首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为实现对不同品种核桃的分类与定位,提出一种基于深度学习的核桃检测方法。首先,以新疆南疆地区主产的三种核桃为对象进行图像采集,并对图像进行翻转、裁剪、去噪、光照变换等操作制作核桃数据集;然后,采用基于YOLOv5的检测模型进行试验,并与YOLOv3、YOLOv4和Faster RCNN算法进行比较。结果表明,基于YOLOv5的模型对新2、新光和温185核桃检测的平均精度均值分别为99.5%、98.4%和97.1%,单幅图像检测耗时为7 ms。在相同数据集、相同试验环境下,该模型的检测速度是Faster RCNN的7倍,该模型的检测精度比YOLOv4高2.8%且模型大小仅为YOLOv4的1/14。试验结果表明,基于YOLOv5的核桃检测方法在检测精度和速度上是所有对比算法中最高的,适合本研究的检测需求,可为机器人自主分拣核桃提供研究基础。  相似文献   

2.
为在有限的嵌入式设备资源下达到实时检测要求,提出一种基于改进YOLO v5的百香果轻量化检测模型(MbECA-v5)。首先,使用MobileNetV3替换主干特征提取网络,利用深度可分离卷积代替传统卷积减少模型的参数量。其次,嵌入有效通道注意力网络(ECANet)关注百香果整体,引入逐点卷积连接特征提取网络和特征融合网络,提高网络对百香果图像的特征提取能力和拟合能力。最后,运用跨域与域内多轮训练相结合的迁移学习策略提高网络检测精度。试验结果表明,改进后模型的精确率和召回率为95.3%和88.1%;平均精度均值为88.3%,较改进前提高0.2个百分点。模型计算量为6.6 GFLOPs,体积仅为6.41MB,约为改进前模型的1/2,在嵌入式设备实时检测速度为10.92f/s,约为SSD、Faster RCNN、YOLO v5s模型的14倍、39倍、1.7倍。因此,基于改进YOLO v5的轻量化模型提高了检测精度和大幅降低了计算量和模型体积,在嵌入式设备上能够高效实时地对复杂果园环境中的百香果进行检测。  相似文献   

3.
为提高草莓的总产量,合理监控和防治草莓病害是有效的手段,提出一种基于改进YOLOv5的草莓病害识别算法。该检测算法以CSPDarknet作为主干特征提取网络,能够有效提高模型的性能和训练效率,并使用EIOU Loss损失函数与K-means聚类算法,来提高模型的收敛速度。同时,在模型中增加CBAM注意力机制来提高检测精度,最终构建基于改进YOLOv5的CBAM-YOLOv5l算法。试验结果表明,改进后的模型较之原始模型,在检测精度上有所提升且依然能保证高效的检测速度。另外,经过训练的CBAM-YOLOv5l目标检测算法在验证集下的总体平均精度达到96.52%,平均检测时间为27.52 ms,对比YOLOv4、YOLOv4-Tiny、Faster_R-CNN等目标检测算法,该检测算法在精度上具有更大的优势,在实际的草莓果园环境中具有良好的鲁棒性与实时性,可以满足草莓病害识别精度的需求,能够可靠地提示草莓健康状态,从而及时地实现精准施药等保护措施。  相似文献   

4.
对经济林木虫害进行目标检测有助于及时发现虫情,从而更有针对性地控制虫害。首先采用加权双向特征融合技术丰富各级特征图的语义信息和修改自适应Anchor计算方法对YOLOv5主干网络模型进行改进,然后在含20种经济林木虫害的图像扩增数据集上进行试验,最后与多种基于深度学习的目标检测方法进行对比。试验结果表明:改进后的YOLOv5模型相对于YOLOv3、YOLOv4、YOLOv5、Faster-RCNN和CenterNet模型,其平均精度均值分别提升0.133、0.156、0.113、0.128和0.078,最优达到0.923,模型推断速度为64.9帧。因此,改进的YOLOv5模型对经济林木虫害检测已达到实际应用水平,可为经济林木虫害预警系统提供算法支撑。  相似文献   

5.
利用深度学习实现视觉检测技术对自然环境下树上木瓜成熟度的识别,从而监测木瓜生长期成熟度有重要意义。针对目前木瓜的成熟度主要以人工判断为主,缺乏对木瓜成熟度快速、准确的自动检测方法问题,本研究基于轻量化YOLO v5-Lite模型,对自然环境下木瓜成熟度检测方法进行研究,通过采集的1 386幅木瓜图像,训练得到最优权值模型。实验结果表明,该模型对木瓜检测mAP为92.4%,与目前主流的轻量化目标检测算法YOLO v5s、YOLO v4-tiny以及两阶段检测算法Faster R-CNN相比,其mAP分别提高1.1、5.1、4.7个百分点;此外,在保证检测精度的前提下,检测时间为7 ms,且模型内存占用量仅为11.3 MB。同时,该模型对不同拍摄距离、不同遮挡情况、不同光照情况下的果实均能实现准确识别,能够快速有效地识别出复杂背景下木瓜果实的成熟度,具有较强的鲁棒性,可以为木瓜果园的产量估计和采摘机器的定位检测提供技术支持。  相似文献   

6.
育苗是水培蔬菜种植过程中的关键环节,幼苗分拣是育苗过程中不可或缺的一个步骤。本文以水培生菜幼苗的死亡和双株状态为研究对象,提出了一种基于YOLOv5的水培生菜幼苗状态快速检测方法。根据水培生菜幼苗数据集密集、小目标的特点,采用K-means++聚类算法优化预设锚框尺寸,有效提高模型的检测精度。同时,利用AdamW优化算法,改良模型收敛结果。实验结果表明,本方法的平均检测精度为92.1%,能够实现水培生菜问题幼苗状态的实时、高精度检测,可为水培蔬菜幼苗分拣智能化和农业智能装备精准作业提供技术方案。  相似文献   

7.
曾俊  陈仁凡  邹腾跃 《南方农机》2023,(24):24-27+41
【目的】解决自然环境下不同成熟度桃子快速准确检测的问题,课题组提出一种基于改进YOLOv5s的目标检测算法YOLO-Faster。【方法】使用YOLOv5s网络模型作为基础网络,将主干特征提取网络替换为FasterNet,使模型轻量化,并在主干和颈部之间增加串联的CBAM卷积注意力模块和常规卷积块,增强对图像重要特征的捕捉与表达,同时引入SIoU损失函数缓解预测框与真实框之间方向的不匹配。【结果】改进后模型的m AP为88.6%,与YOLOv5s相比提升1个百分点,模型权重缩减39.4%,浮点运算量降低44.3%,在GPU、CPU上的单张图像平均检测时间分别减少12.6%和24%。此外,本研究将训练好的模型部署到嵌入式设备Jetson Nano上,模型在Jetson Nano上的检测时间比YOLOv5s减少30.4%。【结论】改进后的轻量级模型能够快速准确地检测自然环境下不同成熟度的桃子,可以为桃子采摘机器人的视觉识别系统提供技术支持。  相似文献   

8.
毛桃等果实的准确检测是实现机械化、智能化农艺管理的必要前提。然而,由于光照不均和严重遮挡,在果园中实现毛桃,尤其是套袋毛桃的检测一直面临着挑战。本研究基于改进YOLOv5s和多模态视觉数据提出了面向机械化采摘的毛桃多分类准确检测。具体地,构建了一个多类标签的裸桃和套袋毛桃的RGB-D数据集,包括4127组由消费级RGB-D相机获取的像素对齐的彩色、深度和红外图像。随后,通过引入方向感知和位置敏感的注意力机制,提出了改进的轻量级YOLOv5s(小深度)模型,该模型可以沿一个空间方向捕捉长距离依赖,并沿另一个空间方向保留准确的位置信息,提高毛桃检测精度。同时,通过将卷积操作分解为深度方向的卷积与宽度、高度方向的卷积,使用深度可分离卷积在保持模型检测准确性的同时减少模型的计算量、训练和推理时间。实验结果表明,使用多模态视觉数据的改进YOLOv5s模型在复杂光照和严重遮挡环境下,对裸桃和套袋毛桃的平均精度(Mean Average Precision,mAP)分别为98.6%和88.9%,比仅使用RGB图像提高了5.3%和16.5%,比YOLOv5s提高了2.8%和6.2%。在套袋毛桃检测方面,改进YOLOv5s的mAP比YOLOX-Nano、PP-YOLO-Tiny和EfficientDet-D0分别提升了16.3%、8.1%和4.5%。此外,多模态图像、改进YOLOv5s对提升自然果园中的裸桃和套袋毛桃的准确检测均有贡献,所提出的改进YOLOv5s模型在检测公开数据集中的富士苹果和猕猴桃时,也获得了优于传统方法的结果,验证了所提出的模型具有良好的泛化能力。最后,在主流移动式硬件平台上,改进后的YOLOv5s模型使用五通道多模态图像时检测速度可达每秒19幅,能够实现毛桃的实时检测。上述结果证明了改进的YOLOv5s网络和含多类标签的多模态视觉数据在实现果实自动采摘系统视觉智能方面的应用潜力。  相似文献   

9.
自然环境下绿色柑橘视觉检测技术研究   总被引:14,自引:0,他引:14  
绿色柑橘具有与背景相似的颜色特征,自然环境下绿色柑橘的视觉检测比较困难。提出基于深度学习技术,利用Faster RCNN方法进行树上绿色柑橘的视觉检测研究。首先配置深度学习的试验环境,同时设计了绿色柑橘图像采集试验,建立了柑橘图像样本集,通过试验对批处理大小、学习速率和动量等超参数进行调优,确定合适的学习速率为0.01、批处理为128、动量系数为0.9,使用确定的超参数对模型进行了训练,最终训练模型在测试集上的平均精度(MAP)为85.49%。通过设计自然环境下不同光照条件、图像中不同尺寸柑橘、不同个数柑橘的Faster RCNN方法与Otsu分割法的柑橘检测对比试验,并定义F值作为对比评价指标,分析2种方法的检测结果,试验结果表明:Faster RCNN方法与Otsu方法在不同光照条件下检测绿色柑橘的F值分别为77.45%和59.53%;不同个数柑橘果实检测结果的F值分别为82.58%和60.34%,不同尺寸柑橘检测结果的F值分别为73.53%和49.44%,表明所提方法对自然环境下绿色柑橘有较好的检测效果,为果园自动化生产和机器人采摘的视觉检测提供了技术支持。  相似文献   

10.
针对温室孢子捕捉设备所采集图像中孢子囊分布密集、粘连堆叠和背景复杂的特点,提出一种基于改进YOLOv5s的黄瓜霜霉病孢子囊检测算法。首先,使用带CBAM(Convolutional Block Attention Module)注意力机制的Ghost卷积替代原始网络中的CSP(Cross Stage Partial)模块,抑制背景中的杂质,在保证产生丰富特征图的同时,降低模型的参数量,提升计算速度。其次,修改特征融合网络的连接方式,删除原来负责大物体检测的分支并加入一个更细粒度的分支,以加强对小目标和密集、堆叠目标的检测。最后,对不同预测头产生的损失值赋予不同的权重,并用考虑中心点距离的DIOU_NMS非极大值抑制方法代替原来的NMS方法。改进后的YOLOv5s算法的平均准确率和FPS分别为91.18%和65.4帧/s,比原始的YOLOv5s算法高4.88%和7.1帧/s。该研究可为监测黄瓜霜霉病的发生和发展提供数据支撑,对于保障黄瓜的产量和质量具有重要意义。  相似文献   

11.
基于机器视觉的无人驾驶技术是近年来的研究热点,尤其在高速路、路锥道路等特殊路段,机器视觉有明显的优势。针对现有YOLOv4、Faster-RCNN等普通深度学习算法在路锥道路识别速度慢、障碍物识别不稳定等缺陷,基于武汉科技大学无人方程式赛车,提出在ROS平台利用Tensor RT加速YOLOv5算法,实现无人方程式赛车环境感知,并接入Gazebo进行赛车的路劲规划仿真。实车实验表明,相比于普通的YOLOv4算法,具有更快的识别速度,一帧图像识别时间在10~20 ms,路锥障碍物的平均识别精度更高,达到99.2%,且识别效果稳定,具有实际应用价值。  相似文献   

12.
目前的平贝母种植阶段中,覆土仍然依靠人工,这存在耗时、耗力、成本高等问题。故需要研制一款智能化的平贝母覆土机器,而实现智能化的第一步在于实现识别。以YOLOv5系列为基础训练出一系列模型,在其系列中挑出最优模型(YOLOv5s)进行改进;进而在骨干段加入CBAM注意力机制替换其C3结合,从而减少网络序列长度,减少计算复杂度。试验结果表明,改进后模型的准确度最高可达91.32%,召回率最高可达88.78%。本文模型的提出为下一步实现平贝母覆土机智能控制提供理论参考。  相似文献   

13.
随着农村劳动力转移城市,传统的劳作也逐渐被先进的劳动生产方式替代,机耕船的制造厂家在考虑如何将机耕船进行高智能性、高工作效率的升级,实现无人驾驶。对机耕船障碍检测和避障策略进行了研究分析,选用基于OpenCV的BM和SGBM算法来实现双目立体匹配测距,通过实验对比两种算法的实际测距效果,BM和SGBM算法测距数据误差分别控制在0.867%和1.23%以内;通过构建样本库训练分类器,得到稳定的障碍物识别模型;选取人工势场法作为研究的基础,提出了一种改进的人工势场法,使机耕船顺利跳出局部极小值点,顺利避开了障碍物抵达目标终点。  相似文献   

14.
自然环境下树上绿色芒果的无人机视觉检测技术   总被引:1,自引:0,他引:1  
为了快速检测芒果树上的芒果,本文提出了一种基于无人机的树上绿色芒果视觉检测方法。本文采用深度学习技术,利用YOLOv2模型对无人机采集的芒果图像进行检测,首先通过无人机采集树上芒果图像,对芒果图像进行人工标记,建立芒果图像的训练集和测试集,通过试验确定训练模型的批处理量和初始学习率,并在训练模型时根据训练次数逐渐降低学习率,最终训练出来的模型在训练集上的平均精度(Mean average precision,MAP)为86.43%。通过试验,分析了包含不同果实数和不同光照条件下芒果图像的识别准确率,并设计了芒果树产量估计试验,试验结果表明:本文算法检测一幅图像的平均运行时间为0.08s,对测试集的识别准确率为90.64%,错误识别率为9.36%;对含不同果实数的图像识别准确率最高为94.55%,最低为88.05%;顺光条件下识别准确率为93.42%,逆光条件下识别准确率为87.18%;对芒果树产量估计的平均误差为12.79%。表明本文算法对自然环境下树上芒果有较好的检测效果,为农业智能化生产中果蔬产量的估计提供了视觉技术支持。  相似文献   

15.
针对多机协同导航作业中本机前方的拖拉机识别精度低、相对定位困难,难以保障自主作业安全的问题,提出了一种基于深度图像和神经网络的拖拉机识别与定位方法。该方法通过建立YOLO-ZED神经网络识别模型,识别并提取拖拉机特征;运用双目定位原理计算拖拉机相对本机的空间位置坐标。对拖拉机进行定点识别与定位试验,分别沿着拖拉机纵向、宽度方向和S形曲线方向测量拖拉机的识别与定位结果。试验结果表明:本文方法能够在3~10m景深范围内快速、准确地识别并定位拖拉机的空间位置,平均识别定位速度为19f/s;在相机景深方向和宽度方向定位拖拉机的最大绝对误差分别为0.720m和0.090m,最大相对误差分别为7.48%和8.00%,标准差均小于0.030m,能够满足多机协同导航作业对拖拉机目标识别的精度和速度要求。  相似文献   

16.
阮殿旭 《南方农机》2021,(23):24-26
稻米是我国主要粮食作物,各粮库对稻米的检测工作主要通过人工来完成.针对人工检测劳动强度大、成本高、检测准确率不稳定等问题,课题小组设计了一个基于机器视觉的稻米检测系统,达到识别出不完整粒等瑕疵的目的.首先,通过工业相机实时采集米粒图像,对采集的图像进行滤波、二值化等预处理;然后利用视觉软件的斑点分析工具对米粒的数量、形...  相似文献   

17.
在复杂自然环境下完成桑树枝干识别是实现桑叶采摘机智能化的关键部分,针对实际应用中光照条件变化多、桑叶遮挡和桑树分枝多等问题,提出一种基于深度学习的复杂自然环境下桑树枝干识别方法。首先,采用旋转、镜像翻转、色彩增强和同态滤波的图像处理方法扩展数据集,以提高模型的鲁棒性,通过Resnet50目标检测网络模型以及相机标定获得照片中所需的桑树枝干坐标,通过试验发现当学习率设置为0.001,迭代次数设置为600时模型的识别效果最优。该方法对于复杂自然环境中的不同光照条件具有良好的适应性,能够对存在多条分支以及被桑叶遮挡的桑树枝干进行识别并获取坐标信息,识别准确率达到87.42%,可以满足实际工作需求。  相似文献   

18.
基于改进YOLOv5m的采摘机器人苹果采摘方式实时识别   总被引:1,自引:0,他引:1  
为准确识别果树上的不同苹果目标,并区分不同枝干遮挡情形下的果实,从而为机械手主动调整位姿以避开枝干对苹果的遮挡进行果实采摘提供视觉引导,提出了一种基于改进YOLOv5m面向采摘机器人的苹果采摘方式实时识别方法。首先,改进设计了BottleneckCSP-B特征提取模块并替换原YOLOv5m骨干网络中的BottleneckCSP模块,实现了原模块对图像深层特征提取能力的增强与骨干网络的轻量化改进;然后,将SE模块嵌入到所改进设计的骨干网络中,以更好地提取不同苹果目标的特征;进而改进了原YOLOv5m架构中输入中等尺寸目标检测层的特征图的跨接融合方式,提升了果实的识别精度;最后,改进了网络的初始锚框尺寸,避免了对图像里较远种植行苹果的识别。结果表明,所提出的改进模型可实现对图像中可直接采摘、迂回采摘(苹果上、下、左、右侧采摘)和不可采摘果实的识别,识别召回率、准确率、mAP和F1值分别为85.9%、81.0%、80.7%和83.4%。单幅图像的平均识别时间为0.025s。对比了所提出的改进算法与原YOLOv5m、YOLOv3和EfficientDet-D0算法在测试集上对6类苹果采摘方式的识别效果,结果表明,所提出的算法比其他3种算法识别的mAP分别高出了5.4、22、20.6个百分点。改进模型的体积为原始YOLOv5m模型体积的89.59%。该方法可为机器人的采摘手主动避开枝干对果实的遮挡,以不同位姿采摘苹果提供技术支撑,可降低苹果的采摘损失。  相似文献   

19.
叶片枯萎是玉米生长过程中最常见的症状之一,利用视觉传感与模式识别技术实现玉米叶枯萎的自动检测可极大提高玉米的产量和生产效率,是智慧农业发展的重要方向。针对玉米叶遮挡场景下的枯萎检测问题,通过YOLOv5单阶段目标检测框架对叶片进行建模,并结合通道和空间注意力机制对模型架构进行改进,增强其骨干网络的特征提取能力,提高小目标玉米叶枯萎的检测精度。试验结果表明,提出的方法在Stewart_NLBimages_2019数据集上检测性能优于YOLOv5,检测平均精度均值达到86.84%,具有广阔的应用前景。  相似文献   

20.
采用0.57R-0.18G-0.2B色差分量法对刺梨图像进行处理,通过Ostu自适应阈值分割、形态学滤波和二值图像白色色素面积阈值等方法对图像进行一次分割。根据刺梨果实图像的颜色和纹理特征,再采用YCbCr颜色空间模型中各分量的阈值对图像进行二次分割。通过标记分水岭分割算法对粘连果实连通区域进行分割,利用Hough圆变换对独立、遮挡和重叠情况下的果实外圆进行拟合和修复,最终获取果实质心坐标及其半径。试验结果表明:刺梨果实识别正确率均高于92%,说明本算法能够对刺梨果实进行有效地识别。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号