首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 132 毫秒
1.
Nicarbazin, a drug used to control the protozoal disease coccidiosis in poultry, is a complex of the highly insoluble drug 4,4'-dinitrocarbanilide with 2-hydroxy-4,6-dimethylpyrimidine. The structures of this and other 4,4'-dinitrocarbanilide complexes have not been determined, but an analogous 2:1 complex of 4,4'-dinitrodiphenylamine with 1,4-diacetylpiperazine has been prepared in which the only possible bonds are hydrogen bonds between the amide carbonyls and amino hydrogens. Scanning electron microscopy revealed that micron-size crystals of nicarbazin disintegrate in water to form much smaller dinitrocarbanilide crystals. Similar complex dissolution in the gut of poultry may account for the greater effectiveness of dinitrocarbanilide when administered as complexed rather than uncomplexed drug. Particle size problems associated with other highly insoluble drugs and pesticides may be resolved by the use of nicarbazin-like complexes.  相似文献   

2.
Raman spectroscopy is applied for the first time to elucidate the different conformations of the carrier transport molecule, valinomycin. Splitting of the ester and amide carbonyl stretch vibrations is observed in the Raman spectrum of crystals of valinomycin grown from both n-octane and acetone. These observations support the contention that some ester carbonyl groups are intramolecularly hydrogen bonded. The Raman spectrum of valinomycin grown from o-dichlorobenzene does not display this feature.  相似文献   

3.
The potassium conductance which is induced by 10(-6) molar valinomycin in a lecithin-decane membrane is reversed by 3 x 10(-6) molar DDT. Membranes not treated with valinomycin are not affected by DDT. This blockade of potassium conductance parallels the effect of DDT on axonic conduction. Dieldrin and lindane, whose physiological actions are in some ways like those of DDT, do not affect valinomycin-induced conductance of lecithin-decane membranes.  相似文献   

4.
The crystal structure of a murine adenosine deaminase complexed with 6-hydroxyl-1,6-dihydropurine ribonucleoside, a nearly ideal transition-state analog, has been determined and refined at 2.4 angstrom resolution. The structure is folded as an eight-stranded parallel alpha/beta barrel with a deep pocket at the beta-barrel COOH-terminal end wherein the inhibitor and a zinc are bound and completely sequestered. The presence of the zinc cofactor and the precise structure of the bound analog were not previously known. The 6R isomer of the analog is very tightly held in place by the coordination of the 6-hydroxyl to the zinc and the formation of nine hydrogen bonds. On the basis of the structure of the complex a stereoselective addition-elimination or SN2 mechanism of the enzyme is proposed with the zinc atom and the Glu and Asp residues playing key roles. A molecular explanation of a hereditary disease caused by several point mutations of an enzyme is also presented.  相似文献   

5.
A single-site mutant of Escherichia coli glutaminyl-synthetase (D235N, GlnRS7) that incorrectly acylates in vivo the amber suppressor supF tyrosine transfer RNA (tRNA(Tyr] with glutamine has been described. Two additional mutant forms of the enzyme showing this misacylation property have now been isolated in vivo (D235G, GlnRS10; I129T, GlnRS15). All three mischarging mutant enzymes still retain a certain degree of tRNA specificity; in vivo they acylate supE glutaminyl tRNA (tRNA(Gln] and supF tRNA(Tyr) but not a number of other suppressor tRNA's. These genetic experiments define two positions in GlnRS where amino acid substitution results in a relaxed specificity of tRNA discrimination. The crystal structure of the GlnRS:tRNA(Gln) complex provides a structural basis for interpreting these data. In the wild-type enzyme Asp235 makes sequence-specific hydrogen bonds through its side chain carboxylate group with base pair G3.C70 in the minor groove of the acceptor stem of the tRNA. This observation implicates base pair 3.70 as one of the identity determinants of tRNA(Gln). Isoleucine 129 is positioned adjacent to the phosphate of nucleotide C74, which forms part of a hairpin structure adopted by the acceptor end of the complexed tRNA molecule. These results identify specific areas in the structure of the complex that are critical to accurate tRNA discrimination by GlnRS.  相似文献   

6.
The molecular structure of a DNA-triostin A complex   总被引:31,自引:0,他引:31  
The molecular structure of triostin A, a cyclic octadepsipeptide antibiotic, has been solved complexed to a DNA double helical fragment with the sequence CGTACG (C, cytosine; G, guanine; T, thymine; A, adenine). The two planar quinoxaline rings of triostin A bis intercalate on the minor groove of the DNA double helix surrounding the CG base pairs at either end. The alanine residues form hydrogen bonds to the guanines. Base stacking in the DNA is perturbed, and the major binding interaction involves a large number of van der Waals contacts between the peptides and the nucleic acid. The adenine residues in the center are in the syn conformation and are paired to thymine through Hoogsteen base pairing.  相似文献   

7.
Molecular modeling of the HIV-1 protease and its substrate binding site   总被引:13,自引:0,他引:13  
The human immunodeficiency virus (HIV-1) encodes a protease that is essential for viral replication and is a member of the aspartic protease family. The recently determined three-dimensional structure of the related protease from Rous sarcoma virus has been used to model the smaller HIV-1 dimer. The active site has been analyzed by comparison to the structure of the aspartic protease, rhizopuspepsin, complexed with a peptide inhibitor. The HIV-1 protease is predicted to interact with seven residues of the protein substrate. This information can be used to design protease inhibitors and possible antiviral drugs.  相似文献   

8.
Apicomplexan parasites such as Toxoplasma gondii and Plasmodium species actively invade host cells through a moving junction (MJ) complex assembled at the parasite-host cell interface. MJ assembly is initiated by injection of parasite rhoptry neck proteins (RONs) into the host cell, where RON2 spans the membrane and functions as a receptor for apical membrane antigen 1 (AMA1) on the parasite. We have determined the structure of TgAMA1 complexed with a RON2 peptide at 1.95 angstrom resolution. A stepwise assembly mechanism results in an extensive buried surface area, enabling the MJ complex to resist the mechanical forces encountered during host cell invasion. Besides providing insights into host cell invasion by apicomplexan parasites, the structure offers a basis for designing therapeutics targeting these global pathogens.  相似文献   

9.
Glutaminyl-transfer RNA (Gln-tRNA(Gln)) in archaea is synthesized in a pretranslational amidation of misacylated Glu-tRNA(Gln) by the heterodimeric Glu-tRNA(Gln) amidotransferase GatDE. Here we report the crystal structure of the Methanothermobacter thermautotrophicus GatDE complexed to tRNA(Gln) at 3.15 angstroms resolution. Biochemical analysis of GatDE and of tRNA(Gln) mutants characterized the catalytic centers for the enzyme's three reactions (glutaminase, kinase, and amidotransferase activity). A 40 angstrom-long channel for ammonia transport connects the active sites in GatD and GatE. tRNA(Gln) recognition by indirect readout based on shape complementarity of the D loop suggests an early anticodon-independent RNA-based mechanism for adding glutamine to the genetic code.  相似文献   

10.
Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA) mediates viral genome attachment to mitotic chromosomes. We find that N-terminal LANA docks onto chromosomes by binding nucleosomes through the folded region of histones H2A-H2B. The same LANA residues were required for both H2A-H2B binding and chromosome association. Further, LANA did not bind Xenopus sperm chromatin, which is deficient in H2A-H2B; chromatin binding was rescued after assembly of nucleosomes containing H2A-H2B. We also describe the 2.9-angstrom crystal structure of a nucleosome complexed with the first 23 LANA amino acids. The LANA peptide forms a hairpin that interacts exclusively with an acidic H2A-H2B region that is implicated in the formation of higher order chromatin structure. Our findings present a paradigm for how nucleosomes may serve as binding platforms for viral and cellular proteins and reveal a previously unknown mechanism for KSHV latency.  相似文献   

11.
12.
The recruitment of trafficking and signaling proteins to membranes containing phosphatidylinositol 3-phosphate [PtdIns(3)P] is mediated by FYVE domains. Here, the solution structure of the FYVE domain of the early endosome antigen 1 protein (EEA1) in the free state was compared with the structures of the domain complexed with PtdIns(3)P and mixed micelles. The multistep binding mechanism involved nonspecific insertion of a hydrophobic loop into the lipid bilayer, positioning and activating the binding pocket. Ligation of PtdIns(3)P then induced a global structural change, drawing the protein termini over the bound phosphoinositide by extension of a hinge. Specific recognition of the 3-phosphate was determined indirectly and directly by two clusters of conserved arginines.  相似文献   

13.
Liu T  Liu Z  Song C  Hu Y  Han Z  She J  Fan F  Wang J  Jin C  Chang J  Zhou JM  Chai J 《Science (New York, N.Y.)》2012,336(6085):1160-1164
Pattern recognition receptors confer plant resistance to pathogen infection by recognizing the conserved pathogen-associated molecular patterns. The cell surface receptor chitin elicitor receptor kinase 1 of Arabidopsis (AtCERK1) directly binds chitin through its lysine motif (LysM)-containing ectodomain (AtCERK1-ECD) to activate immune responses. The crystal structure that we solved of an AtCERK1-ECD complexed with a chitin pentamer reveals that their interaction is primarily mediated by a LysM and three chitin residues. By acting as a bivalent ligand, a chitin octamer induces AtCERK1-ECD dimerization that is inhibited by shorter chitin oligomers. A mutation attenuating chitin-induced AtCERK1-ECD dimerization or formation of nonproductive AtCERK1 dimer by overexpression of AtCERK1-ECD compromises AtCERK1-mediated signaling in plant cells. Together, our data support the notion that chitin-induced AtCERK1 dimerization is critical for its activation.  相似文献   

14.
Genomic evolution has been profoundly influenced by DNA transposition, a process whereby defined DNA segments move freely about the genome. Transposition is mediated by transposases, and similar events are catalyzed by retroviral integrases such as human immunodeficiency virus-1 (HIV-1) integrase. Understanding how these proteins interact with DNA is central to understanding the molecular basis of transposition. We report the three-dimensional structure of prokaryotic Tn5 transposase complexed with Tn5 transposon end DNA determined to 2.3 angstrom resolution. The molecular assembly is dimeric, where each double-stranded DNA molecule is bound by both protein subunits, orienting the transposon ends into the active sites. This structure provides a molecular framework for understanding many aspects of transposition, including the binding of transposon end DNA by one subunit and cleavage by a second, cleavage of two strands of DNA by a single active site via a hairpin intermediate, and strand transfer into target DNA.  相似文献   

15.
Peptidoglycan glycosyltransferases (GTs) catalyze the polymerization step of cell-wall biosynthesis, are membrane-bound, and are highly conserved across all bacteria. Long considered the "holy grail" of antibiotic research, they represent an essential and easily accessible drug target for antibiotic-resistant bacteria, including methicillin-resistant Staphylococcus aureus. We have determined the 2.8 angstrom structure of a bifunctional cell-wall cross-linking enzyme, including its transpeptidase and GT domains, both unliganded and complexed with the substrate analog moenomycin. The peptidoglycan GTs adopt a fold distinct from those of other GT classes. The structures give insight into critical features of the catalytic mechanism and key interactions required for enzyme inhibition.  相似文献   

16.
17.
The neutralization reaction between an acid and a base in water, triggered after optical excitation, was studied by femtosecond vibrational spectroscopy. Bimodal dynamics were observed. In hydrogen-bonded acid-base complexes, the proton transfer proceeds extremely fast (within 150 femtoseconds). In encounter pairs formed by diffusion of uncomplexed photoacid and base molecules, the reaction upon contact was an order of magnitude slower, in agreement with earlier reported values. These results call for a refinement of the traditional Eigen-Weller picture of acid-base reactions: A three-stage model is introduced to account for all observed dynamics.  相似文献   

18.
鼎湖山季风常绿阔叶林不同生境物种多样性研究   总被引:2,自引:0,他引:2  
鼎湖山地处热带与亚热带过渡区域,地形起伏较大,内环境异质性高,群落结构复杂。以根据海拔等地形因素,利用MRT(多元回归树)的方法,将鼎湖山季风常绿阔叶林20 hm2有典型代表性的森林群落监测样地划分为5种生境类型;通过比较各生境之间物种多样性的差异,讨论环境异质性与局域群落内物种分布的关系,为亚热带季风常绿阔叶林植物群落的构建及物种多样性维持机制的研究提供参考。  相似文献   

19.
Non-Watson-Crick G.C and A.T base pairs in a DNA-antibiotic complex   总被引:11,自引:0,他引:11  
The structure of a DNA octamer d(GCGTACGC) cocrystallized with the bisintercalator antibiotic triostin A has been solved. The DNA forms an unwound right-handed double helix. Four base pairs are of the Watson-Crick type while four are Hoogsteen base pairs, including two A.T and two G.C base pairs. This is the first observation in an oligonucleotide of Hoogsteen G.C base pairs where the cystosine is protonated. It is likely that these also occur in solutions of DNA complexed to this antibiotic.  相似文献   

20.
The crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase complexed with a 20-amino acid substrate analog inhibitor has been solved and partially refined at 2.7 A resolution to an R factor of 0.212. The magnesium adenosine triphosphate (MgATP) binding site was located by difference Fourier synthesis. The enzyme structure is bilobal with a deep cleft between the lobes. The cleft is filled by MgATP and a portion of the inhibitor peptide. The smaller lobe, consisting mostly of amino-terminal sequence, is associated with nucleotide binding, and its largely antiparallel beta sheet architecture constitutes an unusual nucleotide binding motif. The larger lobe is dominated by helical structure with a single beta sheet at the domain interface. This lobe is primarily involved in peptide binding and catalysis. Residues 40 through 280 constitute a conserved catalytic core that is shared by more than 100 protein kinases. Most of the invariant amino acids in this conserved catalytic core are clustered at the sites of nucleotide binding and catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号