea large, stirrup-shaped, a moderately long odontostyle ca 135 μm long, stylet guiding ring located at ca 122 μm from anterior end, vulva almost equatorial (50–54%), well-developed Z-organ, with heavy muscularised wall containing in the most of specimens observed two moderately refractive inclusions variable in shape (from round to star-shaped), with uterine spines and crystalloid bodies; female tail short, dorsally convex-conoid, with rounded end and a small peg, with a c’ ratio ca 0.8, bearing two or three pairs of caudal pores and male absent. The unique and novel uterine differentiation based on the coexistence of a well-developed Z-organ mixed with uterine spines and crystalloid bodies in Xiphinema prompted us to update and include this combination of characters in the polytomous key of Loof and Luc (1990). Integrative diagnosis was completed with molecular data obtained, using D2-D3 expansion segments of 28S rDNA, ITS1-rDNA, partial 18S–rDNA and the partial mitochondrial gene cytochrome c oxidase subunit 1 (coxI). The phylogenetic relationships of this species with other Xiphinema spp. indicated that X. tica n. sp. was monophyletic to the other species from the morphospecies Group 4, Xiphinema oleae.  相似文献   

18.
Two Fusarium strains, isolated from Asparagus in Italy and Musa in Vietnam respectively, proved to be members of an undescribed clade within the Fusarium solani species complex based on phylogenetic species recognition on ITS, partial RPB2 and EF-1α gene fragments. Macro- and micro-morphological investigations followed with physiological studies done on this new species: Fusarium ershadii sp. nov can be distinguished by its conidial morphology. Both isolates of Fusarium ershadii were shown to be pathogenic to the monocot Asparagus officinalis when inoculated on roots and induced hollow root symptoms within two weeks in Asparagus officinalis seedlings. In comparison mild disease symptoms were observed by the same strains on Musa acuminata seedlings.  相似文献   

19.
Potato virus Y (PVY) is the type-species of the genus Potyvirus, family Potyviridae, being reported as a major tomato (Solanum lycopersicum L.) pathogen in several regions of the world. Pepper yellow mosaic virus (PepYMV) was originally described as a resistance-breaking Potato virus Y (PVY) isolate on Capsicum annuum L. cultivars, and afterwards it was also reported infecting tomatoes in Brazil. In the present work, a search for sources of resistance to both PepYMV and PVY was conducted in a collection of 119 accessions belonging to seven Solanum (section Lycopersicon) species. This germplasm was initially evaluated to PepYMV reaction by mechanical inoculation followed by symptom observations and ELISA. Potential PepYMV resistance sources were identified for the first time in S. habrochaites, S. peruvianum, S. corneliomuelleri, S. chilense, S. pimpinellifolium, and one accession derived from an interspecific cross (S. lycopersicum x S. peruvianum). A sub-group of 24 accessions with negative serology for PepYMV was also challenged with a PVY isolate, followed by serological and molecular detection with universal primers. Solanum habrochaites ‘L.03683’ and ‘L.03684’ were the only accessions found with stable resistance to both viruses. These results confirm S. habrochaites as the most important source of multiple resistance factor(s) to distinct Potyvirus species.  相似文献   

20.
Miscanthus x giganteus is a fast growing, perennial energy crop for temperate climates. Because of its high annual biomass production rates and its characteristics as a low-input crop, an expansion of field cultivation can be anticipated to cover increasing demands for sustainable biomass production. However, knowledge about pathogens that could have an impact on biomass production is still limited for M. giganteus. Here, we report about the isolation of the filamentous fungus Apinisia graminicola from necrotic leaf lesions of M. giganteus grown on a field trial plot in Northern Germany. Inoculation assays with the isolated A. graminicola strain confirmed its capacity to cause a leaf spot disease on M. giganteus. Additional inoculation assays revealed that A. graminicola also caused necrotic lesions on leaves of the model grass Brachypodium distachyon. Generally, symptoms of A. graminicola-caused leaf spot disease were stronger on B. distachyon compared to M. giganteus. Incubation temperatures above 22 °C during A. graminicola infection resulted in stronger disease symptoms on both, M. giganteus and B. distachyon leaves. Microscopic analysis of cross sectioned, infected leaf tissue revealed an epiphytic mycelium formation on the surface and an endophytic colonization of the mesophyll leave tissue, especially in M. giganteus. Our results revealed that the isolated A. graminicola strain is a causal agent of a leaf spot disease on grass leaves. Its potential on endophytic growth in M. giganteus might open new possibilities in studying this type of plant-fungal interaction on a cellular and molecular level in an energy crop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号