首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Sexed broiler-type chicks were raised either under a continuous (CON) 23 h light (L) and 1 h dark (D) schedule or an increasing photoperiod (INC). From 5 to 11 d of age birds were fed either: ad libitum (AL), energy intake (kJ ME) restricted to 9.414 x gBW0.67 (R1) or energy intake (kJ ME) restricted to 6.276 x gBW0.67 (R2). 2. Blood samples were taken at 4, 7, 11, 14 d of age and weekly thereafter to 49 d of age. Plasma thyroxine (T4), triiodothyronine (T3), insulin-like growth factor-I (IGF-I) and insulin were determined. 3. CON birds had elevated plasma T3 concentrations to 21 d of age, and greater plasma T4 concentrations at 11 and 21 d of age concurrent with greater food intake. Elevated plasma T3 concentrations in INC birds at 28 d of age coincided with lower plasma IGF-I concentrations at a time when growth and food intake were greater than CON birds. 4. Food restriction elevated plasma insulin and T4 but depressed plasma T3 and IGF-I. Plasma T3 was greater for food-restricted birds at 21 d of age, but subsequently, was generally lower than ad libitum-fed birds which may account for a lack of complete 'catch-up' in growth. 5. Plasma T3 was higher in females at 11 d of age when growth was equivalent for both sexes. From 28 to 42 d, when sex differences in growth became most apparent, plasma T3 was greater in males.  相似文献   

2.
Transition from pregnancy to lactation in dairy cows involves considerable metabolic adaptation. Additional stress is incurred during infections such as periparturient mastitis. Multiparous Holstein-Friesian cows kept under normal production conditions (n = 15) were used to evaluate changes in circulating metabolite and hormone concentrations from 5 days before to 5 days after calving. Insulin-like growth factor binding protein (IGFBP) profiles were also monitored. Marked time-related changes were observed for plasma thyroid hormone, IGF, cortisol, insulin, beta-hydroxybutyrate (BHB) and non-esterified fatty acid (NEFA) concentrations but not for plasma leptin. A decrease in IGF-II concentration and maximal intensity of the putative IGFBP-1 band occurred at parturition. When compared with the five healthy cows,low IGF-II levels were prolonged to day 2 post-partum in five cows with Escherichia coli-associated mastitis. However, marked decreases in IGFBP-2 band intensity were evident only in two of the four cases examined. Individual total ligand (IGF-I + IGF-II) concentration and IGFBP pattern prepartum were largely regained 5 days post-partum in all cows. Hormone and metabolite concentrations in the two cows with Staphylococcus aureus-associated mastitis were very similar to those in the five healthy cows. Plasma thyroxine (T4) was lower 2 days prepartum in the cows, which later developed Gram-negative mastitis. Multiregression analysis showed that variance in T4 concentration was significantly and independently associated with triiodothyronine (T3) and IGF-I positively and with cortisol negatively (R2 = 0.648). This study confirms the close inter-relationship between the thyroid hormone and IGF axes in cattle and indicates possible effects of Gram-negative mastitis infection on IGF-II metabolism.  相似文献   

3.
There are conflicting results concerning the role of the thyroid hormones in lipid metabolism. The experiments in this report were designed to examine the role of T(3) in modifying responses obtained by shifting birds from moderate to low protein diets. Birds were grown from 7 to 28 d on a diet containing 18% protein. At this time, birds were switched to a diet containing 12% protein +/- T(3) The switch was accomplished either immediately or after a 24 hr fast. Measurements taken included in vitro lipogenesis (IVL), hepatic enzyme activities and plasma metabolites and thyroid hormones. Simply switching to birds to the low protein diet increased IVL, but rates were similar for three days following the switch. Feeding T(3) in this same regimen resulted in lower, but again, constant rates of IVL. In contrast, although switching protein levels after a 24 hr fast increased IVL, the rate after two days of refeeding was nearly double that following one day. This accentuated response was somewhat attenuated by including T(3) in the diet. Neither fasting nor refeeding altered plasma T(3) relative to ad libitum values. Supplemental dietary T(3) increased plasma T(3) and results were not affected by feeding regimens. Plasma T(4) was greatest in birds fasted for 24 hr and least in birds fed T(3) suggesting that feeding regimens may regulate the conversion of T(4) to T(3) It is suggested from this study that some of the effects of alterations in dietary feeding regimens can be modulated by T(3)  相似文献   

4.
The effect of hypothyroidism on some oxidative stress parameters is reported. Moderate hypothyroid state was induced in two groups of female rabbits (3 and 12 months old) by giving 50 mg/kg body weight (BW) of propylthiouracil (PTU) per os for 6 days and 20 mg/kg BW of methimazole (MMI) for further 14 days. Serum T4 and T3 concentrations decreased by about 38-40 and 32-36%, respectively. The induced hypothyroidism resulted in a significant decrease in the serum concentration of the lipid peroxidation end-product malondialdehyde, as measured by the thiobarbituric-acid assay. Erythrocytes of hypothyroid animals exhibited higher resistance to oxidative stress, while submitted to free radicals generator 2,2'-azo-bis(2-amidinopropane) hydrochloride (AAPH) in vitro. Using two detector systems (phospholipid liposomes and deoxyribose), sensitive to either organic or inorganic oxygen radical damage, the ability of euthyroid and hypothyroid rabbit plasma to protect against oxygen radicals was evaluated. The plasma of hypothyroid animals showed about 20% higher ability to protect against iron-binding organic radicals, but about 50% lower chain-breaking antioxidant activity. The antioxidant capacity of plasma against inorganic radicals was not affected by hypothyroidism. In conclusion, the results show that thyroid hormones modulate the free-radical-induced oxidative damage of lipids and that hypothyroidism offers some protection against lipid peroxidation.  相似文献   

5.
OBJECTIVE: To evaluate selected concentrations of blood lipids and lipase activities in euthyroid and hypothyroid horses deprived of feed for 96 hours. ANIMALS: 4 healthy adult mares and 4 thyroidectomized adult mares. PROCEDURE: Horses were deprived of feed for 96 hours. Blood samples were collected at 24-hour intervals and analyzed to determine concentrations of non-esterified fatty acid (NEFA), triglyceride (TG), total cholesterol (TC), and very-low-density lipoprotein (VLDL) as well as composition of VLDL. Plasma lipase activities were measured after feed was withheld for 96 hours and 12 days after resumption of feeding. RESULTS: Time significantly affected plasma NEFA, VLDL, TG, and TC concentrations in both groups of horses. During the 96-hour period, mean plasma concentrations of NEFA and VLDL increased 10-fold in euthyroid horses and increased 5-fold and 9-fold, respectively, in hypothyroid horses. Mean plasma TG concentrations increased 8-fold in both groups, and plasma TC concentrations significantly increased by 33 and 30%, respectively. Composition of VLDL was significantly affected by feed deprivation in euthyroid horses. Activities of lipoprotein lipase and hepatic lipase were significantly higher in feed-deprived horses. Activity of hepatic lipase was significantly lower in hypothyroid horses than in euthyroid horses. CONCLUSIONS AND CLINICAL RELEVANCE: Hypothyroidism did not significantly alter the magnitude of the response of blood lipids to feed deprivation. Thyroid hormones may reduce variability in blood lipid concentrations but do not determine susceptibility to hyperlipemia. Hypothyroidism does not appear to be a factor in the pathogenesis of hyperlipemia in horses.  相似文献   

6.
The aim of this study was to identify relationships among seasonal differences of fertility, metabolic parameters and appearance of irregular luteal forms in high-yielding dairy cows. Holstein-Friesian cows were put on the Provsynch regimen in winter (n = 10) and in summer (n = 10). Blood sampling (starting 35 days post partum) and rectal ultrasound examinations (starting post insemination) were carried out once a week in each examination period. Metabolic [plasma nonesterified fatty acid (NEFA) and beta-hydroxybutyrate (BHB) levels, ferric reducing ability of plasma (FRAP) and serum beta-carotene] and endocrine parameters [plasma thyroxine (T4), triiodothyronine (T3), insulin-like growth factor (IGF-I) and insulin levels] were measured. In summer, two cows were excluded from the study because of metritis and none of the remaining animals became pregnant, but 6 of the 8 cows had irregular luteal forms (ILF) on their ovaries. In winter, one cow was excluded because of metritis and 6 of the 9 cows became pregnant, while 2 of the 3 open cows had irregular luteal forms. In summer the mean plasma NEFA and BHB concentrations were significantly higher, while serum carotene and plasma IGF-I concentrations were significantly lower than in winter. The high plasma NEFA concentration found in summer seemed to be in association with the lower body condition score (BCS) caused by depressed appetite. In conclusion, statistical analysis supports the hypothesis that increased plasma NEFA and BHB and decreased plasma IGF-I concentrations may result in reduced fertility in summer. These changes may be associated with the more frequent appearance of ILFs and probably have a negative effect on ovarian function and/or oocyte quality.  相似文献   

7.
Exogenous somatotropin alters IGF axis in porcine endometrium and placenta   总被引:1,自引:0,他引:1  
The aim of this study was to examine whether exogenous somatotropin (ST) can alter the insulin-like growth factor (IGF) axis in the porcine epitheliochorial placenta. Crossbred gilts were injected either 6 mg of recombinant porcine ST or vehicle from days 10 to 27 after artificial insemination (term day 116). Control and ST-treated gilts were euthanized on day 28 (8 control/5 treated), day 37 (4 control/6 treated), and day 62 (4 control/6 treated) of gestation. Endometrium and placental tissue samples were collected and subjected to mRNA analyses. In control gilts, somatotropin receptor (STR) and IGF-I mRNA abundance in the endometrium decreased with gestation. Conversely, the amounts of IGF-II mRNA and of IGF binding protein (BP)-2 and -3 mRNA, which were analyzed in endometrium and placental chorion, increased with gestation. The endometrium contained less IGF-II mRNA but more IGFBP-2 and-3 mRNA than the placental chorion. In response to pST treatment, the amounts of endometrial STR and IGF-I mRNA were lower at days 28 and 37, but higher at day 62 of gestation. The content of IGF-II mRNA was higher in the endometrium of pST-treated than control gilts on day 37. The amount of IGFBP-2 mRNA was increased on day 37 in endometrium and placenta of pST-treated gilts, whereas no changes in IGFBP-3 mRNA were observed. The IGF-II/IGFBP-2 ratio was higher in the placenta in response to pST on day 28 of gestation. Results show that pST treatment of pregnant gilts during early gestation alters IGF axis in maternal and fetal placental tissues and suggest pST may exert an effect on fetal growth by altering the relative amount of IGFBPs and IGFs at the fetal-maternal interface.  相似文献   

8.
During two studies, effects of recombinant bovine somatotropin (rbST) on plasma and milk IGF's in cows adapted to summer (S; 12 cows) or winter (W; 12 cows) conditions were evaluated. Each study consisted of on-farm periods (30 days) followed by climatology chamber periods (CC; 30 days). Cows were given daily injections of rbST, Sometribove, USAN (25mg/day; 6 cows each study) or saline (control; 6 cows each study). During on-farm periods, blood and milk (am and pm) samples were collected once weekly. During CC periods, blood samples were collected every 2 days and milk samples (am and pm) were collected daily. Plasma IGF-I and IGF-II were increased in cows treated with rbST. A pronounced seasonal pattern in basal and rbST-stimulated plasma IGF-I but not IGF-II was detected. Higher basal and rbST-stimulated plasma IGF-I concentrations in S occurred despite large decreases in feed intake and energy balance. Milk IGF-I and IGF-II was not affected by rbST treatment or season. Although milk IGF-I and IGF-II concentrations were unaffected by rbST treatment, total IGF-output increased due to increased milk yield. The observed seasonal patterns in plasma IGF-I may be indicative of seasonal differences in the coupling of the somatotropin-IGF axis. In particular, we failed to detect an uncoupling of the somatotropin-IGF-I axis in S despite an induced negative energy balance during thermal stress.  相似文献   

9.
To investigate the effect of hypothyroidism on gonadal and adrenal functions in male Japanese quail (Coturnix japonica), hypothyroidism was induced in male adult Japanese quail by daily administration of 2-Mercapto-1-methylimidazole (methimazole) in their drinking water. Four weeks after methimazole treatment, the Japanese quail were sacrificed, and the plasma concentrations of free triiodothyronine (FT3), free thyroxine (FT4), total T3 (TT3), total T4 (TT4), corticosterone, testosterone, LH and immunoreactive (ir) inhibins were measured by radioimmunoassay, the testes and adrenal glands were removed and weighed and the thyroid glands and testes were fixed in 4% paraformaldehyde for histological observation. The results showed that the hypothyroidism induced by methimazole caused a significant decrease in body and testes weight; the plasma levels of FT3, FT4 and TT4 significantly decreased, and the hypothyroid quail possessed a greater number of small follicles and more follicular epithelial cells in the thyroid gland. In addition, hypothyroidism resulted in a significant decrease in the plasma concentrations of corticosterone, LH, testosterone and ir-inhibin. Furthermore, no spermatogenesis was found in the seminiferous tubules of the methimazole treatment groups. These results clearly demonstrate that hypothyroidism caused both gonadal and adrenal disturbances in the adult male Japanese quail.  相似文献   

10.
Previous studies have reported conflicting data on gender differences in plasma IGF-I in postnatal pigs. There is also debate over the role of IGF-II in regulation of postnatal growth. We have, therefore, determined the concentrations of plasma IGF-I, IGF-II, and IGF-binding protein-3 (IGFBP-3) in boars, barrows, and gilts and related these to postnatal growth characteristics. Plasma concentrations of IGF-I were higher in boars than in gilts or barrows from 13 wk. of age, and plasma IGF-II levels were generally higher in barrows than in boars or gilts. Plasma IGFBP-3 levels were higher in boars than in gilts or barrows at most ages. Between 15 and 23 wk. of age, IGF-I and IGFBP-3, but not IGF-II, were positively associated with growth rate, voluntary feed intake, and gain:feed ratio. Plasma IGF-II, but not IGF-I or IGFBP-3, was positively associated with backfat depth during this period. These results support the hypothesis that circulating IGF-I and IGF-II are regulators of lean and adipose tissue growth, respectively.  相似文献   

11.
The aim of the experiment was to determine the acute and chronic effects of the β-agonist, cimaterol, on plasma hormone and metabolite concentrations in steers. Twelve Friesian steers (liveweight = 488 ± 3 kg) were randomly assigned to receive either 0 (control; n=6) or .09 mg cimaterol/kg body weight/day (treated; n=6). Steers were fed grass silage ad libitum. Cimaterol, dissolved in 140 ml of acidified distilled water (pH 4.2), was administered orally at 1400 hr each d. After 13 d of treatment with cimaterol or vehicle (days 1 to 13), all animals were treated with vehicle for a further 7 d (days 14 to 20). On days 1, 13 and 20, blood samples were collected at 20 min-intervals for 4 hr before and 8 hr after cimaterol or vehicle dosing. All samples were assayed for growth hormone (GH) and insulin, while samples taken at −4, −2, 0, +2, +4, +6 and +8 hr relative to dosing were assayed for thyroxine (T4), triiodothyronine (T3), cortisol, urea, glucose and non-esterified fatty acids (NEFA). Samples taken at −3 and +3 hr relative to dosing were assayed for IGF-I only. On day 1, cimaterol acutely reduced (P<.05) GH and urea concentrations (7.6 vs 2.9 ± 1.4 ng/ml; and 6.0 vs 4.9 ± 0.45 mmol/l, respectively; mean control vs mean treated ± pooled standard error of difference), and increased (P<.05) NEFA, glucose and insulin concentrations (160 vs 276 ± 22 μmol/l, 4.1 vs 6.2 ± 0.15 mmol/l and 29.9 vs 179.7 ± 13.9 μU/ml, respectively). Plasma IGF-I, T3, T4 and cortisol concentrations were not altered by treatment. On day 13, cimaterol increased (P<.05) GH and NEFA concentrations (7.7 vs 14.5 ± 1.4 ng/ml and 202 vs 310 ± 22 mEq/l, respectively) and reduced (P<.05) plasma IGF-I concentrations (1296 vs 776 ± 227 ng/ml). Seven-d withdrawal of cimaterol (day 20) returned hormone and metabolite concentrations to control values. It is concluded that : 1) cimaterol acutely increased insulin, glucose and NEFA and decreased GH and urea concentrations, 2) cimaterol chronically increased GH and NEFA and decreased IGF-I concentrations, and 3) there was no residual effect of cimaterol following a 7-d withdrawal period.  相似文献   

12.
Steers were made hyperthyroid or hypothyroid to study the effects of physiological alterations in thyroid hormone status on plasma growth hormone (GH) profiles, plasma insulin-like growth factor-I (IGF-I) concentrations, and relative abundance of IGF-I mRNA in skeletal muscle and liver. Eighteen yearling crossbred steers (360 to 420 kg) were randomly allotted to hyperthyroid (subcutaneous injection 0.6 μg/kg BW L-thyroxine for 10 d), hypothyroid (oral thiouracil; 0.25% diet plus 12.5 g capsule/d for 17 d), or control (subcutaneous injection 0.9% NaCl) treatment groups. Blood samples were taken for measurement of GH, IGF-I, thyroxine (T4) and triiodothyronine (T3) by RIA. Samples of liver and skeletal muscle were taken by biopsy for measurement of IGF-I mRNA by solution hybridization. Steers receiving thiouracil had 57 and 53% (P<.05) lower T4 and T3, respectively, than control steers (84.1 and 1.7 ng/ml). The hyperthyroid steers had 228 and 65% greater (P<.05) T4 and T3 than control steers. Neither increased nor decreased thyroid status had any significant effects on plasma GH profiles, liver IGF-I mRNA, or plasma concentration of IGF-I. There was no effect of thyroid hormone alteration on skeletal muscle IGF-I mRNA concentrations. The results of this study suggest that short-term changes in thyroid status of cattle had no major impact on the GH-IGF-I axis or skeletal muscle IGF-I mRNA.  相似文献   

13.
Background: Iatrogenic hypothyroidism can occur after treatment of hyperthyroidism, and is correlated with a reduced glomerular filtration rate in humans and dogs. Hypothesis: Cats with iatrogenic hypothyroidism after treatment for hyperthyroidism will have a greater incidence of azotemia than euthyroid cats. Animals: Eighty client owned cats with hyperthyroidism. Methods: Two retrospective studies. (1) Longitudinal study of 12 hyperthyroid cats treated with radioiodine (documented as euthyroid after treatment), to assess changes in plasma thyroid stimulating hormone (TSH) concentration over a 6‐month follow‐up period, (2) Cross‐sectional study of 75 hyperthyroid cats (documented as euthyroid) 6 months after commencement of treatment for hyperthyroidism to identify the relationship between thyroid status and the development of azotemia. Kaplan‐Meier survival analysis was performed to identify relationships between thyroid and renal status and survival. Results: Plasma TSH concentrations were not suppressed in 7 of 8 cats with hypothyroidism 3 months after radioiodine treatment. The proportion of cats with azotemia was significantly (P= .028) greater in the hypothyroid (16 of 28) than the euthyroid group (14 of 47). Twenty‐eight of 41 cats (68%) with plasma TT4 concentration below the laboratory reference range had an increased plasma TSH concentration. Hypothyroid cats that developed azotemia within the follow‐up period had significantly (P= .018) shorter survival times (median survival time 456 days, range 231–1589 days) than those that remained nonazotemic (median survival time 905 days, range 316–1869 days). Conclusions and Clinical Importance: Iatrogenic hypothyroidism appears to contribute to the development of azotemia after treatment of hyperthyroidism, and reduced survival time in azotemic cats.  相似文献   

14.
The objective of this study was to determine if acute and chronic changes in circulating metabolic hormone and metabolite concentrations are associated with β-agonist-induced nutrient repartitioning in young growing lambs. Two groups of 12 Dorset and Dorset-Finn cross ram lambs weighing 36 or 33 kg live weight were assigned to 3- or 6-week treatment intervals, respectively, to achieve similar slaughter weights. Six lambs within each treatment interval were fed ad libitum a complete mixed high-concentrate diet containing either 0 or 10 ppm cimaterol. During the first 12 hr of cimaterol administration plasma somatotropin (ST), thyroxine (T4), and triiodothyronine (T3) concentrations were not altered by treatment, but plasma insulin, glucose, non-esterified fatty acids (NEFA) and glycerol concentrations were elevated 2 hr after ingestion. These acute responses suggest direct stimulation of glycogenolysis and lipolysis by cimaterol, which is characteristic of β-adrenergic alteration of carbohydrate and lipid metabolism. Chronic administration of cimaterol significantly decreased insulin concentrations by 36% and 52% at 3 and 6 weeks, respectively, while glucose concentrations remained unchanged. Serum IGF-I concentrations were not significantly altered by cimaterol. T4 levels were reduced 22.1% after 3 weeks of cimaterol treatment. Although plasma NEFA concentrations were chronically elevated 56% to 65% in lambs fed cimaterol, plasma glycerol concentrations remained at baseline levels. The relative changes in plasma NEFA and glycerol concentrations are consistent with a decreased rate of lipogenesis, rather than an increase in lipolysis.  相似文献   

15.
We investigated the effect of hypothyroidism in dogs on (1) the Na+-, K+ -ATPase concentration in skeletal muscle, and (2) potassium (K+) homeostasis at rest and during exercise. Prior to and 1 year after induction of hypothyroidism by surgery and subsequent radiothyroidectomy, the Na+-, K+ -ATPase concentrations were quantified in biopsies of sternothyroid muscles of seven Beagle dogs by measuring [3H]ouabain binding capacity. In addition, plasma K+ concentrations were measured at rest and after treadmill exercise in six hypothyroid and seven euthyroid Beagle dogs. During hypothyroidism, the mean Na+ -, K+ -ATPase concentration in muscle biopsies was 41% lower than during euthyroidism. The mean resting plasma K+ value of the hypothyroid dogs was significantly (14%) higher than that of the euthyroid dogs. In the hypothyroid dogs, plasma K+ concentration increased significantly during exercise, whereas there was no rise in the euthyroid dogs. The rise in plasma K+ concentration could not be ascribed to muscle damage, as plasma creatine kinase concentrations remained within reference range. Also renal K+ retention was an unlikely explanation, as plasma aldosterone concentration and plasma renin activity rather increased than decreased during exercise. In conclusion, hypothyroid dogs tend to develop hyperkalemia during exercise, which for a large part can be explained by the severe reduction of the Na+ -, K+ -ATPase capacity in the skeletal muscle pool.  相似文献   

16.
Hyperthyroidism is the most common feline endocrinopathy; thyroid computed tomography (CT) may improve disease detection and methimazole dose selection. Objectives of this experimental pre‐post with historical case‐control study were to perform thyroid CT imaging in awake or mildly sedated hyperthyroid cats, compare thyroid gland CT appearance in euthyroid and hyperthyroid cats pre‐ and postmethimazole treatment, and determine whether thyroid size or attenuation correlate with methimazole dose needed for euthyroidism. Premethimazole treatment, eight hyperthyroid cats received CT scans from the head to heart, which were compared to CT of seven euthyroid cats. Total thyroxine levels were monitored every 3–4 weeks. Postmethimazole CT was performed 30 days after achieving euthyroid status. Computed tomography parameters recorded included thyroid length, width, height, attenuation, and heterogeneity. Median time between CT was 70 days (53–213 days). Mild sedation was needed in five hyperthyroid cats premethimazole, and none postmethimazole. Thyroid volume was significantly larger in hyperthyroid cats compared to euthyroid cats (785.0 mm3 vs. 154.9 mm3; P = 0.002) and remained unchanged by methimazole treatment (?4.5 mm3; P = 0.50). Thyroid attenuation and heterogeneity decreased with methimazole treatment (96.1 HU vs. 85.9 HU; P = 0.02. 12.4 HU vs. 8.1 HU; P = 0.009). Methimazole dose ranged from 2.5 to 10 mg daily with a positive correlation between pretreatment thyroid gland volume and dose needed to achieve euthyroidism (P = 0.03). Euthyroid and hyperthyroid cats are easily imaged awake or mildly sedated with CT. Methimazole in hyperthyroid cats significantly lowers thyroid attenuation and heterogeneity, but not size.  相似文献   

17.
Research was conducted to examine growth rates, circulating concentrations of IGF-I, and mRNA abundance levels of IGF-I and IGF-II in channel catfish (Ictalurus punctatus) given recombinant bovine ST (rbST; Posilac, Monsanto Co., St. Louis MO). In the first study, juvenile catfish (5.5 +/- 0.5 g) were randomly assigned to one of three treatments: 1) sham-injected control (one needle puncture per week); 2) rbST (30 microg x g BW(-1) x wk(-1); Posilac); and 3) nonhandled control (control). At the end of the 6-wk study, the fish were weighed, measured for length, and G:F was determined. Compared with sham and control treatments, rbST-treated fish had 48% greater final BW, 14% greater total length, and 52% greater G:F (P < 0.001). In the second study, juvenile catfish (41.1 +/- 1.5 g) were assigned randomly to one of two treatments: 1) sham or 2) rbST. Eight fish per treatment were sampled on d 0, 1, 2, 7, 14, and 21 for blood, muscle, and liver. Relative expression of IGF-I and IGF-II mRNA was determined by real-time PCR and plasma concentrations of IGF-I were measured using a validated fluoroimmunoassay. Circulating concentrations of IGF-I were increased (37.9 +/- 5.5 vs. 22.0 +/- 6.6 ng/mL; P < 0.05) in rbST-injected fish compared with sham-injected controls by d 14. Liver IGF-I and IGF-II mRNA was increased 4.3-and 14.4-fold, respectively, by d 1 in rbST-injected fish compared with controls (P < 0.05); however, abundance of liver IGF-I and IGF-II mRNA did not differ from controls on d 0, 2, 7, 14, and 21. Abundance of muscle IGF-I and IGF-II mRNA did not differ in rbST-injected fish compared with controls throughout the study. Results of the first study demonstrated that rbST improves growth performance of channel catfish. Results of the second study showed that the growth-promoting effects of rbST were not mediated by the expression of IGF-I or IGF-II mRNA in the muscle. Instead, the results suggest that rbST promotes growth by stimulating plasma IGF-I release, possibly through its direct effect on the liver or on local tissues to synthesize IGF-I. The changes in mRNA abundance and plasma concentrations of IGF-I support the role of IGF-I in growth regulation of channel catfish.  相似文献   

18.
Many hyperthyroid cats referred for thyroid imaging and 131I therapy are concurrently or recently receiving antithyroid medications. The effect of the antithyroid drug, methimazole, on thyroid uptake of 99mTcO4 and 123I was evaluated in 8 normal cats. Quantitative analysis was used to determine the normal percent dose uptake of 99mTcO4 and 123I, the change in thyroid:salivary ratios (T:S) of 99-TcO4 over time, and the duration of the methimazole effect on thyroid uptake of 123I. Methimazole was administered to 5 cats for 3 weeks in which a hypothyroid state was obtained; 3 cats served as non-treatment controls. 99mTcO4 and 8 and 24 hour 123I imaging was repeated after 3 weeks of methimazole therapy (time of maximum T4 suppression). Methimazole was then discontinued and 123I images and serum T4 concentrations were repeated at 1, 4, 9, 15, and 24 days post withdrawal. The percent dose uptake of 99mTcO4 increased throughout the acquisition period with maximum uptake occurring 4 hour post injection. The baseline 20 min. T:S ratio for controls and treatment cats were 0.79 +/- 0.08 and 0.81 +/- 0.05 respectively; with a peak value of 1.29 +/- 0.23 and 1.31 +/- 0.18 at 4 hours. The baseline T:S ratios were not significantly different from 20 minutes to 2 hours, however they were significantly elevated at 4 hours post injection. Baseline, 8 and 24 hour percent dose uptake of 123I were 2.1 +/- 0.42% and 7.04 +/- 1.24%, respectively. There was a significant increase in the T:S ratio in the treatment group at all time points. The 8 hour percent dose uptake of 123I at 1, 4, and 9 days post methimazole withdrawal were significantly increased and peaked at 4 days. The 24 hour uptake was significantly increased at 4 and 9 days, with peak uptake at 9 days post-methimazole withdrawal. The 123I percent dose uptake decreased to baseline values by day 15 post withdrawal. Radioiodine uptake is not inhibited by methimazole treatment in normal cats, and is significantly enhanced after recent withdrawal. This finding is supportive of a "short term rebund effect" with maximal enhanced uptake between 4 and 9 days after discontinuing antithyroid drugs. The increased uptake of 99mTcO4 may also affect the interpretation of 99mTcO4 thyroid scintigraphy for 2-3 weeks.  相似文献   

19.
Insulin-like growth factor (IGFs: IGF-I and IGF-II) systems have been reported to be associated with the onset of diabetic mellitus. Therefore, we investigated the effect of diabetes on regulation of the IGF system in the liver, kidneys and heart, which are important organs in the pathogenesis of diabetes. The experimental groups were subdivided into three groups: 1) controls, 2) streptozotocin (STZ)-induced untreated diabetic group, and 3) an insulin-treated group (plus diabetic rats). In the present study, starting on the second day after STZ treatment, the diabetic group exhibited hyperglycemia, polyuria, and polydipsia, which are characteristic of diabetes melittus. Serum levels of IGF-I were decreased, but those of IGF-II were increased in the diabetic group compared with the controls. The expression levels of IGF-I and IGF-II protein in the livers of the diabetic group had a similar pattern to the serum. In addition, the expression levels of liver IGF-I mRNA and IGF-II mRNA were decreased in the diabetic groups. In the heart, IGF-I levels were decreased, but IGF-II levels were increased in the untreated diabetic groups, which was consistent with the expression levels of their mRNA. However, both the IGF-I and IGF-II levels in the kidneys were increased in the untreated diabetic groups, but the mRNA levels were decreased. Insulin treatment ameliorated the changes of IGF system in the serum, liver, kidneys, and heart. In conclusion, diabetes induced alteration of the IGF system tissue-specifically, and this was blocked by insulin treatment.  相似文献   

20.
Endocrine and metabolic changes during altered growth rates in beef cattle   总被引:2,自引:0,他引:2  
Eight steers from a group of 14 were fed ad libitum from 240 to 510 kg live weight, gaining at 1.4 +/- .2 kg/d. The six other steers were diet-restricted and grew at .37 +/- .09 kg/d from 240 to 307 kg, prior to ad libitum realimentation on the same diet to a final weight of 510 kg. Blood samples taken during the growth phases from both treatments were analyzed for insulin-like growth factor-I (IGF-I), triiodothyronine (T3), thyroxine (T4), glucose (GLU), nonesterified fatty acids (NEFA), and blood urea nitrogen (BUN) and (or) growth hormone (GH). During restricted growth, mean serum concentrations of GH were elevated (45.6 vs 23.4 ng/ml; P less than .05), serum concentrations of IGF-I decreased (108 vs 167 ng/ml; P less than .05) compared with control steers with ad libitum access to feed. Levels of T4 and GLU also were lower (P less than .05) during restricted than during normal growth. During early realimentation, levels of GLU (P less than .05), IGF-I (P less than .01), T4 and BUN (P less than .01) increased. Levels of T3 remained unchanged, whereas concentration of NEFA declined (P less than .001). Blood urea nitrogen decreased during early realimentation despite a large increase in diet protein intake and in protein storage, suggesting an increased efficiency of nitrogen use for protein synthesis. During realimentation, IGF-I levels rose above those of control steers and remained higher at the final weight of 510 kg (P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号