首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
不同玉米品种对镉吸收累积特性研究   总被引:4,自引:0,他引:4  
【目的】探讨玉米对土壤重金属镉(Cd)的吸收规律,筛选对重金属Cd具有富集能力的品种,为重金属Cd污染地区的环境修复提供理论依据。【方法】以西南地区主推的9个玉米品种为研究对象,利用四川某铅锌矿区镉污染土壤为供试土壤,通过盆栽实验研究不同玉米品种对重金属Cd的吸收累积差异。【结果】研究结果表明:(1)各玉米品种对Cd的吸收量均表现为地下部分地上部分。(2)玉米单株富集量表现为:正红6号(0.26 mg/株)雅玉12号=川单13号(0.21 mg/株)农大95号(0.20 mg/株)。(3)不同玉米品种的富集转移系数不同。其中正红6号、雅玉12号、农大95号地下部分重金属Cd富集系数均大于1。(4)各玉米品种根与茎、根与籽粒的重金属Cd含量均表现为负相关性。【结论】根据玉米植株的生长状况、生物量、对Cd的富集能力和转运能力等指标进行评价,认为正红6号、雅玉12号、农大95号可作为对重金属Cd污染土壤修复的首选玉米品种。  相似文献   

2.
【目的】研究重金属污染农田中的土壤微生物对蚕豆重金属累积的影响。【方法】以云南会泽铅锌矿周边重金属污染的农田土壤为基质,开展室内盆栽试验,在土壤灭菌和施杀真菌剂(苯菌灵)条件下,测定蚕豆的生长、矿质养分、镉、铅含量与累积量。【结果】杀真菌剂处理显著增加土壤碱解氮和蚕豆地上部氮的含量,降低蚕豆地下部磷和钾的含量,但对蚕豆株高和生物量影响不显著;导致蚕豆地上部的镉含量和植株镉累积量降低,降低蚕豆对镉的富集系数和转运系数。土壤灭菌处理显著降低土壤速效钾和蚕豆地下部钾的含量,降低蚕豆株高和生物量;导致蚕豆植株镉、铅含量、地下部铅累积量增加,而地下部镉累积量、地上部铅累积量下降;增加蚕豆对镉、铅的富集系数与镉转运系数,但减小铅的转运系数与生物转运因子。【结论】清除土壤微生物和抑制真菌均改变蚕豆植株的矿质养分、镉、铅含量与累积特征,影响蚕豆的生长,表明土壤微生物在蚕豆重金属耐性与累积中起着重要作用。  相似文献   

3.
绿肥作物对云南旱地土壤镉有效性的影响   总被引:2,自引:1,他引:1  
研究不同绿肥作物对云南旱地中度镉(Cd)污染土壤(平均全Cd含量1.21 mg·kg~(-1))中Cd有效性和植物对Cd吸收、转运的影响,为当地基于绿肥的农作物安全生产措施提供理论支撑。采用盆栽试验,设8个处理:种植紫云英、毛叶苕子、光叶苕子、箭筈豌豆、二月兰、油菜、黑麦草等7种冬季绿肥作物和冬闲对照,于绿肥盛花期及同期测试土壤理化性状、Cd有效性、绿肥作物地上部与地下部Cd含量和富集系数、转运系数。结果表明:与冬闲相比,种植紫云英和黑麦草土壤可溶性有机碳(DOC)含量分别增加29.3%和33.7%。7种绿肥作物均显著降低土壤有效Cd和全量Cd含量,其中箭筈豌豆、光叶苕子、黑麦草处理的土壤有效Cd相比冬闲分别下降了32.1%、29.2%和33.0%;紫云英、毛叶苕子、光叶苕子和箭筈豌豆土壤全量Cd分别下降45.4%、34.9%、34.5%和33.2%。4种豆科绿肥Cd主要积累在地下部,且富集系数和转运系数较小;禾本科与十字花科绿肥Cd主要集中在地上部,富集系数和转运系数均显著高于豆科绿肥,其中二月兰富集系数最高,为0.813,油菜转运系数最高,为0.772。土壤养分对土壤有效Cd有显著正影响;土壤DOC对植株地上部Cd含量有显著负影响,说明DOC含量的升高可以降低植株Cd含量。种植豆科绿肥在显著改善土壤养分、提高土壤质量的同时,能够降低土壤有效Cd含量,且富集系数和转运系数较低。  相似文献   

4.
施用石灰降低污染稻田上双季稻镉积累的效果   总被引:5,自引:0,他引:5  
【目的】研究在不同镉(Cd)污染程度稻田上施用石灰(CaO)的效果以及双季稻稻米Cd积累的差异,为早、晚稻季下不同污染程度稻田上的稻米安全生产提供参考。【方法】在湖南省选取43个县(区)的典型Cd污染稻田作为试验点,以常规栽培作为对照,研究施用石灰(1 200 kg·hm-2)后,轻度污染(土壤有效镉≤0.2 mg·kg-1)、中度污染(0.2 mg·kg-1土壤有效镉≤0.4 mg·kg-1)、重度污染(0.4 mg·kg-1土壤有效镉≤0.6 mg·kg-1)和严重污染(土壤有效镉>0.6 mg·kg-1)稻田土壤pH、土壤有效镉含量、稻米Cd含量以及稻米富集系数的变化。【结果】(1)从Cd污染稻田整体的角度分析,相比常规栽培,施用石灰能够极显著降低早、晚稻米Cd含量均值,降幅分别为31.0%和28.6%。(2)从不同稻季下不同污染程度稻田的角度分析,相比常规栽培,施用石灰能够降低早稻季中度、重度和严重污染稻田的稻米Cd含量均值,降幅分别为37.0%、38.7%(P<0.05)和22.6%;施用石灰能够降低晚稻季轻度、中度、重度和严重污染稻田的稻米Cd含量均值,降幅分别为2.0%、31.3%(P<0.05)、31.8%和22.9%。不同污染程度稻田施用石灰后能够提高土壤pH,降低土壤有效镉含量,使稻米Cd富集系数明显下降,实现对稻米Cd含量的调控。【结论】施用石灰能够有效调控早稻季的轻度、中度、重度以及晚稻季的轻度Cd污染稻田的稻米Cd含量均值,降至限量标准(0.2 mg·kg-1)以下。因此,以石灰施用为基础,结合其他降Cd措施,实施“分稻季分污染程度”和“晚稻优先于早稻”的治理思路,能提高大田生产上稻米Cd含量调控的稳定性并降低治理成本。  相似文献   

5.
组配钝化剂对镉铅复合污染土壤修复效果研究   总被引:4,自引:2,他引:2  
为研究组配钝化剂(纳米羟基磷灰石∶巯基化膨润土∶生物质炭=1∶2∶2)对镉铅复合污染土壤修复效果,以南京近郊某蔬菜基地镉(Cd)、铅(Pb)含量超标(Cd:0.89~1.37 mg·kg-1, Pb:441.9~707.8 mg·kg-1)的两块菜地土壤为研究对象,采用盆栽试验方法,研究不同钝化剂添加量(0、0.5%、1%、2.5%和5%)对菜地土壤理化性质和土壤Cd、Pb有效态含量的变化以及小白菜富集转运Cd、Pb的影响。结果表明:组配钝化剂能够有效提高土壤pH和CEC,使两种土壤有效态Cd和有效态Pb含量显著降低,同时降低了小白菜可食部位和根部对Cd、Pb的富集。与对照相比,两种土壤有效态Cd和有效态Pb最大降幅分别为60.34%~63.83%和81.84%~85.19%,小白菜可食部位降幅最大值分别为64.44%~81.48%和80.07%~82.98%。小白菜对Cd的富集和转运能力高于Pb,且2.5%~5%的钝化剂用量可同时显著降低小白菜对Cd、Pb的富集转运。添加钝化剂可以显著降低土壤中重金属Cd、Pb有效性,进而降低小白菜可食部位对Cd、Pb的积累和转运。从食品安全角度考虑,中度污染土壤(土壤A)推荐钝化剂用量为5%,轻度污染土壤(土壤B)推荐钝化剂用量为2.5%。  相似文献   

6.
【目的】为筛选出新的用于农田镉污染修复的镉富集植物.【方法】通过盆栽试验,研究不同镉浓度处理下多茎鼠麴草对镉的富集特性.【结果】随土壤镉浓度的增加,多茎鼠麴草生物量、叶绿素含量及抗性系数都呈下降趋势,但根系和地上部分镉含量呈增加趋势.在土壤镉浓度为75 mg/kg时,多茎鼠麴草地上部分镉含量达到121.86mg/kg,超过镉超富集植物临界值(100mg/kg).在不同土壤镉浓度处理下,多茎鼠麴草根系和地上部分镉富集系数大于1,但转运系数小于1.在土壤镉浓度为50mg/kg时,多茎鼠麴草地上部分和整株镉积累量均最大,分别为183.93μg/盆和266.79μg/盆.小区试验研究表明,在土壤镉浓度为2.04~2.89mg/kg时,多茎鼠麴草地上部分镉积累量达到1.74~1.80mg/m~2.【结论】多茎鼠麴草是一种镉富集植物,可用于农田镉污染土壤的修复.  相似文献   

7.
不同玉米(Zea mays)品种对镉锌积累与转运的差异研究   总被引:3,自引:1,他引:2  
选取20个玉米(Zea mays)品种作试验材料,通过田间试验研究了镉-锌(Cd-Zn)复合胁迫下玉米的生长发育及其积累和转运Cd、Zn的差异,以期筛选出Cd、Zn低积累的玉米品种。结果表明,Cd-Zn复合胁迫下,玉米的株高、叶面积、生物量、产量以及玉米根、茎叶和籽粒中Cd、Zn含量在品种间均表现出显著差异。有2个品种籽粒的Cd含量超过国家食品卫生标准(≤0.2 mg·kg-1),13个品种茎叶的Cd含量超过国家饲料卫生标准(≤0.5 mg·kg-1),所有品种籽粒和茎叶的Zn含量均符合国家食品卫生标准(≤50mg·kg-1);有7个品种的Cd富集系数1,13个品种茎叶转运系数1,所有品种籽粒转运系数均1;20个玉米品种Zn的富集系数均1,有18个品种茎叶转运系数1,6个品种籽粒转运系数1。根据玉米生物量、产量、籽粒Cd和Zn含量、富集系数、转运系数等指标进行评价,认为红单6号、红育1号、云优78、平单2号、屏单2号5个品种可作为Cd低积累玉米品种,雅玉98可作为Zn低积累玉米品种,可分别在个旧地区Cd、Zn中、轻度污染土壤上推广种植。  相似文献   

8.
【目的】为了探明土壤中镉含量与低累积玉米品种(会单4号)富集镉间的关系。【方法】以玉米为试验材料,设置不同浓度Cd处理的土壤盆栽试验,幼苗生长一个月后采集玉米地上部和地下部,测定玉米生物量、根系形态、叶片渗透率、脯氨酸积累量及镉富集特征。研究镉胁迫对玉米生理特性及其镉累积的影响。【结果】结果表明:当土壤中镉浓度为2 mg/kg时,玉米的地上部生物量显著增加了8.79%,浓度增加到12 mg/kg时,玉米地上部与地下部的生物量分别显著下降了55.65%、58.92%;对玉米幼根生长的抑制作用逐渐增大;叶片渗透率和脯氨酸含量与镉浓度呈正相关;玉米体内的镉含量明显增加,并且地下部含量明显高于地上部含量;随着镉浓度增加,富集系数和转运系数都小于1,这说明玉米累积镉含量不随土壤镉含量增加,但对玉米植株的毒害越来越严重。【结论】2 mg/kg的镉促进玉米生物量的增加,大与4 mg/kg时抑制玉米生物量的增加,会单4号是低富集品种,富集系数与转运系数不会随镉浓度的增加而增加,但会使玉米受到的毒害越来越严重。  相似文献   

9.
为进一步验证前期筛选出的6个镉(Cadmium, Cd)高、低积累玉米品种对土壤Cd富集和转运的差异性,通过田间试验,研究了6个不同玉米(Zea mays)品种对重金属Cd富集系数(Bio-concentration coefficient, BCF)和转运系数(Transfer coefficient, TF)的差异。结果表明:6个玉米品种在抽丝期和成熟期的根部及地上部生物量、根部、茎叶及籽粒Cd含量、富集系数、积累量和总富集量均存在显著的种间差异(P0.05)。华彩糯3号和广红糯8号的成熟期茎叶Cd含量分别为16.38 mg·kg~(-1)和13.64 mg·kg~(-1),茎叶Cd富集系数分别为7.45和6.20,Cd转运系数分别为1.88和3.02;籽粒Cd含量分别为0.65 mg·kg~(-1)和0.63 mg·kg~(-1),超过了食品安全国家标准(GB 2762—2017)和饲料卫生标准(GB 13078—2017)限值。粤彩糯2号、华玉8号和广紫糯6号茎叶富集系数分别为2.07、1.39和1.85,籽粒Cd含量分别为0.19、0.17 mg·kg~(-1)和0.15 mg·kg~(-1),高于GB 2762—2017但低于GB 13078—2017限值。仲糯1号茎叶和籽粒富集系数分别为1.85和0.032,玉米籽粒Cd含量为0.07 mg·kg~(-1),符合GB 2762—2017。华彩糯3号和广红糯8号可作为Cd高富集玉米品种,不可用作粮食或饲料;仲糯1号可作为Cd低累积玉米品种,可用作粮食或饲料。  相似文献   

10.
【目的】探究地质高背景区镉(Cd)污染稻田水稻对Cd的富集转运特征,筛选适用于稻田安全生产的Cd低累积水稻品种,为该地区的水稻安全生产提供参考。【方法】以贵州开阳县10个主栽水稻品种为材料,采用田间小区试验的方法,测定土壤、水稻不同组织部位Cd含量,对比不同水稻品种对Cd的富集和转运特征,并结合水稻产量和聚类分析,筛选Cd低累积水稻品种。【结果】参试水稻品种的稻田土壤pH为5.88~6.37、全Cd含量为0.89~1.30 mg/kg、有效态Cd含量为0.40~0.58 mg/kg,不同品种间土壤pH及Cd含量无显著差异(P>0.05,下同)。水稻不同组织部位间的Cd含量以茎部和根部积累较高。相对于根际土,Cd在水稻茎、根中呈明显的富集特征,富集系数均超过1.00,但多数品种谷壳、糙米对Cd的富集系数小于1.00。Cd转运系数以糙米/谷壳、茎/根转运系数较高,其中,水稻体内Cd从根向茎、谷壳向糙米的转运能力相对较强,接近或超过1.00。在水稻品种间产量无显著差异的前提下,结合聚类分析可将10个水稻品种划分为三类:第Ⅰ类(较低值类)包括成优1479和天优1177;第Ⅱ类(中间值类)包括C两U华占、黑糯80、川华优320、红优2号、C两优华占和泸香优110;第Ⅲ类(较高值类)包括金优2017和宜香优2115。【结论】10个参试水稻品种中,本地主栽水稻品种各部位相对易于富集Cd,其中,金优2017和宜香优2115糙米Cd含量严重超标,不建议在Cd污染稻田中种植;成优1479和天优1177的糙米Cd含量较低,可作为Cd低累积水稻品种推广种植。  相似文献   

11.
采用大田试验方法,在作物常规管理情况下,研究20个水稻品种对土壤镉的吸收富集特性。结果表明,在土壤镉含量为0.93mg·kg-1的条件下,水稻糙米镉含量多集中在0.008~0.016mg·kg-1范围内,“隆粳香3”镉含量最高,为0.047mg·kg-1,“软玉12”镉含量最低,为0.009mg·kg-1;同时,不同品种水稻糙米对镉的富集能力不同,“隆粳香3”糙米对镉的富集能力最强,富集系数为0.050,其次是“盐284”“昌优2号”“隆粳772”“隆粳13”“盐431”和“软玉11”,富集能力最弱的是“辽粳212”和“软玉12”,富集系数为0.010。综合考虑水稻对土壤镉吸收富集能力和产量性状指标,推荐“辽粳212”“软玉12”“辽星1号”和“辽粳401”作为该地区中、轻度Cd污染土壤上的水稻品种推广种植。  相似文献   

12.
为寻求土壤重金属污染的生态修复新树种,采用砂土培养法,研究重金属镉(Cd)、铬(Cr)和铅(Pb)胁迫对柳杉幼苗生长的影响及其富集特征。结果表明:随着重金属胁迫浓度的升高,幼苗苗高及地径生长受抑程度、叶片电导率和丙二醛(MDA)含量也随之变大,尤其是对地径的抑制作用较为明显,300mg/L Pb胁迫下柳杉幼苗生长的增长率较CK低27.28%;柳杉叶片的总叶绿素含量则随重金属胁迫浓度的升高而降低,150mg/L Cr胁迫下柳杉叶片的叶绿素含量最低,为8.66mg/L,较CK差异显著;柳杉根系对重金属Cd、Cr和Pb的吸收作用明显,其富集系数最高,分别达17.71、10.45和6.87,其中Cd和Pb在柳杉植株中的吸收富集量依次为根茎叶,Cr依次为根叶茎;Cr不同胁迫浓度的转运系数均高于Cd和Pb,100mg/L Cr的幼苗转运系数达1.23,能有效吸收转运土壤中的重金属。柳杉对重金属污染具有一定的抗性,可将其作为低浓度重金属污染土壤的生态修复树种。  相似文献   

13.
不同玉米品种对土壤镉富集和转运的差异研究   总被引:2,自引:0,他引:2  
【目的】通过盆栽试验研究11个玉米Zea mays品种的Cd富集和转运能力,并进行筛选,旨在为探究和发掘Cd高累积玉米品种提供一定的理论参考。【方法】以11个玉米品种为研究对象,在全Cd质量分数为2.5 mg·kg~(-1)的土壤中培养50 d,测定玉米干质量、Cd含量,采用方差分析和主成分分析法研究不同品种玉米在Cd污染土壤中的干质量、Cd富集和转运能力的差异。【结果】11个品种玉米的根、茎叶的干质量、Cd质量分数、富集系数和转运系数间均差异显著(P0.05)。华彩糯3号和广红糯8号玉米茎叶Cd质量分数分别为26.66和20.25 mg·kg~(-1)、富集系数分别为10.66和8.10、转运系数分别为1.46和2.16,均显著高于其他品种(P0.05);主成分分析结果显示,华彩糯3号和广红糯8号玉米对Cd的富集和转运能力强于其他品种(P0.01)。【结论】华彩糯3号和广红糯8号玉米对Cd的富集和转运能力较强,属于Cd高累积玉米品种,在Cd污染土壤修复中具有较大的应用潜力。  相似文献   

14.
为研究低镉(Cd)污染(Cd为0.35 mg·kg~(-1))稻田改制的农产品安全利用技术,通过双季稻区早-晚稻轮作,玉米-玉米轮作、水稻-玉米轮作和玉米-水稻轮作试验,研究不同轮作制度下土壤有效Cd、作物不同器官Cd含量,Cd富集系数、转移系数和土壤养分的变化。结果表明:不同轮作制度下,水稻根、茎叶和稻米中Cd的平均含量分别为3.66、1.30 mg·kg~(-1)和0.36 mg·kg~(-1);玉米根、茎叶和籽粒中Cd的含量分别为0.50、0.12 mg·kg~(-1)和0.03 mg·kg~(-1);水稻根系、茎叶和籽粒的富集系数平均分别为11.96、4.27和1.19,玉米的分别为1.73、0.50和0.13;水稻的根系向茎叶和茎叶向籽粒转运的转运系数分别为0.36和0.28,玉米的为0.24和0.20;晚稻籽粒Cd含量高于早稻,秋玉米Cd含量高于春玉米;土壤中的碱解氮、有效磷和速效钾不影响作物对Cd的吸收;种植玉米比同季水稻略有增产。研究表明,在Cd轻度污染地区,晚稻改种玉米能保障粮食作物安全,是一种值得推荐的种植制度。  相似文献   

15.
杨树因生长速度快、生物量大、易种植等特性在修复镉(Cd)污染土壤上具有较大优势。选择69杨(Populus deltoides Bartr. cv.‘Lux’(I-69/55)),设置了4组不同Cd浓度(5、20、50和100 mg·kg-1)土壤为试验组,及一组未添加Cd的土壤为对照组,着眼全树,重点关注树干,研究两年生杨树的生长和不同部位对Cd的吸收分布规律。结果表明,在不同浓度Cd污染土壤下,杨树生长未受到显著影响,且杨树不同部位Cd含量均随土壤中Cd浓度的增加而增加,表明杨树对Cd有较强的耐受性,杨树不同部位Cd平均含量表现为树叶>树皮>树根>树枝>树干。其中,Cd在树干中的含量随着树高略有升高,而基部树皮中的含量高于中部和顶部,树干Cd含量的径向差异不显著。不同Cd处理浓度下杨树各部位对Cd的富集系数介于0.15~4.27之间,总体随土壤Cd浓度的升高而降低,转运系数介于0.28~3.50之间,树叶、树皮的富集系数和转运系数均大于树干和树枝。总体而言,69杨对Cd表现出较高的吸收和富集能力,可作为修复重金属Cd污染土壤的潜力树种。  相似文献   

16.
为探索生物质炭对污染土壤-作物体系中镉迁移的钝化效果,本研究以小白菜为对象,采用盆栽试验,在土壤Cd2+水平为0、1、6、12mg/kg和棉杆炭添加量分别为0、10、20、50g/kg处理下,测定土壤pH值、小白菜株高、生物量及小白菜地上部分和地下部分中镉的含量,探究施加棉杆炭对土壤-小白菜体系中镉迁移的影响。结果表明,棉杆炭添加可短期内极显著提高土壤的pH值(P 0.01)。在不同镉污染土壤中,添加棉杆炭可以显著增加小白菜的生物量(P 0.05),尤其是10g/kg棉杆炭添加处理,极显著增加了小白菜的生物量(P 0.01)。添加棉杆炭能够有效提高小白菜的成活率,对株高影响不显著(P0.05)。在1mg/kg土壤镉污染中,转运系数大于1,随棉杆炭量的增加,小白菜地上部分富集系数逐渐减少,地下部分的富集系数逐渐增加,说明镉从植物地下部分向地上部分转移量不断降低。在6mg/kg土壤镉污染浓度下,当棉杆炭添加量为10g/kg时,转运系数大于1,而当棉杆炭添加量大于10g/kg后,转运系数小于1,说明植物地下部分镉含量大于地上部分,棉杆炭的添加有效阻控了镉向植物地上部分的迁移。  相似文献   

17.
为评价轻度镉(Cd)污染地木薯种植的安全性及木薯种质对Cd积累的差异性,研究了轻度镉污染大田栽培的35份木薯种质对重金属镉的累积特性。结果表明,35份木薯种质组织器官中的Cd积累含量和富集系数均表现为茎叶块根;35份木薯种质中,块根(鲜样)Cd含量超过国家薯类作物限量标准(0.1 mg/kg)的有15份。隶属函数评价表明,GR891与NG在镉富集和转运的综合能力方面差异最大,其富集系数和转运系数分别为5.80、7.94、1.12、1.94。综合排名显示,N121生物量和镉提取量都表现最高,分别达91 406 kg/hm~2、18.60 g/hm~2;ZM8316产量最高,达45 303 kg/hm~2;GR891生物量和产量都表现最低,分别为18 329、10 245 kg/hm~2;47-11镉提取量最低,为3.49 g/hm~2。  相似文献   

18.
【目的】镉(Cd)是农田重金属污染的主要因素,探究明芹菜幼苗对镉的适应能力,为芹菜的重金属防治提供理论基础。【方法】采用水培方式,研究营养液中不同Cd浓度(0、5、10、15和20mg/L)对芹菜幼苗生长、Cd积累以及生理生化指标的影响。【结果】结果表明,当Cd质量浓度为5mg/L时,芹菜幼苗生长与对照差异不显著;当营养液中Cd质量浓度≥10mg/L时,植株生长受到抑制,叶绿素含量降低,丙二醛(MDA)含量上升。植物体内镉元素含量随添加的Cd浓度升高而升高,根系中的Cd含量远高于地上部,富集系数和转运系数在浓度为10mg/L时达到最大,随后递减。【结论】以上结果表明,芹菜幼苗在低Cd质量浓度(5mg/L)生长不受影响,而高浓度(大于10mg/L)则抑制其生长;芹菜对Cd具有一定的富集和转运能力。  相似文献   

19.
为筛选高产且镉低积累水稻品种,选择江西省新余市主推的10个早稻和12个晚稻品种为材料,采用田间小区试验,比较不同水稻品种在轻度镉污染农田对镉吸收、积累和富集的差异,测定不同水稻品种的产量、糙米镉含量、富集系数和转运系数等指标。结果表明,不同水稻品种的糙米镉含量差异较大(P<0.05),早稻品种糙米中镉含量为0.11~0.25 mg·kg-1,晚稻品种糙米中镉含量为0.05~0.21 mg·kg-1,其中启两优1639、陵两优171和兴安香占等水稻品种糙米的镉含量超过国家限量标准值(0.20 mg·kg-1)。早稻品种糙米对土壤镉的富集系数为0.26~0.57,晚稻为0.17~0.73;早稻品种谷壳-糙米转运系数为1.12~2.62,晚稻为0.26~2.75;糙米镉含量与富集系数、转运系数相一致。不同品种水稻产量为6.30~11.69 t·hm-2,早晚稻产量较高的分别是启两优1639和甬优4949。通过多目标的聚类分析,兼顾水稻产量与糙米镉累积情况,筛选出早稻品种陵两优47、晚稻品种甬优494...  相似文献   

20.
土壤镉污染对水稻孕穗期植株生长及镉积累的影响   总被引:1,自引:0,他引:1  
为了明确Cd对水稻孕穗期植株生长的影响及其在植株体内的积累分配特征,以水稻品种中优169为试材,通过盆栽试验,研究了土壤不同含量Cd对水稻孕穗期植株根系活力、干物质量以及Cd积累和分配的影响。结果表明:水稻孕穗期根系活力和器官干物质量均随土壤Cd含量的提高而降低,当Cd含量为5 mg/kg时,水稻根系活力和器官干物质量均受到明显抑制;随着Cd含量的提高,水稻根系和地上部的Cd含量以及积累量均明显增加;1 mg/kg的Cd处理下水稻根系Cd富集系数和分配比例下降,而转运系数以及地上部的富集系数和分配比例增加;5 mg/kg的Cd处理下水稻根系和地上部的Cd富集系数、转运系数以及地上部的Cd分配比例下降,而根系的Cd分配比例增加。较高程度的Cd污染,抑制了孕穗期水稻的生长。Cd污染增加了水稻各部位对Cd的积累,但高Cd污染时Cd向水稻地上部迁移与分配的能力会降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号