首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
“坐球高度”是评价花椰菜品种是否适合机械化采收的重要农艺性状之一。为了解析花椰菜“坐球高度”性状的遗传规律,使用早熟、紧实型花椰菜F7代自交系ZAASC4101与芥蓝F6代自交系ZAASJ1401为亲本构建了包括P1、P2、F1、F2、B1、B2的6个联合世代群体,利用主茎高度(六世代群体)和叶痕间距(F2群体)两个指标来锚定“坐球高度”性状。研究结果表明,F2群体中主茎高度与叶痕间距数值呈极显著相关(相关系数为0.652),并且这两个指标均为连续性的近似正态分布,符合数量遗传的特征;主茎高度的六世代群体遗传分析和叶痕间距的F2群体遗传分析结果均表明,花椰菜“坐球高度”性状的最适遗传模型为:两对加性-显性-上位性主基因+加性-显性-上位性多基因遗传模型,表明该性状主要受两对主基因+多个微效基因的控制,并且遗传率达到97.84%。因此,可以利用连锁分...  相似文献   

2.
玉米穗位高是与产量密切相关的重要农艺性状。本研究应用植物数量性状“主基因+多基因混合遗传模型”方法,对矮穗位自交系ds1与三个穗位高不同的自交系(As、Bs、Cs)配置的3个杂交组合的6个世代(P1、P2、F1、F2、BC1、BC2)进行了穗位高的遗传分析。结果表明,ds1的穗位高的遗传受1对加性主基因+加性-显性多基因共同控制。各组合的主基因表现相似,而多基因表现差异较大,环境对穗位高的影响较大。  相似文献   

3.
以多头切花秋菊品种rossi黄和红菊复色进行杂交的F1代群体(108株)为研究对象,采用描述性统计和相关分析对切花菊杂交F1群体的花部、茎部、叶部共17个观赏性数量性状进行测定分析,利用植物数量性状主基因+多基因混合遗传模型方法对菊花的F1杂交后代进行遗传以及相关分析。结果表明:该杂交群体表型变异丰富,变异系数在18.22%~62.99%之间;杂交F1群体部分性状具有相关性,且全部是正相关;该杂交后代群体的花径、梗长、株高、叶柄长度由一对主基因控制;舌花、瓣长、瓣宽和叶厚由2对主基因控制;其他性状显示无主基因控制。舌状花瓣数、瓣宽、梗长、株高、叶厚的主基因遗传力均大于50%,属于高度遗传力,受环境影响较小,在早期世代即可进行选择。本研究初步明确多头切花秋菊杂交F1群体观赏性状的主基因多基因效应与遗传变异,对多头切花秋菊的杂交育种和亲本选育具有一定参考价值。  相似文献   

4.
谭燕  康晨  孙守钧  罗峰 《安徽农业科学》2022,50(2):26-29,41
将粒用高粱品种忻粱52和苏丹草品系美引-251杂交,对F2代群体的穗长、穗重、百粒重、着壳率通过主-多基因分析方法进行数量遗传分析,得到最适遗传模型。结果表明,穗长符合Model A0,是由微效多基因控制的数量遗传性状,穗重、百粒重、着壳率均符合Model B1,且受两对主基因控制,属于加性-显性-上位性混合遗传模型,主基因遗传率分别为66.81%、40.37%、89.11%,由此可知穗重和着壳率遗传率较高,受环境影响较小且可稳定遗传;而百粒重遗传率较低,所以该性状易受环境的影响,应在高代进行选育。通过对群体各产量性状的测量和数据分析,以及估算各性状主基因遗传率,为今后高粱育种工作提供参考。  相似文献   

5.
为探究辣椒单株结果数的遗传机制,以单株结果数差异较大的辣椒材料XHB(P1)和B14-01(P2)为亲本,构建四世代遗传家系即P1、P2、F1、F2。运用主基因+多基因多世代联合分析法,研究辣椒单株结果数的遗传规律。结果表明:辣椒单株结果数符合2对加性-显性-上位性主基因模型(2MG-ADI)。2对主基因的加性效应值da、db分别为-16.33、-13.05,2对主基因的显性效应值ha、hb分别为-10.02、-2.51。2对主基因间的加性×显性(jab)互作效应和显性×加性(jba)互作效应的效应值分别为8.69和12.93,加性×加性上位性(i)互作效应值为6.86,显性×显性(l)的互作效应值为7.23,主基因间的效应以加性效应为主,其次是加性×显性上位性互作效应。主基因遗传率为68.10%,环境引起的变异占比31.9%...  相似文献   

6.
本试验以陆海染色体片段渐渗系C14为父本、冀棉262为母本构建F2分离群体,并对群体的纤维品质性状进行数量遗传分析,利用主基因-多基因遗传分析模型对F2世代上半部平均长度、断裂比强度、马克隆值、整齐度指数和伸长率进行遗传分析,以确定各性状的最适遗传模型并掌握其遗传规律,为田间选育遗传稳定的棉花纤维品质性状提供参考。结果表明,5个纤维品质性状中,上半部平均长度、马克隆值、整齐度指数和伸长率符合遗传模型,受主基因控制,而断裂比强度不存在主基因,受微效多基因控制。上半部平均长度符合B-1模型,受2对主基因控制,为加性-显性-上位性混合遗传模型,主基因遗传率为62.56%;马克隆值和伸长率均符合A-1模型,为受1对主基因控制的加性-显性混合遗传模型,主基因遗传率分别为9.96%和27.17%;整齐度指数符合B-6模型,为受2对主基因控制的加性-显性等效混合遗传模型,主基因遗传率为43.64%。上半部平均长度主基因遗传率最高,说明该性状在后代遗传中受环境影响较小,遗传较稳定,可以在低世代直接进行选择;而马克隆值主基因遗传率低于10%,说明该性状在后代中...  相似文献   

7.
[目的]萱草属植物具有重要的经济价值和观赏价值,而花色是其主要观赏性状之一,探析萱草属植物杂交后代内外花被片颜色的遗传规律可为培育新型花色品种提供理论依据。[方法]本研究以黄花菜单色花品种‘六月花’为母本,萱草双色花品种‘海尔范’为父本进行杂交构建了F1群体,采用分光测色计对杂交F1代的内、外花被片颜色进行测量并计算其色光值,基于内、外花被片的L*、a*、b*值进行聚类分析并确定颜色分级,采用主基因+多基因混合遗传模型探究萱草属植物杂交F1代内、外花被片花色性状的遗传规律。[结果]萱草属植物杂交F1群体出现了黄色到深红色的花色分离,通过聚类分析将杂交F1群体内花被片划分为黄色、鲜肉色、淡珊瑚色、印度红、深红色5个色系,外花被片皆为黄色系,划分为Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ5个等级;基于内、外花被片色光值和颜色分级进行遗传分析,确定内花被片颜色受2对主基因控制,遗传模型为2对加性-显性主基因模型(2MG-AD),第1对主基因...  相似文献   

8.
研究番茄单果重的遗传规律,为番茄育种提供参考.以黄果番茄品系DH(大果型)、CH(小果型)作为亲本,构建6个世代群体(P1、P2、F1、B1、B2、F2),F2代群体单果重性状的分离世代呈偏正态分布,应用植物数量性状主基因-多基因混合遗传模型进行多世代联合分析.结果表明,单果重性状的遗传模型为2对加性-显性-上位性主基因+加性-显性-上位性多基因(MX2-ADI-ADI);单果重性状主要由2对主基因遗传控制,表现为加性和显性效应,单果重性状以基因的加性效应为主;B1、B2、F2分离世代单果重性状主基因的遗传率(h2mg)分别为60.83%、0.6%、42.81%;B1、B2、F2分离世代单果重的多基因遗传率(h2pg)为0~72.15%,环境方差占表型方差(δ2e/δ2p)为27.74%~57.19%.因此,单果重性状较易受环境影响,所以宜选择晚世代进行,在栽培中更应注意肥水等环境条件的影响.  相似文献   

9.
黄瓜把长主基因+多基因混合遗传分析   总被引:2,自引:0,他引:2  
马娟  司龙亭  田友 《西北农业学报》2010,19(10):161-165
以2个性状稳定的华北型黄瓜自交系为亲本,建立了6个世代联合群体(P1、P2、F1、B1、B2、F2),采用植物数量性状主基因+多基因混合遗传模型对群体的把长进行多世代联合分析。结果表明,把长遗传受2对加性-显性-上位性主基因+加性-显性多基因(E-1模型)控制,2对主基因的加性效应和显性效应均为负向效应,且存在一定的互作效应。在分离世代中,主基因的遗传率均比多基因的遗传率高,环境方差对表型方差的影响占有一定比重,即环境对把长的遗传影响较大,对于这个性状适于高代选择。  相似文献   

10.
叶片数是烟草产量的重要构成因素,对提高烟农种烟收入和保证卷烟原料的供应有重要意义。低温易引起烤烟早花,导致叶片数减少,而韭菜坪2号可在高海拔地区种植,且叶片数不受影响。为揭示韭菜坪2号烤烟叶片数的遗传规律,本研究以叶片数较少的优质烤烟NC82和叶片数较多的烤烟品种韭菜坪2号为亲本,构建六世代(P1、P2、F1、F2、BC1和BC2)遗传群体,采用“主基因+多基因”混合遗传模型对韭菜坪2号的叶片数进行遗传分析。结果表明,最优模型为2MG-ADI,即受2对加性-显性-上位性主基因控制,2对主基因中加性效应起主导作用,且存在互效作用;主基因在F2、BC1、BC2世代的遗传率分别为62.72%、6.87%、45.51%,遗传率不高,可能受环境或其他因素的影响较大。本研究结果为韭菜坪2号叶片数基因的遗传和利用提供参考依据。  相似文献   

11.
普通丝瓜果实性状的遗传分析   总被引:8,自引:1,他引:7  
应用植物数量性状主基因+多基因混合遗传模型对普通丝瓜品种50-5(黑籽短圆筒)×20-4(桂林水瓜)杂交组合6个世代群体的5个果实性状(果柄长、果长、果径、果形指数和单果质量)进行了联合分析,结果表明:50-5 ×20-4组合果柄长的遗传符合2对加性-显性-上位性主基因+加性-显性多基因遗传模型,其B1、B2和F2群体遗传率(主基因+多基因)分别为68.49%、70.53%和82.07%,环境方差占总表型方差的比例分别是31.50%、29.47%和17.92%;果长遗传符合2对加性+显性+上位性主基因+加性-显性-上位性多基因遗传模型,其B1、B2和F2群体遗传率(主基因+多基因)分别为68.85%、84.55%和81.68%,环境方差占总表型方差的比例分别是31.15%、15.44%和18.32%;果径遗传符合2对加性-显性-上位陛主基因+加性-显性-上位性多基因遗传模型,其B1、B2和F2群体遗传率(主基因+多基因)分别为65.23%,73.06%和73.82%.环境方差占总表型方差的比例分别是34.62%、26.94%和26.13%;果形指数遗传符合2对加性-显性-上位性主基因+加性-显性-上位性多基因遗传模型,其B1、B2和F2群体遗传率(主基因+多基因)分别为65.23%,62.80%和78.89%,环境方差占总表型方筹的比例分别足34.76%,37.19%和21.11%;单果质量遗传符合2对加性-显性-上位性主基因+加性-显性-上位性多基凶遗传模型,其B1、B2和F2群体遗传率(主基因+多基因)分别为70.71%、85.35%和89.64%,环境方差占与总表型方差的比例分别是29.29%、14.64%和10.36%.果柄长性状的主基因遗传率较小,宜采用个体选择法(基因型选择法),宜在分离晚世代进行选择;果长、果径、果形指数和单果质量性状的主基因遗传率较大,宜采取混合选择法(表型选择法),可在分离早世代进行选择;且宜对5个果实性状进行综合选择.5个果实性状的环境方差占总表型方差的比例均较高,故在育种过程中要尽量采取措施以减少环境影响.  相似文献   

12.
为了探究矮牵牛花朵大小的遗传规律,以大花型和小花型矮牵牛高代自交系为亲本构建四世代遗传群体(P1、P2、F1、F2),对花朵大小遗传特征进行主基因+多基因混合遗传模型分析,并将F1植株与中花型矮牵牛W115株系进行杂交,验证遗传规律。同时以F2群体为材料,对花径、萼片长、叶片长等23个表型性状进行测定,并研究其相关性。结果表明,矮牵牛大花对小花性状符合2MG-A模型,即由2对加性主基因控制,主基因遗传率为95.38%;大、小花杂交F1与中花W115进一步杂交,后代出现大花与中花性状分离(1∶1),且中花植株的叶片和苞片叶绿素含量显著高于大花植株(P<0.01)。大花×小花F2群体的表型性状变异丰富,变异系数在7.67%~59.93%,平均22.38%。相关性分析结果表明,花部性状、叶部性状以及两者之间均存在一定的相关性,其中花径与其他器官大小均呈显著正相关,与部分植株性状呈显著负相关。  相似文献   

13.
高产陆地棉百棉1号产量性状的主基因+多基因遗传分析   总被引:2,自引:0,他引:2  
利用高产陆地棉百棉1号为核心亲本分别构建了2个组合的P1、P2、F1、B1、B2和F2群体,应用主基因+多基因遗传模型,研究了陆地棉产量性状的遗传规律。结果表明,2个组合除籽棉产量的最适模型均为D-4(1对负向完全显性主基因+加性-显性多基因模型)外,其他性状最适模型不同,衣分和单株铃数的主基因数目2个组合相同。各产量性状在2个组合中的主基因+多基因遗传方式不尽一致,其中,皮棉产量以主基因遗传为主或以主基因、多基因遗传并重;籽棉产量和籽指以多基因遗传为主或以主基因、多基因遗传并重;衣分、单株铃数、铃重和衣指均以多基因遗传为主;单株生殖量均以主基因遗传为主。2个组合主基因遗传率均为皮棉产量最高,籽棉产量次之,其他性状大小顺序变化差异不大;各产量性状的多基因遗传率在2个组合中的大小顺序变化差异较大。  相似文献   

14.
曾莉  刘颖圣  徐小万 《农学学报》2023,13(11):55-59
为研究赏食兼用型辣椒花瓣和果实紫色性状遗传机制,以白辣观赏椒F7和紫辣观赏椒F8作亲本,构建6个世代群体(P1、P2、F1、F2、BC1、BC2),采用目测法分析6个世代群体的花色、青熟期果色性状,研究辣椒花瓣和果实紫色性状遗传规律。结果显示,F1代辣椒花瓣和青熟期果实均表现为紫色,说明辣椒花瓣和青熟期果实的紫色对白色均为显性,F2代分离群体紫色和白色都符合孟德尔3:1的分离比例,表明辣椒花瓣和青熟期果实紫色花瓣性状各受1对显性基因控制,BC1代分离群体紫色和白色都符合1:1的分离比例;BC2代辣椒花色和果色均表现为紫色,但有颜色深浅的区别,表明控制辣椒花瓣和青熟期果实紫色的基因具有累加效应。  相似文献   

15.
鸡开产日龄和开产体质量的主基因+多基因混合遗传分析   总被引:1,自引:0,他引:1  
为研究鸡开产性状的分子遗传机理,揭示其内在遗传规律,以绿壳蛋鸡黑羽纯系和白来航鸡为亲本构建资源群体,测定亲本P1、P2和F1、F2代的开产日龄和开产体质量,运用数量性状主基因+多基因混合遗传模型软件SEA-G4F2对开产日龄和开产体质量进行遗传分析。结果表明:开产日龄的遗传模型为模型E,即两对加性-显性-上位性主基因+加性-显性-上位性多基因混合遗传模型,主基因遗传率为25.06%;开产体质量的适合模型为模型E-1,即2对加性-显性-上位性主基因+加性-显性多基因混合遗传模型,其主基因遗传力达到了63.28%,两个性状的多基因遗传率均很小,主基因对两个性状的调控作用远远大于多基因。  相似文献   

16.
甘蓝型油菜白花性状的主基因+多基因遗传分析   总被引:2,自引:1,他引:2  
 【目的】对甘蓝型油菜白花性状进行量化观察,研究其数量遗传特性,为育种利用提供理论依据。【方法】利用扫描仪和颜色提取软件对油菜新鲜花瓣进行处理,获得花瓣颜色特征值(CIE RGB值),选择能反映花瓣颜色差异的B值,应用植物数量性状主基因+多基因混合遗传模型多世代联合分析方法,对甘蓝型油菜杂交组合(HW243×HZ21-1和HW243×中油821)的P1、P2、F1、B1、B2和F2世代群体进行分析。【结果】甘蓝型油菜白花性状表现为一数量性状,其遗传符合两对加性-显性-上位性主基因+加性-显性-上位性多基因遗传模型,以主基因作用为主,多基因的作用相对较小。两对主基因的加性、显性和上位性效应均具有较大的作用。在F2群体中主基因的遗传率为96.94%和95.83%,多基因遗传率为3.93%和2.47%;在B1群体中主基因的遗传率为54.58%和49.57%,多基因遗传率分别为35.64%和46.9%;在B2群体中主基因的遗传率为98.14%和97.67%,多基因遗传率分别为0.98%和2.06%。【结论】甘蓝型油菜白花性状具有数量性状的遗传特性,其遗传符合两对加性-显性-上位性主基因+加性-显性-上位性多基因遗传模型,以主基因效应为主,多基因效应相对较小。主基因的遗传力较高,受环境影响较小。  相似文献   

17.
对甲基磺酸乙酯(EMS)诱变获得的生物钟长周期突变体lcc-1、野生型WT、杂交F2群体及回交B1和B2群体进行田间表型性状调查,并对下胚轴长度、现蕾时间2个突变性状进行遗传分析。结果表明,lcc-1下胚轴长度、株高、开展度、外叶长、中肋长度均极显著小于WT,现蕾时间极显著长于WT。F2代分离群体遗传分析结果表明,下胚轴长度及现蕾时间性状均符合2对加性-显性-上位性主基因+加性-显性多基因模型。结果可为调控生物钟和现蕾时间关键基因的挖掘和基因功能深入研究提供数据支持。  相似文献   

18.
以西北农林科技大学蔬菜种质资源创新实验室提供的辣椒品系AA5与CK18为亲本构建F2代群体,统计调查群体各性状的分离情况,经相关性分析以及主基因+多基因遗传分析的方法来获得辣椒6个果实性状的主基因模型以及遗传效应。结果表明:6个果实性状皆是受主基因调控的数量性状,而且其相关性密切。辣椒果形指数、果肉厚度和果宽等3个性状中存在两组等加性主基因,属于2MG-EA模型;果长和单果质量存在两组加-显性主基因,属于2MG-AD模型;果皮硬度性状的遗传属于1MG-AD模型,存在一组加-显 性主基因。辣椒的果形指数和单果质量第1对主基因的正加性更显著。果皮硬度和果长性状的主基因效应为负显性以及正加性。果宽和果肉厚度性状的两对主基因表现为正向等加性。主基因遗传率∶单果质量(53.69)>果宽(48.42)>果长(34.67)>果肉厚度(25.42)>果皮硬度(22.91)>果形指数(22.23)。因此辣椒的这6个果实性状不宜于低代开展选育。研究结果为本材料的后续分子标记以及更高效、更具针对性的辣椒分子选育工作提供理论参考。  相似文献   

19.
选用水稻直立穗型品种辽粳5号和弯曲穗型品种丰锦配制辽粳5号/丰锦组合,通过对P1、P2、F1、F2、B1和B2的颈穗弯曲度和穗角的调查,利用主基因+多基因混合遗传模型联合分离分析了粳稻穗直立性的遗传规律.结果表明.直立穗型性状的遗传无论是从颈穗弯曲度评价,还是利用穗角评价都符合两对加性-显性-上位性主基因+加性-显性-上位性多基因混合遗传模式.且两对主基因间都存在互作.从F2估计,颈穗弯曲度在辽粳5号/丰锦组合的主基因遗传率为88.41%,穗角在该组合的主基因遗传率为89.04%.  相似文献   

20.
为了探讨小麦-冰草新种质普冰3228籽粒主要矿质元素含量的遗传特点,对普冰3228、京4839及其F2:3群体籽粒Ca、Mg、Zn含量进行测定,并对普冰3228籽粒Ca、Mg、Zn含量进行遗传分析。结果表明,普冰3228、京4839及其F2:3群体籽粒Ca、Mg、Zn含量均存在一定的差异,F2:3群体籽粒Ca、Mg、Zn含量分别为81.76~999.55、337.24~1 380.86、5.21~148.11 mg/kg,其中Zn含量变异最大。3种元素含量具有相似的遗传特点,其最适遗传模型均为2对主基因+多基因模型,且主基因均具有加性-显性-上位性效应。控制Ca含量主基因的加性、显性、加性×加性、加性×显性、显性×加性效应值均为正值,而其显性×显性效应值为负值;控制Mg含量主基因的加性、显性、加性×加性、显性×加性效应值均为正值,而其加性×显性、显性×显性效应值均为负值;对于Zn含量,其主基因的加性、显性、加性×加性、加性×显性效应值均为正值,而显性×加性、显性×显性效应值均为负值。3种元素含量的主基因遗传率表现差异较大...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号