首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A survey of 24 wild Oryza accessions identified Oryza australiensis and Oryza rufipogon as potential sources of enhanced photosynthetic rate for introgression into cultivated rice. Photosynthetic capacity per unit leaf area (CER) was associated with leaf N content but not with leaf chlorophyll concentration, flag leaf area, or specific leaf area. Eight fertile, perennial F1 hybrids between O. sativa and O. rufipogon were grown in non-flooded soil, and CER was measured at flowering under saturating light. Two F1 hybrids had greater CER than the average of 26.1 μmol m2 s−1. The F2 progeny from these hybrids were screened for CER in the field, and segregants with even greater rates of photosynthesis were selected. The basis of high photosynthetic rate in the F2 populations was not leaf thickness or leaf chlorophyll content. One F2 line had exceptionally high CER and stomatal conductance. Broad-sense heritability on an individual plant basis for CER in two F2 populations was 0.44 and 0.37. A highly significant offspring-parent regression of 0.89 for CER was observed in a replicated field evaluation (four blocks, five plants per plot) of 20 vegetatively propagated F2 selections and their F3 seedling progeny. Broad-sense heritability for CER on a plot-mean basis was estimated as 0.74 for both selected F2:3 families and for the selected F2 clones. Genetic resources in the genus Oryza may represent a source of alleles to increase leaf photosynthetic rate in the cultivated species, which we have demonstrated to be a heritable, though environmentally variable, trait in an O. sativa/O. rufipogon population.  相似文献   

2.
《Plant Production Science》2013,16(4):386-396
Abstract

The effects of elevated CO2 (approximate doubling of atmospheric CO2 concentration) on the rate of photosynthesis estimated from continuous monitoring of CO2 exchange in whole plants were investigated in radish cv. Kosena accompanied with simultaneous analysis of growth for 6 days from 15 to 21 days after planting (DAP). The elevated CO2 increased the dry weights of hydroponically grown radish plants by 59% at 21 DAP.

The increase in dry weight was due to a combined effect of increased leaf area and increased photosynthetic rate per unit leaf area. Leaf area and the photosynthetic rate were increased by elevated CO2 by 18-43% and 9-20%, respectively, during 15 to 21 DAP. Namely, an increase in the rate of photosynthesis is accompanied by an increase in leaf area, both having a significant effect on biomass production.  相似文献   

3.
《Field Crops Research》1995,41(1):13-23
The objectives of this study were to evaluate effects of ambient and double ambient [CO2] at a range of growing temperatures on photosynthesis, respiration, transpiration, water-use efficiency and dry matter accumulation of cotton plants (Gossypium hirsutum L., cv. DPL 50). In Experiment I, plants were grown outdoors until first bloom, then transferred into naturally lit growth chambers and grown for 22 days at 30/18°C with five CO2 concentrations varying from 350 to 900 μl l−1. In Experiment II, air temperatures were maintained at 20/12, 25/17, 30/22, and 35/27°C day/night during a 70-day experimental period with [CO2] of 350 and 700 μl l−1 at each temperature. Photosynthesis increased with [CO2] from 350 to 700 μl l−1 and with temperature. Plants grown at 35/27°C produced fewer bolls due to abscission compared with plants grown at optimum temperatures (30/20°C). At higher [CO2], water-use efficiency increased at all temperatures due mainly to increased canopy photosynthesis but also to more limited extent to reduced canopy transpiration. Increased photosynthesis at higher [CO2] resulted in greater dry matter accumulation at all temperatures except at 20/12°C. Respiration increased as dry matter and temperature increased. Plants grown at higher [CO2] had less respiration per unit dry matter but more per unit area. These results indicate that future increases in [CO2] are likely to benefit cotton production by increasing carbon assimilation under temperatures favorable for cotton growth. Reduced fruit weights at higher temperatures indicate potential negative effects on production if air temperatures increase as projected in a high-CO2 world.  相似文献   

4.
玉米幼苗叶表面蜡质含量及成分对干旱胁迫的响应   总被引:1,自引:1,他引:0  
选用抗旱性不同的两个玉米自交系Mo17和B73为试验材料,采用盆栽控水试验,设置干旱和正常浇水两个处理,研究干旱胁迫对两个玉米品种3叶期幼苗叶面蜡质含量及成分变化的影响。结果表明,在干旱处理条件下,Mo17和B73的叶片失水率和叶绿素的抽提率均低于正常条件;两个品种叶面的蜡质含量均明显高于正常条件下的蜡质含量,且Mo17在正常和干旱条件下蜡质含量均高于B73。此外,在干旱条件下,蜡质合成相关的基因KCS、CER1、CER2、GL1、GL2和GL15的表达也明显增高。玉米叶片表面蜡质合成是应答干旱胁迫的一种重要方式,抗旱品种Mo17的抗旱性比B73要强,其表面蜡质合成较强是其中一个重要原因。  相似文献   

5.
为了解Wx基因对小麦光合作用的影响,对8个小麦Wx近等基因系的不同叶位叶片光合参数进行了测定和分析。结果表明,小麦叶片净光合速率、气孔导度、胞间CO2浓度和蒸腾速率在叶位和基因型间均有极显著差异,缺失单个Wx基因使叶片光合参数下降,且降幅表现为Wx-D1Wx-A1Wx-B1;胞间CO2浓度不影响光合作用,不同叶位叶片光合参数明显呈旗叶倒二叶倒三叶,但WxABD(糯小麦)光合参数在叶位间没有显著差异;Wild type和WxABD总体光合能力和产量相对较高。以上结果说明,Wx基因的缺失会引起叶片光合能力下降,不利于小麦产量形成。  相似文献   

6.
The effects of elevated atmospheric carbon dioxide (CO2) concentration (700 μmol mol?1) on defoliated (three clippings at 3‐week intervals) and undefoliated plants were determined for the C4 grass Themeda triandra, Forsk. The elevated CO2 concentration significantly increased leaf regrowth following defoliation, and total leaf production was greatest in this treatment. Shoot biomass of undefoliated plants was also increased under the elevated CO2 concentration treatment. The primary effect of the elevated CO2 concentration in both defoliated and undefoliated plants was an increase in individual leaf length and mass of dry matter, linked to a higher leaf water content and increased photosynthetic rates at the canopy level. Photosynthetic down‐regulation at the leaf level occurred, but this was compensated for by increased assimilation rates and greater canopy leaf area at the elevated CO2 concentration. Increases in leaf and sheath growth of defoliated plants in the elevated CO2 concentration treatment were lost following a final 3‐week reversion to ambient CO2 concentration, but occurred in plants exposed to the elevated CO2 concentration for the final 3‐week period only. In conclusion, elevated atmospheric CO2 concentration increases shoot growth via increased leaf extension, which is directly dependent on stimulation of concurrent photosynthesis. CO2 responsiveness is sustained following moderate defoliation but is reduced when plants experience reduced vigour as a result of maturation or high frequency of defoliation.  相似文献   

7.
《Journal of Crop Improvement》2013,27(1-2):333-344
SUMMARY

Production, dry matter (including reproductive) allocation, photosynthesis, transpiration, water use efficiency and carbon and nitrogen responses of a Hungarian sweet pepper (Capsicum annum L.) under continuous elevated CO2 concentrations are reported. Plants were grown in open top chambers under a temperate-continental climate in Hungary from plantation at ambient (350 μmol mol?1) and elevated (700 μmol mol?1) CO2 concentrations. The CO2 assimilation responses of the green pepper plants grown in high CO2 from plantation until final harvest reflected down-regulation of their photosynthesis. The integrated and combined effect of the increased net CO2 assimilation rate and the unchanged rate of transpiration resulted in higher WUE at elevated CO2 concentrations in the high CO2 plants than in the control ones grown at ambientCO2. However, the improved water use efficiency in the high CO2 plants was not followed by an acclimation in C-trans-location and C-allocation to the reproductive organs in the required degree. This was reflected in a slightly increased overall plant production and higher reproductive allocation, but was not accompanied by an increased fresh or dry berry mass production. The acclimation discussed may be of advantage for plant growth in a high CO2 environment with restricted water availability. We did not find worthy statistical difference between the yield mass of the control and elevated CO2, although the dry matter production parameters of the high CO2 plants had statistically not significantly higher values.  相似文献   

8.
阻止授粉诱导玉米衰老提前启动现象的研究   总被引:1,自引:0,他引:1  
利用豫816等8个玉米骨干自交系为材料,对授粉与未授粉处理自交系导致玉米衰老表型症状和叶片叶绿素含量变化以及衰老相关基因表达比较分析。结果表明,阻止授粉植株叶片与授粉对照相比,豫816和B73自交系表现出衰老提前启动的显著症状,启动衰老提前了17 d,说明阻止授粉对衰老启动具有明显诱导作用;郑58等6个自交系的阻止授粉与授粉对照植株叶片均为绿色,没有衰老症状的出现,说明阻止授粉不具有诱导衰老的作用。诱导衰老植株不同子粒结实率与启动衰老提前的天数密切相关,结实率为0~15%的未授粉植株具有启动衰老提早的诱导作用,结实率达到35%以上的植株则不具有启动衰老提早的诱导作用。6个玉米衰老相关基因差异表达的趋势与衰老表型症状变化趋势基本一致,存在1个基因差异表达与表型衰老症状呈现的时间窗口,可能参与了诱导玉米衰老的启动。  相似文献   

9.
常用玉米杂交种的耐旱性研究   总被引:13,自引:5,他引:13       下载免费PDF全文
耐旱玉米种质的筛选是提高产量、保护自然资源及实现农业可持续发展的重要手段.以河北省生产上常用的14个玉米杂交种为材料,对各种质的子粒产量、干物量、雌雄穗开花间隔、穗位高/株高、叶片衰老指数等指标进行了综合考察,得出各种质的综合耐旱指数,对进一步筛选耐旱玉米种质有一定指导意义。  相似文献   

10.
《Field Crops Research》2006,96(1):98-105
This study determined whether the field level concentration of root zone CO2 affects transpiration rate and root water transport in soybean (Glycine max L. Merr.). In an upland field converted from a paddy field, topsoil CO2 during the cropping season rose to 8 kPa of partial pressure after rainfall, whereas O2 dropped only to a minimum of 7 kPa. An elevated root zone CO2 pressure of 6 kPa significantly reduced transpiration rate. Although the transpiration rate of soybean plants exposed to hypoxia of 1.5 kPa O2 alone was reduced by 52% of the aerated plant, the rate was more decreased by 33 by adding CO2 gas to low root zone O2. Similarly, the elevated root zone CO2 significantly reduced hydraulic conductance of roots. The low transpiration rate with a high leaf water potential and low leaf greenness in the elevated root zone CO2 indicated that stomatal closure in high root zone CO2 may also occur irrespective of leaf water status and be involved in depressed nitrogen supply to a shoot. The results indicate that root zone CO2 at the field level is a growth inhibitor of waterlogged soybean through decreasing water uptake and/or stomatal aperture.  相似文献   

11.
玉米杂交种棒三叶光合性状比较研究   总被引:6,自引:0,他引:6  
对65个玉米杂交种棒三叶的叶长、叶宽、叶肉厚度、叶面积、叶绿素含量、叶向值、光合速率、叶片干重和比叶重等性状进行比较分析。结果表明:除比叶重和光合效率外,下位叶均超过上位叶和穗位叶,穗位叶又大于上位叶,呈现出形状上的金字塔结构。这种棒三叶的生长结构有利于透光,使光线较均匀地分布在棒三叶上,以提高玉米杂交种中部叶片的整体光合性能。穗位叶的比叶重和光合效率高于上位叶和下位叶,可能与穗位叶需提供玉米杂交种产量较多的光合产物有关。  相似文献   

12.
两系籼型杂交水稻齐穗后光合作用和衰老特性的研究   总被引:23,自引:0,他引:23  
对籼型两系与三系杂交水稻群体光合作用和衰老特性进行了比较,研究结果表明齐穗后剑叶叶绿素和可溶性蛋白质含量、超氧化物歧化酶活性、群体光合速率、脂质过氧化产物丙二醛含量、群体干物质生产量在组合间差异达极显著水平,两系和三系中各有指标值高低的组合;群体光合作用和衰老特性的差别主要在组合间,而不在两系和三系两种类型之间,两系杂交稻未有明显的优势。籼型两系杂交水稻的配组中应选配齐穗后叶片衰老慢、群体光合速率高的组合,提高抽穗至成熟期的物质生产量。  相似文献   

13.
《Plant Production Science》2013,16(1):104-107
Abstract

We analyzed the yield characters of field-grown transgenic potato plants (Solanum tuberosum) carrying a maize gene for sucrose-phosphate synthase (SPS), the key enzyme in sucrose synthesis. The SPS activity in the leaves of transgenic plants (line Ag1203) was 2 times that of the control (cv. May Queen). There was no difference in the photosynthetic CO2 uptake rates between Ag1203 and May Queen plants, and the leaf starch content of Ag1203 was lower. These observations indicate that the introduction of a foreign SPS gene improved the supply of photosynthate from source (leaves) to sink (tubers). Additionally, leaf senescence of the transgenic potato plants was delayed relative to that of May Queen. The average tuber weight and total yield of Ag1203 plants were at least 20% higher, and the tuber sucrose content, which is related to eating quality, was also higher. Increased translocation of photosynthate and longer period of photosynthetic activity in the leaves may have increased the yield of Ag1203. These results suggest that introduction of the SPS gene improved the yield characters and quality of potato tubers under field conditions.  相似文献   

14.
Maintenance of green leaf area during grain filling can increase grain yield of sorghum grown under terminal water limitation. This ‘stay-green’ trait has been related to the nitrogen (N) supply–demand balance during grain filling. This study quantifies the N demand of grain and N translocation rates from leaves and stem and explores effects of genotype and N stress on onset and rate of leaf senescence during the grain filling period. Three hybrids differing in potential height were grown at three levels of N supply under well-watered conditions. Vertical profiles of biomass, leaf area, and N% of leaves, stem and grain were measured at regular intervals. Weekly SPAD chlorophyll readings on main shoot leaves were correlated with observed specific leaf nitrogen (SLN) to derive seasonal patterns of leaf N content. For all hybrids, individual grain N demand was sink determined and was initially met through N translocation from the stem and rachis. Only if this was insufficient did leaf N translocation occur. Maximum N translocation rates from leaves and stem were dependent on their N status. However, the supply of N at canopy scale was also related to the amount of leaf area senescing at any one time. This supply–demand framework for N dynamics explained effects of N stress and genotype on the onset and rate of leaf senescence.  相似文献   

15.
利用不同群体对玉米株高和叶片夹角的QTL分析   总被引:13,自引:6,他引:13       下载免费PDF全文
应用H21×Mo17、自330×K36、B73×L050这3个F23∶群体为作图材料,利用SSR等分子标记,对株高、穗位高和叶片夹角3个性状进行了数量性状位点(QTL)分析。对株高共检测到18个QTL,对穗位高检测到12个QTL,对叶夹角检测到9个QTL。在这些影响不同性状的QTL中,有一部分处于染色体上的同一区域,有的则是区域间部分重叠或处于邻近区域。此外,有的QTL还与其他研究中发现的影响相应性状的质量性状基因位点处于相同基因组区域。  相似文献   

16.
《Plant Production Science》2013,16(3):307-315
Abstract

The effects of elevated carbon dioxide concentration ([CO2]) on silica deposition on husk epidermis of rice (Oryza sativa L. cv. Akitakomachi) during the flowering stage were investigated in this study. The study was motivated by the concept that the rice yield maybe affected by global warming as a result of elevated [CO2] environment since sterility of rice is related to the panicle silica content that influences transpiration, and elevated [CO2] could affect plant transpiration. Silica deposition analysis was focused on the flowering stage of the rice crop grown hydroponically under two [CO2] conditions: 350 μmol mol-1 (ambient) and 700 μmol mol-1 (elevated). Silica deposition on the husk epidermis from three parts of the panicle at four flowering stages were examined using a scanning electron microscope (SEM) combined with an energy dispersive X-ray microanalyzer (EDX). The results demonstrated that elevated [CO2] significantly suppressed silica deposition on the husk epidermis at the lower part of the panicle, and at the early flowering stage when 1/3 of the panicle emerged from the leaf sheath. In the transverse section analysis of the husk, silica deposition on the husk epidermis under elevated [CO2] was less than that under ambient [CO2] at the late flowering stage. The less silica deposition observed on the husks at the late flowering stage under elevated [CO2] might be related to the suppressed transpiration from the panicle by elevated [CO2] found in a previous study.  相似文献   

17.
Summary Reduction of leaf photosynthesis due to water stress has been analyzed into various components and genetic variation in these components has been evaluated. Five potato cultivars were grown on nutrient solution in a conditioned glasshouse. Water stress was imposed by adding polyethylene glycol to the nutrient solution. Photosynthesis, transpiration and chlorophyll fluorescence were measured on intact leaves during the stress period and after recovery from the stress. Water stress reduced photosynthesis, initially as a consequence of stomatal closure, but after 3 days increasingly by inhibiting directly the photosynthetic capacity (mesophyll limitation). Stomatal closure correlated with the reduction in photosynthesis, but it was not the sole cause of this reduction because the internal CO2 concentration in the leaves was not affected by water stress, indicative of inhibitory factors other than stomatal ones. Chlorophyll fluorescence emission suggested that the Calvin cycle was inhibited, while quantum efficiency was not affected at 17°C. Increasing the temperature to 27°C reduced quantum efficiency but only in the stress environment. The recovery of young leaves after relief of the stress was associated with a lower stomatal conductance but a higher mesophyll conductance compared with the control, which caused a low internal CO2 concentration and probably invoked photo-inhibition and leaf damage. Cultivar differences in photosynthetic rate were highly significant under both optimal and stress conditions, and corresponded with differences in mesophyll conductance.  相似文献   

18.
Four potato varieties were subjected to water stress under controlled conditions. Leaf relative water content, leaf diffusive resistance, and photosynthesis were measured on stressed and unstressed plants during a stress period and during the recovery period following stress relief. Subsequent to the stress, plants were grown to maturity with optimal water supply. Mature plants were harvested and tuber yield and haulm production measured. Stressed plants of all varieties exhibited an increase in leaf diffusive resistance and a decrease in relative water content, transpiration, and photosynthesis as soil moisture decreased. Significant varietal differences in leaf diffusive resistance of stressed plants are apparent and offer promise for development of a screening technique for varietal sensitivity to drought based on stomatal response to water deficits.  相似文献   

19.
《Field Crops Research》1999,62(1):53-62
Maize was grown in the high-radiation arid summer environment of Davis, California, and its leaf photosynthetic rate was measured over diurnal courses on cloudless days with the leaf held perpendicular to the sunlight. On days of high atmospheric vapor pressure deficit (VPD), leaf photosynthesis reached a maximum in the late morning and then decreased gradually as the day progressed, though the soil was well irrigated. When CO2 concentration in the measurement chamber was raised to about 1000 μmol mol−1, photosynthesis was enhanced, but more in the afternoon than in the morning. As a result, rates measured at high CO2 in the morning and afternoon were essentially the same. There was also no difference in the curves of photosynthetic rate (A) versus intercellular CO2 concentration (Ci) for the morning and afternoon. Hence, photosynthetic capacity was similar for the two periods and there was no evidence of photoinhibition by the high photosynthetic photon flux density at noon. Further, Ci and photosynthetic rates A measured over a range of photon flux density were lower in the afternoon than in the morning. These results indicate that A at noon and early afternoon was more limited than in the morning by epidermal conductance (mostly stomatal). On a day of low VPD, however, midday depression in A and epidermal conductance were not evident for the well-irrigated plants. Without irrigation and with leaves at a lower midday water potential, midday reduction in conductance and A was much more marked, beginning late in the morning. Epidermal conductance of maize grown in the field in Davis is are not sensitive to VPD. Therefore, the midday reduction in conductance and A was more likely the result of low leaf water potential caused by high transpiration rates.  相似文献   

20.
A field study was carried out to quantify the compensation capacity of Bacillus thuringiensis (Bt)-transgenic cotton to simulated damage by manually removing squares during the early growing season in 2004 and 2005 in combination with CO2 levels (ambient CO2 and elevated CO2). Treatments included: initial squares were wholly (100%) removed manually for 1 week (i.e., SR1 treatment) and for 2 consecutive weeks (i.e., SR2 treatment). Plant leaf area was measured every 2 weeks, and plant root, stem, leaf, shatters, boll dry weight and lint yield and maturity were measured at harvest. Significantly higher leaf area per plant was observed on each sampling date for SR1 and SR2 treatments compared with control (SR0) treatment in 2004 and 2005 under elevated CO2. Significantly higher lint yield and maturity were observed for SR0, SR1 and SR2 treatments under elevated CO2 in 2004 and 2005. CO2 concentration and square removal significantly affected plant lint yield and maturity. Moreover, the interaction between CO2 concentration × square removal had a significant effect on plant leaf dry weight, lint yield and maturity. Our results indicated that transgenic cotton plants can compensate for the manual removal of 100% of the initial squares for 1 and 2 weeks under ambient and elevated CO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号