首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Field Crops Research》1999,62(1):35-52
A field study was conducted to investigate the effect of intermittent soil drying on resulting non-hydraulic and hydraulic root signals, leaf gas exchange, leaf growth, day of heading, leaf osmotic adjustment and yield of wheat grown in sand and loam soils in lysimeters. A 40-day-drought treatment was imposed when the flag leaf started to emerge and was terminated close to maturity. Soil water content and soil water potential of various soil layers were measured using the neutron moderation method and tensiometers, respectively. Soil drying in the top soil layers induced increase in both xylem and bulk-leaf abscisic acid (ABA) content and reduced the stomatal conductance and leaf growth even before a measurable change in leaf water potential could be detected in droughted plants when compared with fully watered plants. Further, heading and flowering occurred 4 days earlier in the droughted than in the well-watered plants before any loss in leaf water potential had occurred as compared with the fully watered plants. When more severe drought reduced the leaf water status, further accumulation of leaf ABA occurred and transpiration decreased in addition to gradual osmotic adjustment and senescence of older leaves. The osmotic adjustment sustained leaf turgor pressure during soil drying. At severe drought, the osmotic adjustment at full turgor in the flag leaves was 0.85 MPa. In sand, the kernel dry weight increased and as a result similar grain yield was obtained in both the treatments. In loam which had more water available than sand, no significant reduction in the final yield was induced by the drought. It is concluded that (1) non-hydraulic root signals caused early drought adaptation at mild water stress by reducing leaf growth and stomatal conductance and hastening of heading and flowering; (2) osmotic adjustment sustained turgor maintenance and hence the yield-forming processes during moderate and severe water stress.  相似文献   

2.
We tested whether exposing rice plants to abiotic stress (salt or shade) during vegetative growth affects the chilling tolerance of reproductive organs, which is one of the most important traits for rice growing in a cool climate; we used two rice cultivars with different tolerance in two growing seasons. We divided the vegetative growth into three phases to clarify the most sensitive period: 7–22 days after transplanting (DAT), 23–38 DAT and 39–54 DAT. Chilling tolerance of the pre-stressed plants was based on the male sterility induced by low temperatures. Shade and salt stress during all three vegetative growth phases significantly reduced stomatal conductance. Shade decreased the specific leaf weight and the leaf sugar and starch contents, but salt had no significant effect, despite causing leaf damage. Low temperatures during the reproductive stage induced spikelet sterility in all plants, but the magnitude was greater in the salt- and shade-stressed plants of both cultivars, especially those stressed late during vegetative growth. The increased spikelet sterility caused by chilling was closely related to the reduction of the total spikelet number per panicle. This is the first study to show that salt and low light stress during vegetative growth increased the susceptibility of rice plants to chilling damage during panicle development.  相似文献   

3.
A field experiment was conducted during 2001-2003 to evaluate the effect of water stress on the yield and yield components of four rice cultivars commonly grown in Mazandaran province, Iran. In northern Iran irrigated lowland rice usually experiences water deficit during the growing season include of land preparation time, planting, tillering stage, flowering and grain filing period. Recently drought affected 20 of 28 provinces in Iran; with the southeastern, central and eastern parts of the country being most severely affected. The local and improved cultivars used were Tarom, Khazar, Fajr and Nemat. The different water stress conditions were water stress during vegetative, flowering and grain filling stages and well watered was the control. Water stress at vegetative stage significantly reduced plant height of all cultivars. Water stress at flowering stage had a greater grain yield reduction than water stress at other times. The reduction of grain yield largely resulted from the reduction in fertile panicle and filled grain percentage. Water deficit during vegetative, flowering and grain filling stages reduced mean grain yield by 21, 50 and 21% on average in comparison to control respectively. The yield advantage of two semidwarf varieties, Fajr and Nemat, were not maintained under drought stress. Total biomass, harvest index, plant height, filled grain, unfilled grain and 1000 grain weight were reduced under water stress in all cultivars. Water stress at vegetative stage effectively reduced total biomass due to decrease of photosynthesis rate and dry matter accumulation.  相似文献   

4.
A field study was carried out from 1995 to 1997 in order to determine the effect of irrigation and water stress imposed at different development stages on vegetative growth, grain yield and other yield components of corn (Zea mays L.). The field trials were conducted on a silty loam Entisol soil, with Pioneer 3377 corn hybrid. A randomised complete block design with three replications was used. Four known growth stages of the plant were considered and a total of 16 (including rain fed) irrigation treatments were applied. The effect of irrigation or water stress at any stage of development on plant height, leaf area index, grain yield per hectare, as well number of ears per plant, grain yield per cob and 1000 kernels weight, were evaluated. Results of this 3-year study show that all vegetative and yield parameters were significantly affected by water shortage in the soil profile due to omitted irrigation during the sensitive tasselling and cob formation stages. Water stress occurring during vegetative and tasselling stages reduced plant height, as well as leaf area development. Short-duration water deficits during the rapid vegetative growth period caused 28–32% loss of final dry matter weight. Highest yields were observed in the fully irrigated control (VTCM) and the treatment which allowed water stress during the vegetative growth stage (TCM). Even a single irrigation omission during one of the sensitive growth stages, caused up to 40% grain yield losses during dry years such as 1996. Much greater losses of 66–93% could be expected as a result of prolonged water stress during tasselling and ear formation stages. Seasonal irrigation water amounts required for non-stressed production varied by year from 390 to 575 mm. Yield response factor (ky) values (unitless parameter) relating yield loss to water deficits) obtained for the first, second and third experimental years were determined to be 1.22, 1.36 and 0.81, respectively.  相似文献   

5.
A study was conducted to establish a growth rate response of potato plant (Solanum tuberosum L.) tops to exposure to 72-hr periods of six constant temperature treatments (10, 15, 20, 25, 30, 35°C) and to determine a thermal optimum for vegetative potato growth rates. The plants were maintained under “no stress” soil moisture conditions throughout the study. The temperature treatments were accomplished by inserting the plants into a growth chamber for 72 hours at selected temperatures. Maximum growth (as measured by percent change in leaf area) occurred at 25°C with temperature growth differences significant at the 5% level. Plant height measurements (percent change occurring during treatment time) showed maximum stem elongation at 30°C during an early growth stage and 25°C during stage 2 (4 weeks later). Predictive models developed from the data indicate maximum rates of leaf area increase in both growth stages occur at 24.7°C and that maximum rates of stem elongation occur at 31.3 and 27.4°C for growth stages 1 and 2, respectively. Leaf water potential and stomatal resistance measurements taken at the end of each treatment period indicated that no water stress occurred.  相似文献   

6.
《Plant Production Science》2013,16(3):295-301
Abstract

The relay strip intercropping system of wheat-corn-soybean is widely used in southwest China. However, it is hard to produce soybean stably with this system, since the growth of soybean plants is slower under shading by corn at the seedling stage, and it is compensated by accelerated growth after the symbiotic stage. Soybean plants show excessive vegetative growth due to more rain during the flowering stage, which results in fallen petals, fallen pods and lower yield. This study investigated whether seed treatment with uniconazole powder (0, 2, 4 and 8 mg kg–1 seed) suppresses excessive vegetative growth of soybean plants during the flowering stage and delays senescence of photosynthetically active leaves at the pod-setting stage. If such events are correlated with changes in photosynthesis, they may affect dry matter accumulation and seed yield in the relay stripping system. Uniconazole promoted biomass accumulation from 31 (R3) to 61 (R5) days after flowering (DAF) and seed yield. Seed treatment with uniconazole raised the net photosynthetic rate, stomatal conductance, transpiration rate, and total chlorophyll and chlorophyll a contents. In contrast, uniconazole reduced leaf area index (LAI) from 1 DAF (R1) to 46 DAF (R4) with the increase in uniconazole concentration, whereas, uniconazole significantly increased LAI at 61 DAF, and the greatest promotion occurred at 2 mg kg–1 treatment. The study clearly showed that uniconazole effectively suppressed excessive vegetative growth of soybean during flowering stage, delayed senescence of photosynthetically active leaves at pod-setting stage and induced higher yield, which were related to the changes in photosynthetic rate, chlorophyll content, dry matter accumulation and LAI in the relay strip intercropping system.  相似文献   

7.
以盆栽大豆为材料,设置不同程度的土壤盐分(NaCl)、干旱及旱盐组合处理,然后测定各处理大豆植株的株高、生物量、光合作用指标以及植株的水分状况和Na~+、K~+含量,探索干旱条件下土壤盐分对大豆生长的影响及可能机制。结果表明:干旱和盐胁迫均可导致大豆叶片的净光合速率降低和生长量的减少,干旱还导致光合机构的严重损伤。但是,干旱和适量土壤盐分(100~150 mmol·L~(-1)NaCl)组合处理的大豆植株,其生长量、净光合速率和PSⅡ最大光化学效率都显著高于单一干旱处理。同时,旱盐组合处理的大豆叶片RWC、Na~+含量也高于单一干旱处理,水势和渗透势低于后者,且叶片Na~+含量与其渗透势降低显著相关。综合分析表明,在干旱条件下,土壤适量NaCl的存在使大豆能够吸收和积累更多Na~+等盐离子作为渗透调节物质,来降低渗透势、提高吸水能力,以改善植株的水分状况和光合性能,保持植株较高的生长速率,即土壤中适量盐分(NaCl)的存在可减轻干旱对大豆的负效应。  相似文献   

8.
为探讨叶面喷施新型酸雨缓解剂APK-9对酸雨胁迫大豆毒害效应的缓解效果,以徐豆18为供试材料,研究了不同生育时期喷施APK-9处理对pH3.5酸雨胁迫下大豆生长的影响。结果表明:pH3.5酸雨自开花期开始显著抑制了大豆植株的生长,进而降低了产量。开花期和结荚期喷施APK-9可明显缓解大豆的酸雨胁迫,氮积累量、磷积累量、叶片色素含量、抗氧化酶活性等显著高于酸雨胁迫的大豆,丙二醛(MDA)含量显著低于酸雨处理大豆。然而,苗期和鼓粒期喷施APK-9,缓解效应下降,叶绿素含量、生物量、产量等下降,而MDA含量上升。可见在适宜时期喷施APK-9对酸雨胁迫下的大豆植株具有一定的缓解效应,而过早或过晚喷施效果较小,在试验中以开花期喷施的效果最佳。  相似文献   

9.
Sorghum is one of the most drought-tolerant grain crops and is used in biofuel production. Since sorghum is often exposed to drought and high temperature (heat) stress, this study investigated the effect of stress applied at different phenological stages of crop development on the glucose levels in grain and subsequent ethanol production. Short season sorghum hybrid DK-28E grown under controlled environment was exposed to drought and heat stress at five different stages of growth, namely: (1) pre-flowering (boot leaf emergence) to flowering, (2) flower to seed-set, (3) seed-set to early seed-fill, (4) early seed-fill to mid seed-fill, and (5) mid seed-fill to late seed-fill stage. Drought stress at any of the growth stages did not statistically affect either the glucose content or the ethanol production compared to the control (337 mg/g), although the ethanol yield increased up to 4.5% (352 mg/g) in flowering to seed-set stage. Heat stress, on the other hand, significantly reduced the glucose release and ethanol yield compared to the control (322 mg/g). Marginal ethanol yield reduction by 9% (293 mg/g) and 8.3% (295 mg/g) was seen in plants stressed during early seed-fill to mid seed-fill and mid seed-fill to late seed-fill stages, respectively. The results suggest that the phenological stage when sorghum is exposed to stress affects the ethanol yield. Overall, from the point of ethanol yield, it appears that grain sorghum cultivated in semi-arid regions where heat and drought stress are prevalent can be used for biofuel production. However, economic viability of ethanol production, especially of grain sorghum from high temperature stress needs to be investigated.  相似文献   

10.
不同生育阶段受旱对旱区夏玉米生长发育和产量的影响   总被引:6,自引:3,他引:3  
2013和2014年在陕西杨凌进行田间控水试验,试验设置两个灌溉水平,每个灌溉水平下设置4种受旱处理,以全生育期均灌水为对照,分析不同生育时期受旱条件下夏玉米的株高、叶面积、生物量和产量等生理生态指标的变化特征以及蒸散量和水分利用效率的变化规律。结果表明,不同的灌水水平与受旱时段对夏玉米的产量有明显的交互作用,拔节前受旱会使最终产量偏低,且低灌水处理产量低于高灌水处理;在抽雄期受旱会明显减少穗粒数,但在同一灌水水平下产量最高;灌浆期受旱不仅明显减小了百粒重导致减产,而且蒸散量偏大,导致水分利用效率降低。因此,灌水水平较低时,应尽量避免玉米营养生长阶段(出苗和拔节)受旱;灌水水平较高时,可选择在苗期适度亏水,并避免灌浆期受旱。  相似文献   

11.
不同生育期玉米干旱-复水补偿效应的品种差异研究   总被引:4,自引:1,他引:4  
以抗旱性不同的两个玉米品种郑单958和户单4号为材料,研究不同生育期干旱-复水对产量和水分利用效率的影响。结果表明,各生育期干旱-复水后,两个品种产量均低于对照处理,尤以扬花期干旱-复水最低;两个品种水分利用效率在扬花期干旱-复水最低;郑单958的产量、水分利用效率均高于户单4号,两者耗水量基本相等。分析两个品种株高、叶面积指数、干物质积累等在复水之后的变化表明,各生育期干旱-复水后,两个品种均存在一定的补偿效应,且郑单958的补偿效应明显较强。因此,郑单958在干旱-复水后补偿能力强,从而保持较高的产量和水分利用效率。  相似文献   

12.
Jones RS  Mitchell CA 《Crop science》1992,32(2):404-408
Agronomic and horticultural crop species experience reductions in growth and harvestable yield after exposure to physical agitation (also known as mechanical stress), as by wind or rain. A greenhouse study was conducted to test the influence of mechanical stress on soybean yield and to determine if exposure to mechanical stress during discrete growth periods has differential effects on seed yield. A modified rotatory shaker was used to apply seismic (i.e., shaking) stress. Brief, periodic episodes of seismic stress reduced stem length, total seed dry weight, and seed number of soybean [Glycine max (L.) Merr.]. Lodging resistance was greater for plants stressed during vegetative growth or throughout vegetative and reproductive growth than during reproductive growth only. Seed dry weight yield was reduced regardless of the timing or duration of stress application, but was lowest when applied during reproductive development. Seismic stress applied during reproductive growth stages R1 to R2 (Days 3 to 4) was as detrimental to seed dry weight accumulation as was stress applied during growth stages R1 to R6 (Days 39 to 42). Seed dry weight per plant was highly correlated with seed number per plant, and seed number was correlated with the seed number of two- and three-seeded pods. Dry weight per 100 seeds was unaffected by seismic-stress treatment. Growth and yield reductions resulting from treatments applied only during the vegetative stage imply that long-term mechanical effects were induced, from which the plants did not fully recover. It is unclear which yield-controlling physiological processes were affected by mechanical stress. Both transient and long-term effects on yield-controlling processes remain to be elucidated.  相似文献   

13.
Summary Potato plants (Solanum tuberosum L.) of the cultivars Alpha, Cara, Blanka, Désirée and Idit, were exposed to a transient water deficit during tuber growth. Drought stress increased the concentration of solutes as assessed by refractometry and lowered the osmotic potentials as assessed by cryoscopy in both leaf and tuber tissues of the five cultivars. Differences among cultivars, as well as between leaf and tuber tissue of the same cultivar, could indicate variability of the soluble components contributing to the osmotic potential. Differences were noted in the response of the cultivars to the environment in terms of osmotic potentials. Essentially, two types of responses were identified: transient maintenance of lower osmotic potential for 24–48 h after stress relief; and inherently high concentration of solutes and low osmotic potential. The possible advantage of sensitivity to environmental changes is also considered. Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel. No. 3010-E, 1990 series. This study was supported by the Ministry of Foreign Affairs, Technical Assistance Department, the Netherlands.  相似文献   

14.
Rice yield reduction due to water limitation depends on its severity and duration and on the phenological stage of its occurrence. We exposed three contrasting rice genotypes, IR64, UPLRi7 and Apo (adapted to lowland, upland and aerobic conditions, respectively), to three water regimes (puddle, 100% and 60% field capacity) in pots during the vegetative (GSI), flowering (GSII) and grain filling (GSIII) stages. Stress at all the three stages significantly reduced yield especially in lowland genotype IR64. Effect of water limitation was more severe at GSII than at the other two stages. Stress at GSI stage reduced both source activity (leaf area and photosynthetic rate) and sink capacity (tiller number or panicle number per pot). When stress was imposed at GSII, spikelet fertility was most affected in all the three genotypes. In both GSII and GSIII, although leaf area was constant in all the three water regimes, estimated relative whole-plant photosynthesis was strongly associated with yield reduction. Reduced photosynthesis due to stress at any given stage was found to have direct impact on yield. Compared to the other genotypes, Apo had deeper roots and maintained a better water relation, thus, higher carbon gain and spikelet viability, and ultimately, higher biomass and productivity under water-limited conditions. Therefore, screening for these stage-dependent adaptive mechanisms is crucial in breeding for sustained rice production under water limitation.  相似文献   

15.
Summary

Reproductive development of plants, from meiosis to seed set, is highly vulnerable to water deficit. Two peaks of high sensitivity are encountered during this period. The first one occurs during meiosis in reproductive cells, and is common to all species studied. Water deficit at this stage causes pollen sterility, but usually affects female fertility only when the stress is severe. Pollen sterility does not result from a desiccation of the reproductive organs, but is an indirect consequence of water deficit in the vegetative parts, and may be mediated by a transportable sporocidal signal. The second peak of sensitivity occurs during flowering, and is conspicuous in rice, maize and some dicots. Depending on species, stress during this period can cause loss of pollen fertility, spikelet death or abortion of newly formed seed. These injuries, unlike those caused by the meiotic-stage stress, are associated with a decline in the water status of the reproductive structures. Changes in carbohydrate availability and metabolism appear to be involved in the effects of stress at both these stages.  相似文献   

16.
Abstract

The growth of crown and lateral roots emerged from the excised phytomers of pearl millet (Pennisetum typhoideum Rich.), barnyard millet (Echinochloa frumentacea Link.) and maize (Zea mays L.) was studied under normal and low osmotic potential conditions. The plants were grown in two solutions with osmotic potentials of –0.02 and –0.54 MPa for 6 days. The relative growth rate of the roots in total length (RGRL) , was not affected by osmotic stress in pearl and barnyard millets, but that in stressed maize was reduced to 64% of the control. Similarly, the relative growth rate of the roots in dry weight (RGRW), was not affected by osmotic stress in pearl and barnyard millets, but significantly reduced in maize. Osmotic stress increased the specific root length of the lateral roots in pearl and barnyard millets, but did not affect that of maize. The photosynthetic rate (Pr) in the two millets was decreased to ca. 60% of the control by the stress, and that in maize was reduced to 21%. Under the stress, Pr in the three species was limited mainly by low stomatal conductance, but no clear relationship was found between Pr and osmotic adjustment of the leaf. The relative water content of the leaf was lower in maize than in the two millets. The resistance to water flow through the phytomer (R) was significantly increased by osmotic stress in maize, but not significantly in the two millets. The mean root length (RL) was decreased by the stress in maize, but not in the two millets. The maintenance of RGRL in the two millets was associated with sustained R, RL and also with the maintenance of Pr and allocation of assimilates to roots.  相似文献   

17.
References

The aim of this investigation was to comparatively examine the physio-biochemical responses of oil palm seedlings to mannitol- and PEG-induced iso-osmotic stresses. The water content of osmotically stressed oil palm seedlings decreased, but the proline content and the electrolyte leakage of the seedlings increased with decreasing water potential (Ψw). However, the responses varied with the strength of osmotic stress and type of osmotic agent. Relative electrolyte leakage (REL) was negatively correlated to chlorophyll content in the osmotically stressed leaves. Chlorophyll a (Chla), chlorophyll b (Chlb), total carotenoids (Cx+c) and total chlorophyll (TC) in the seedlings were significantly reduced by osmotic stress, subsequently reducing maximum quantum yield of PSII (Fv/Fm) and photon yield of PSII (Φpsii), thereby lowering net-photosynthetic rate (Pn) and inhibiting growth. Physio-biochemical parameters, including REL, Fv/Fm, and Φpsii in oil palm seedlings were reduced more greatly by PEG-induced osmotic stress than by mannitol-induced stress. A deterioration in morphological characters, including leaf chlorosis, leaf burn, and green leaf area reduction were demonstrated in oil palm seedlings under osmotic stress induced by either mannitol or PEG. However, the toxic symptoms in oil palm seedlings under PEG-induced stress were severer than in those under mannitol-induced iso-osmotic stress, especially under severe osmotic stress.  相似文献   

18.
Four potato varieties were subjected to water stress under controlled conditions. Leaf relative water content, leaf diffusive resistance, and photosynthesis were measured on stressed and unstressed plants during a stress period and during the recovery period following stress relief. Subsequent to the stress, plants were grown to maturity with optimal water supply. Mature plants were harvested and tuber yield and haulm production measured. Stressed plants of all varieties exhibited an increase in leaf diffusive resistance and a decrease in relative water content, transpiration, and photosynthesis as soil moisture decreased. Significant varietal differences in leaf diffusive resistance of stressed plants are apparent and offer promise for development of a screening technique for varietal sensitivity to drought based on stomatal response to water deficits.  相似文献   

19.
Drought is a major factor limiting yield improvement of mung bean (Vigna radiata (L.) Wilczek) in the sub-humid, dry and intermediate zones of Sri Lanka. Therefore, the objective of this study was to analyze the yield response of mung bean to irrigation at various phenological stages in terms of radiation interception, radiation-use efficiency and harvest index. Four field experiments were carried out at two sites (Maha-Illuppallama and Kundasale) during the short, dry yala season over two years (1995 and 1996). The life cycle of mung bean was divided into three stages: vegetative (from germination to appearance of first flower); flowering (from appearance of first flower to 75% pod initiation); and pod-filling (from 75% pod initiation to maturity). Eight irrigation treatments were defined as all possible combinations of irrigation during the three stages. Maximum potential soil water deficits (PSWD) ranging from 127 to 376 mm developed as a result of keeping different combinations of stages unirrigated. Maximum LAI (Lm) and the fraction of incoming radiation intercepted (F) increased significantly with the number of stages irrigated. Specifically, treatments which included irrigation during the vegetative stage achieved large Lm and F. Radiation-use efficiency (RUE), maximum total biomass (Wm), harvest index (HI) and seed yield (Y) also showed a significant positive response to the number of stages irrigated. However, all the above parameters were significantly greater in treatments which included irrigation during the pod-filling and flowering stages. The treatment which received irrigation only during the vegetative stage had significantly lower RUE, Wm, HI and Y despite having higher Lm and F. Therefore, irrigation is critical during pod-filling and flowering stages mainly because of the higher LAI during these periods and, consequently, the greater demand for water. Lack of irrigation during these critical stages resulted in the development of significant PSWD with adverse effects on photosynthesis and consequently decreased RUE. Moreover, water stress during flowering and pod-filling stages significantly reduced pod initiation and pod growth rates and thereby reduced HI. It is concluded that to maximize mung bean yields in the dry season of the sub-humid zones of Sri Lanka, irrigation should extend across all phenological stages, specially the pod-filling stage.  相似文献   

20.
《Plant Production Science》2013,16(3):268-275
Abstract

Jilin Province is a major spring maize area of China with the highest regional yield. Nevertheless, a large yield gap existed between actual and potential yield. A super-high yield (> 15 t ha–1) is needed to fulfil the increasing demand. However, yield has been limited due to the lack of knowledge on crop performance in relation to super-high yielding managements. Ten field experiments in Jilin Province from 2008 to 2011 were summarized to understand the growing process of high-yielding spring maize. Plants were categorized into high yield (HY) plants which had a yield > 12 t ha–1, medium yield (MY) plants which had a yield of 9 – 12 t ha–1, and low yield (LY) plants which had a yield < 9 t ha–1. Crop growth during vegetative stages showed no significant differences among yield categories. HY plants grew faster than LY and MY plants after the twelvecollar stage, and the difference became more and more pronounced during silking to 30 days after silking, and even afterwards. Moreover, HY plants had a shorter vegetative period than either LY or MY plants without impacts in vegetative growth, and longer reproductive period, which contributed to better kernel formation and filling. HY plants also had the capacity to maintain a high leaf area index (LAI) at 30 days after silking, which provided for a continuous dry matter accumulation during and after this period and thus resulted in a super-high yield. Hence, special attention should be paid during the 30 days after silking in order to maintain a high photosynthetic capacity and achieve a super-high yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号