首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crop yield, soil properties, and erosion are strongly related to terrain attributes. The objectives of our study were to examine the relationship between six years of corn (Zea mays L.) yield data and relative elevation, slope, and curvature, and to develop a linear regression model to describe the spatial patterns of corn yield for a 16 ha field in central Iowa, USA. Corn grain yield was measured in six crop years, and relative elevation was measured using a kinematic global positioning system. Slope and curvature were then determined using digital terrain analysis. Our data showed that in the four years with less than normal growing season precipitation, corn yield was negatively correlated with relative elevation, slope, and curvature. In the two years with greater than normal precipitation, yield was positively correlated with relative elevation and slope. A multiple linear regression model based on relative elevation, slope, and curvature was developed that predicted 78% of the spatial variability of the average yield of the transect plots for the four dry years. This model also adequately identified the spatial patterns within the entire field for yield monitor data from 1997, which was one of the dry years. The relationship between terrain attributes and corn yield spatial patterns may provide opportunities for implementing site-specific management.  相似文献   

2.
应用“3414”回归最优设计原理在赤峰市翁牛特旗大兴农场设置玉米肥效试验,拟探讨不同施肥处理对玉米产量的影响。结果表明:所有处理中处理6氮磷钾都处于2水平时产量最高达1145kg/667m^2。处理1不施肥时产量最低547kg/667m^2,两者相差达显著水平;分别对比不同氮肥、磷肥、钾肥用量下的玉米产量发现在其它两种肥料不变的前提下单一提高另一种肥料的施用量,玉米的产量随着肥料用量的提高出现先提高后下降的情况;对比各缺素处理发现不施氮肥对玉米的产量影响较大,明显低于不施磷、钾肥处理,说明氮肥对玉米的产量影响大于磷、钾,对比缺磷缺钾处理,对玉米的产量影响相差不大,说明玉米产量对磷、钾的依赖情况相似。  相似文献   

3.
基于东北三省1961-2015年的气象数据,计算了4个时段(雪季、雨季、生长季和年际)的标准化降水蒸散指数SPEI,同时利用HP滤波法分离了1992-2015年4种粮食作物(水稻、玉米、大豆、小麦)的气象产量,并构建相应的标准化产量残差序列,分析东北三省不同时段的SPEI对该地区主要粮食作物气象产量的影响,结果表明1)...  相似文献   

4.
以1949-2010年河北省谷子、小麦、玉米单产数据和2002年-2009年河北省138个县的谷子、小麦、玉米单产与面积数据为基础,比较分析了谷子单产的时空变化及与小麦、玉米单产的差距。结果表明,从时序上看,河北省谷子单产随着时间的变化有一定的增长趋势,但增速减缓,与小麦、玉米单产相比差距越来越大。从空间看,2002-2009年各县的谷子单产总体呈增长态势,差异比较显著。单产较高的县主要分布在山前平原和低平原区,燕山山区和坝上高原区单产较低。谷子单产水平较低的主要原因是随着时间的变化谷子由主粮作物变为了调剂粮食作物,播种区域逐步被挤压到丘陵旱地区域,农田基础设施建设薄弱,科技进步水平低、病虫草鸟危害严重等。提高谷子单产水平应加强谷子生产条件的改善,提高谷子科技水平和深加工水平,大力引导小米消费,研制适宜各类消费人群的产品。  相似文献   

5.
Better understanding of within-field spatial variability of crop quality parameters and yield are needed for precision management of crops. This study was conducted to determine the magnitude of within-field variability in soil properties, corn (Zea mays L.) quality parameters and yield and to characterize their spatial structures. Another objective was to compare the effects of hybrid on corn quality, yield, and the spatial structure of grain quality. Four Pioneer hybrids were planted side-by-side, two in each of the two study fields in eastern Illinois, USA. Coefficients of variation (CV%) for soil properties varied from 6.3 (pH) to 56.8% (soil test P). All the soil properties (except pH at Site 2) displayed well-defined spatial structures, with either strong or moderate spatial dependence. Variability in corn quality and yield (CVs < 10%) was smaller than variability in soil properties. Most quality parameters examined at Site 1 exhibited either moderate or strong spatial dependence, except that corn oil (both hybrids), kernel roundness and weight (hybrid 33Y18) did not show any spatial correlation. Hybrid 33G26 had significantly higher yield and quality for most quality parameters than 33Y18 at Site 1. At Site 2, hybrid 34W67 was significantly lower in oil and protein content, length, roundness and vitreousness than 34K77, but higher in other quality parameters. Significant differences in spatial structures were also observed across hybrids for some corn quality parameters. We conclude that hybrid selection is an important strategy for precision management of corn for optimum yield and quality.  相似文献   

6.
In semi-arid regions, soil water and nitrogen (N) are generally limiting factors for corn (Zea mays L.) production; hence, implementation of appropriate N fertilization strategies is needed. The use of precision agriculture practices based on specific site and crop properties may contribute to a better allocation of fertilizer among management zones (MZ). The aim of this study was to develop a model for diagnosis of N availability and recommendation of N fertilizer rates adjusted to MZ for dryland corn crops growing in Haplustolls. The model considered variability between MZ by including site-specific variables [soil available water content at sowing (SAW) and Available Nitrogen (soil available N-NO3 at planting + applied N, Nd)] using spatial statistical analysis. The study was conducted in Córdoba, Argentina in Haplustolls and consisted in four field trials of N fertilizer (range 0–161 kg N ha−1) in each MZ. The MZ were selected based on elevation maps analysis. Grain yields varied between MZ and increased with larger SAW and Nd at sowing. Grain responses to Nd and SAW in any MZ were not different between sites, allowing to fit a regional model whose parameters (Nd, Nd2, SAW, SAW2) contributed significantly (p < 0.001) to yield prediction. Agronomical and economically optimum N rates varied among MZs. However, the spatial variability of optimum N rates among MZs within sites was not enough to recommend variable N fertilizer rates instead of a uniform rate. Variable N fertilizer rates should be recommended only if variability in SAW and soil N among MZ is greater than that found in this work.  相似文献   

7.
绿洲灌区典型间作模式的产量和光能利用效率   总被引:2,自引:0,他引:2  
为寻求河西绿洲灌区低耗水、高光效、高产多熟种植模式,在限量灌水条件下,通过大田试验对该区主要种植模式的产量和光能利用率进行了量化分析.结果表明:4种间作模式土地当量比均大于1,排序为玉米/豌豆>玉米/油菜>小麦/玉米>小麦/大豆;在同等可比面积上,小麦、玉米、豌豆和油菜在间作模式下均较单作表现出显著增产效应,但在不同模式下增产效应不同,小麦在小麦/玉米和小麦/大豆2种间作模式下产量分别提高49.14%、51.50%,玉米在玉米/油菜、玉米/豌豆和小麦/玉米3种间作模式中产量分别提高20.88%、53.48%、70.34%.各间作模式下的光能利用率为玉米/豌豆>玉米/油菜>玉米/小麦>小麦/大豆.玉米/豌豆间作模式可作为目前河西绿洲灌区低耗水、高光效型种植模式之一.  相似文献   

8.
Mapping crop yield variability is one important aspect of precision agriculture. Combine-mounted yield monitors are becoming widely available for measuring and mapping yields for different crops. This study was designed to assess airborne digital videography as a tool for mapping grain sorghum yields for precision farming. Color-infrared (CIR) imagery was acquired with a three-camera digital video imaging system from two grain sorghum fields in south Texas over the 1995 and 1996 growing seasons. The multispectral video data obtained during the bloom to soft dough stages of plant development were related to hand-harvested grain yields at sampling sites determined from unsupervised image classification maps of the two fields. Significant correlations were found between grain yields and the red band, the green band, and the normalized difference vegetation index (NDVI). Regression equations were developed to describe the relations between grain yields and each of the three significant spectral variables using an exponential model and two segmented models. Multiple linear regression equations were also determined to relate grain yields to the three bands and NDVI. These equations were then used to estimate grain yields at each video image pixel within each field and to generate grain yield maps. Comparisons of the estimated average yields from the regression equations with the actual yields indicated that yield estimation errors from the equations ranged from 0.0 to 10.0% in 1995 and from 0.2 to 7.3% in 1996 for field 1, and from 4.0 to 11.2% in 1995 and 6.3 to 12.5% in 1996 for field 2. Although the equations developed for one field in a given year may not apply to the same field in any other year, the practical value of these relationships is for mapping within-field grain yield variations. The results from this study showed that airborne digital videography, combined with ground sampling, regression analysis, and image processing, could be a useful approach for mapping spatial crop yield variability within fields.  相似文献   

9.
The goal of this research was to determine the potential for use of site-specific management of corn hybrids and plant densities in dryland landscapes of the Great Plains by determining (1) within-field yield variation, (2) yield response of different hybrids and plant densities to variability, and (3) landscape attributes associated with yield variation. This work was conducted on three adjacent fields in eastern Colorado during the 1997, -98, and -99 seasons. Treatments consisted of a combination of two hybrids (early and late maturity) and four plant densities (24,692, 37,037, 49,382 and 61,727 plants ha-1) seeded in replicated long strips. At maturity, yield was measured with a yield-mapping combine. Nine landscape attributes including elevation, slope, soil brightness (SB) (red, green, and blue bands of image), ECa (shallow and deep readings), pH, and soil organic matter (SOM) were also assessed. An analysis of treatment yields and landscape data, to assess for spatial dependency, along with semi variance analysis, and block kriging were used to produce kriged layers (10 m grids). Linear correlation and multiple linear regression analysis were used to determine associations between kriged average yields and landscape attributes. Yield monitor data revealed considerable variability in the three fields, with average yields ranging from 5.43 to 6.39 Mg ha-1 and CVs ranging from 20% to 29%. Hybrids responded similarly to field variation while plant densities responded differentially. Economically optimum plant densities changed by around 5000 plants ha-1 between high and low-yielding field areas, producing a potential savings in seed costs of $6.25 ha-1. Variability in yield across the three landscapes was highly associated with landscape attributes, especially elevation and SB, with various combinations of landscape attributes accounting for 47%, 95%, and 76% of the spatial variability in grain yields for the 1997, -98, and -99 sites, respectively. Our results suggest site-specific management of plant densities may be feasible.  相似文献   

10.
湖南省双季稻产量差时空分布特征   总被引:5,自引:1,他引:4  
【目的】湖南省是中国主要的双季稻种植区之一,2014年湖南水稻总产量位居全国第一,在中国籼稻生产中占重要地位。研究湖南省双季稻区早稻和晚稻潜在产量特征,明确潜在产量、实际产量以及产量差时空分布特征。【方法】论文基于湖南省1981—2010年气候资料、水稻作物资料、土壤资料及产量统计资料,对ORYZA v3进行调参和验证,选用决定系数(R2)、D指标、均方根误差(RMSE)、归一化均方根误差(NRMSE)、平均绝对误差(MAE)等评价指标来评价模型调参验证的结果。然后利用调参验证后的ORYZA v3模型并结合Arc GIS软件模拟分析湖南省双季稻的潜在产量时空分布特征,再结合双季稻实际产量,分析早稻和晚稻产量差绝对值及相对值过去30年的时间变化趋势及空间分布特征,明确研究区域双季稻的产量可提升空间。【结果】(1)调参验证后的ORYZA v3模型对研究区域早稻和晚稻的出苗—穗分化、出苗—开花、出苗—成熟的时间(天数)以及产量具有较好模拟效果,可用于湖南双季稻潜在产量模拟研究。(2)1981—2010年间湖南省早稻和晚稻潜在产量呈北高南低的空间分布特征,高值区为研究区域中部的武冈和邵阳等地,低值区为南部的丘陵地区;研究区域内东部地区双季稻潜在产量稳定性略高于西部地区,早稻潜在产量稳定性高于晚稻。研究时段内早稻和晚稻潜在产量随时间呈降低趋势,且晚稻潜在产量降低速率更快。(3)研究区域内双季稻产量差空间分布差异较大。研究区域内北部地区早稻和晚稻产量差最大,表明该地区双季稻产量有较大的可提升空间;西南部地区双季稻产量差小于北部地区,且早稻产量差最小而晚稻产量差相对较大,即西南部地区晚稻产量可提升空间大于早稻。研究时段内湖南省早稻和晚稻产量差均呈缩小趋势,且晚稻的产量差缩小速率大于早稻。【结论】气候变化背景下平均气温的升高使得双季稻潜在产量呈现下降趋势,同时品种的改进、栽培技术进步及生产投入增加,实际产量不断增加,研究时段内除个别站点(道县、沅江等)外早稻和晚稻的产量差均呈减小趋势。研究表明湖南省双季稻区内早稻产量差普遍高于晚稻且其随时间缩小的速率小于晚稻,这是由于早稻生长季内日照时数增加对早稻生长发育和产量形成的正效应可以部分抵消温度升高的负效应。同时,早稻产量差呈现增加趋势的站点多于晚稻,因此湖南省双季稻产区早稻产量提升空间较晚稻大。  相似文献   

11.
采用二次饱和D-最优设计,以关中夏玉米区对陕单308产量影响最主要的密度及氮、磷肥施用量为试验因子,建立了陕单308产量回归模型;分析了产量的主效因子及各因子对产量的效应。结果表明,陕单308在关中夏玉米区有着严格的留苗密度区间,一般留苗50784~56250株/hm2。氮肥不但是产量的主效因子,而且分别与密度、磷肥交互作用密切,足量的氮肥(N 343.3 kg/hm2)与适量的密度(50784~59859株/hm2)互作能够产生较大的增产效果。氮磷搭配施用有利于增加粒重提高产量;提出了目标产量分别为7500~8249 kg/hm2和8250~9000 kg/hm2的高产栽培最佳农艺技术措施。  相似文献   

12.
【目的】全球气候正以变暖为主要特征发生显著变化,探究气候变化对黄淮海地区夏玉米-冬小麦种植制度的影响,为制定合理的应对措施提供理论依据。【方法】通过气象站点观测值的加权平均和一元线性回归分析黄淮海各省市地区1992—2013年来的气候变化特征。利用农业气象站点多年长期观察的夏玉米-冬小麦物候数据,通过加权求平均,分析气候变暖背景下夏玉米-冬小麦的生育期和茬口推移情况。采用一元线性回归分析1992—2013年来黄淮海地区夏玉米-冬小麦周年产量变化。同时利用非线性回归分析法和面板数据敏感性分析法分析气候变化对黄淮海地区夏玉米-冬小麦周年产量的影响。【结果】1992—2013年来,黄淮海地区温度整体呈现波动上升趋势,降水总量变化趋势不明显,但区域差异显著。在气候变化的背景下,黄淮海地区夏玉米-冬小麦种植模式发生明显改变:冬小麦播种时间推迟,生育期存在缩短趋势,不同地区缩短2—5 d不等;夏玉米播种时间南部推迟而北部提前,收获时间总体呈现推迟趋势,整个黄淮海地区生育时长未发生明显变化。茬口时间因夏玉米-冬小麦生育期的推移呈现不同程度延长,造成了气候和土地资源的浪费。1992—2013年间黄淮海地区夏玉米-冬小麦单产呈显著上升趋势,多数省份达到显著水平。非线性敏感性分析表明,最低温度、最高温度和平均温度对夏玉米-冬小麦产量的影响基本表现为同时增产或同时减产的一致性。冬小麦产量受最低温度的影响最为显著,东南部的江苏省和山东省减产明显,而北部河北省和西部河南省表现为增产。温度升高除对河南省夏玉米有增产作用外,其他省份夏玉米产量均出现不同程度的降低,这可能与温度升高的幅度不同和降水的区域性差异有关。降水量对夏玉米-冬小麦产量影响存在地区差异。总体上气候变暖对周年单产影响表现为北部增产,而南部减产,因而选择适宜早播且生育期长的夏玉米品种对保障周年产量具有重要意义。【结论】气候变暖背景下,黄淮海地区冬小麦播种时间推迟,生育期缩短,夏玉米生育期北部延长而南部缩短,生育期的推移导致茬口时间延长,造成了气候资源和土地资源的浪费。1992—2013年间夏玉米-冬小麦周年产量显著提高。温度升高和降水增加对产量的影响存在区域差异,整个区域平均来看升温使夏玉米减产,冬小麦增产;降水增加有利于黄淮海北部地区夏玉米的产量形成,对南部地区夏玉米产量则存在不利影响,而对黄淮海大部分地区冬小麦的产量形成不利。  相似文献   

13.
中国稻田土壤基础地力的时空演变特征   总被引:3,自引:2,他引:3  
【目的】探明1988年以来中国粮食主产区稻田土壤基础地力的差异与时空演变特征,为地力提升和实现水稻的稳产高产提供科学的施肥依据。【方法】结合水稻土实际情况,并参考生产力模型、土壤质量系数模型等修正得出土壤生产力指数模型(PI)和土壤基础地力指数模型(BPI)的计算公式并验证,同时以全国水稻土监测数据资料为基础,将统计所得的各肥力指标和权重因子采用数值归一化处理,运用土壤生产力指数模型和土壤基础地力指数模型方法综合分析;并进一步与产量和基础地力贡献率相结合验证,从而定量地分析出中国粮食主产区间稻田土壤基础地力的高低差异和时空演变特征。【结果】1988-2012年间,长江中下游、东北、西南以及华南4个区域稻田土壤基础地力BPI值(P<0.05)与土壤生产力PI值(P<0.01)均呈显著上升趋势。其中,长江中下游区的BPI值增幅最大,从0.031上升至0.108,增幅为248.4%,其次为华南区,从0.127上升至0.289,增幅为128.0%,东北区的BPI值到2012年为止,增幅为71.7%,西南区BPI值从0.028上升至0.046,增幅为65.8%;而长江中下游区、东北区、西南区和华南区土壤生产力水平(PI值)平均每年分别升高0.0015、0.0042、0.0022和0.0113。各大区稻田土壤基础地力(BPI值)与相对应的施肥区产量之间存在显著正相关关系(P<0.05),即各施肥区水稻产量随着稻田土壤基础地力的提升而呈增加趋势,即土壤基础地力的提升可以实现土壤生产力的提高。25年来4大区稻田土壤基础地力水平(BSPI值)以长江中下游区为最高,华南区土壤基础地力最低,而西南区略高于华南区,但二者差异较小;而最近10年(2003-2012年)间,长江中下游区的BSPI值也明显高于其他3区,西南区土壤基础地力水平最低,东北区与华南区无明显差异;并且区域间BSPI值的变化趋势与土壤基础地力产量的变化趋势相吻合。【结论】近25年来中国粮食主产区稻田土壤基础地力总体上呈上升趋势,稻田土壤基础地力和稻田土壤生产力均随时间不断提升,长江中下游、东北、西南和华南4区稻田土壤基础地力BPI值与相对应的施肥区产量均呈显著正相关关系,土壤基础地力的提升还可以实现土壤生产力的提高。提出了全国尺度上土壤基础地力的评价方法和指标。近10年来(2003-2012年)农民习惯性耕作施肥管理水平下,各区域土壤基础地力的高低顺序为:长江中下游区>东北区≥华南区>西南区;而在全国尺度上,稻田BSPI值越高,无肥区产量也越高,基础地力贡献率也越高;反之,基础地力越低,水稻产量也就越低,基础地力贡献率也越低。  相似文献   

14.
Machado  S.  Bynum  E. D.  Archer  T. L.  Lascano  R. J.  Wilson  L. T  Bordovsky  J.  Segarra  E.  Bronson  K.  Nesmith  D. M.  Xu  W. 《Precision Agriculture》2000,2(4):359-376
Inadequate information on factors affecting crop yield variability has contributed to the slow adoption of site-specific farming (SSF). This study was conducted to determine the effects of biotic and abiotic factors on the spatial and temporal variability of irrigated corn grain yields and to derive information useful for SSF. The effects of water (80% evapotranspiration (ET) and 50% ET), hybrid (drought-tolerant and -susceptible), elevation, soil index (SI)(texture), soil NO3–N, arthropods, and diseases on corn grain yield were investigated at Halfway, TX on geo-referenced locations. Grain yields were influenced by interrelationships among biotic and abiotic factors. Grain yields were consistently high under high water treatment, at higher elevations, and on soils with high SI (high clay and silt). Soil NO3–N increased grain yields when water was adequate. Management zones for variable rate fertilizer and water application should, therefore, be based on information on elevation, SI, and soil NO3–N. The effects of arthropods, diseases, and crop stress (due to drought and N) on corn grain yield were unpredictable. Spider mite (Oligonychus pratensis) and common smut (Ustilago zeae) damage occurred under hot and dry conditions in 1998. Spider mite infestations were high in areas with high soil NO3–N. Moderate air temperatures and high relative humidity in 1999 favored southwestern corn borer (Diatraea grandiosella) and common rust (Puccinia maydis) incidences. Knowledge of conditions that favor arthropods and diseases outbreak and crop stress can improve the efficiency of scouting and in-season management of SSF. Management of SSF can be improved when effects of biotic and abiotic factors on grain yield are integrated and evaluated as a system.  相似文献   

15.
基于张家口地区近50年(1965-2014)的气温和降水等气象资料,以及近34年(1981-2014)玉米产量资料,研究了张家口地区气候变化特征,并分析了气候变化对张家口玉米生产的影响。结果表明,近50年平均气温呈上升趋势,并在1986/1987年发生突变,降水量变化表现为年际间波动性大,存在稳定的9年左右变化周期。干旱具有明显变化特征,自气温发生突变后,夏季干旱的空间范围、持续时间和干旱程度均有所增加。各县玉米产量变化与气候要素变化具有很强的相关性,其中降水是影响产量变化的主要因素,玉米产量与降水量呈正相关关系。  相似文献   

16.
在驻马店市的新坡村与驻马店农科所农场进行了小麦-玉米轮作制下的控释尿素与普通尿素用量试验,结果表明:小麦田、玉米田均以控释尿素100%处理最好.新坡村与驻马店农科所农场的小麦产量分别为8175 kg/hm2和8272 kg/hm2;比同等用量的普通尿素增产873~860 kg/hm2,增产12.0%~11.6%,增产效果显著;小麦氮素利用率以控释尿素100%处理最高,分别为46.1%和48.6%;氮素用量相同时,小麦田控释尿素氮素利用率高于普通尿素氮素利用率.玉米产量为8715 kg/hm2和8848 kg/hm2,比同等用量的普通尿素增产667~686kg/hm2,增产8.3%~8.4%,增产效果显著;控释尿素用量从70%到100%时,小麦、玉米产量随氮肥用量增加而增加,普通尿素也呈现同样趋势,随尿素用量的增加小麦、玉米产量在增加:70%控释尿素与100%普通尿素处理之间产量差异不大,说明使用控释尿素用量比普通尿素用量减少1/3的纯氮量时,小麦、玉米作物产量并不下降.  相似文献   

17.
Understanding relationships of soil and field topography to crop yield within a field is critical in site-specific management systems. Challenges for efficiently assessing these relationships include spatially correlated yield data and interrelated soil and topographic properties. The objective of this analysis was to apply a spatial Bayesian hierarchical model to examine the effects of soil, topographic and climate variables on corn yield. The model included a mean structure of spatial and temporal co-variates and an explicit random spatial effect. The spatial co-variates included elevation, slope and apparent soil electrical conductivity, temporal co-variates included mean maximum daily temperature, mean daily temperature range and cumulative precipitation in July and August. A conditional auto-regressive (CAR) model was used to model the spatial association in yield. Mapped corn yield data from 1997, 1999, 2001 and 2003 for a 36-ha Missouri claypan soil field were used in the analysis. The model building and computation were performed using a free Bayesian modeling software package, WinBUGS. The relationships of co-variates to corn yield generally agreed with the literature. The CAR model successfully captured the spatial association in yield. Model standard deviation decreased about 50% with spatial effect accounted for. Further, the approach was able to assess the effects of temporal climate co-variates on corn yield with a small number of site-years. The spatial Bayesian model appeared to be a useful tool to gain insights into yield spatial and temporal variability related to soil, topography and growing season weather conditions.
Pingping JiangEmail:
  相似文献   

18.
In the field experiment, the effects of plant densities (75000, 112 500 and 150 000 plants ha-1) on forage nutritive value of whole plant corn (WPC) were studied from 1999 to 2001.The results demonstrated that with the increasing of plant density, the forage matter yield per plant corn decreased significantly, while the fresh matter and dry matter per hectare corn increased significantly, and a higher grains yield was gotten at higher plant densities. Forage nutritive quality of whole plant corn was changed as plant density increased, the crude protein (CP), ether extract (EE), crude fiber (CF),nitrogen free extract (NFE) and general energy (GE) yields increased obviously. Increasing plant density reasonably with the application of plant growth regulators could improve plant properties, harvest more forage matter, and enhance forage nutritive value of WPC.  相似文献   

19.
施氮对带田作物产量及水分利用效率的影响   总被引:1,自引:0,他引:1  
对河西一熟制灌区4种主要栽培模式施氮效应进行研究的结果表明:在灌水量相同的情况下,增施氮肥,以玉米+甘蓝带田的产量增幅最大。同种作物的间套方式不同,产量间有差异。在相同条件下,在玉米+甘蓝间作模式中,玉米当量面积产量分别较小麦+玉米、玉米+蚕豆间作模式中的玉米当量面积产量高。在灌水量相同的情况下,施氮肥明显地提高了作物的灌水利用效率及土壤水分利用效率,以玉米+甘蓝间作模式灌水利用效率及土壤水分利用效率最高。  相似文献   

20.
Precision farming technologies allow for collection of large amounts of data from producers' fields. This study used grid-sampling techniques and factor analysis to investigate relationships between several site variables and corn (Zea mays L.) yields on five producer's fields. Sampling positions (112 to 258) were at the intersecting points of grid lines spaced 15 m. Variables measured were soil organic matter, pH, P, K, and NO3-N; residue cover; broadleaf and grass weed control; corn height at two dates, plant population, and grain yield. Correlation and multiple regression analyses showed that some variables were related to corn yields but the variables involved in significant relationships varied among fields. Moreover, the site variables often were highly correlated and the correlations varied among fields. In these conditions multiple regression would be an unreliable analysis tool. Study of covariance relationships among the variables using factor analysis showed that some of the variables measured could be grouped to indicate a number of underlying common factors influencing corn yields. These common factors were soil fertility, weed control, and conditions for early plant growth. Their importance in explaining the yield variability differed greatly among fields. Application of factor analysis to data generated by precision-farming technologies has potential for describing and understanding relationships between measured variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号