首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
    
A comprehensive long-term study (2006–2010) was undertaken to develop a balanced and integrated nutrient supply system for sunflower-based cropping sequence considering the efficient utilization of residual and cumulative soil nutrient balance along with added fertilizers by the crops grown in rotation. The fertilizer application was done in potato and sunflower while greengram was raised as such on their residual effect. Significant response in yield was observed with 150% of the recommended nitrogen, phosphorus and potassium (NPK) or inclusion of farmyard manure (FYM) with the recommended NPK in the cropping sequence indicating 6.2–7.0% gain in system productivity over the existing recommendations. Each additional unit of P and K nutrition prompted system productivity by 18.9 and 11.0 kg kg?1 of applied nutrient, respectively. Apparent yield decline was observed in K and PK omission plots to the extent of 15.8 and 27.4% in potato, 10.5 and 23.9% in sunflower and 4.2 and 8.3% in greengram, respectively, compared to the recommended fertilization. The superiority of the FYM along with the recommended NPK (potato/sunflower) was evident on the overall profitability and sustainability of the system, highlighted by the significantly higher productivity (7.16 t SFEY ha?1), sustainability yield index (SYI; 0.76), production efficiency (PE; 27.85 kg SFEY ha?1 day?1) and net returns (2520 USD ha?1) with a B:C ratio of 2.91. Apparent change in potassium permanganate (KMnO4)-N was negative in all the treatments while N and P balance was positive with 150% NPK fertilization. Nutrient uptake exceeded the replenishment with 100% NPK application and maintained net negative soil nutrient stock for all the primary nutrients, indicating the need for revalidation of the existing recommendations in the system perspective. Conspicuous improvement in residual soil fertility in terms of maximum buildup of soil organic carbon (14%) and enhancement in soil KMnO4-N (4.2%), Olsen-P (19.4%), ammonium acetate (NH4OAc)-K (5.8%) and dehydrogenase enzyme activity (44.4%) was observed in FYM-treated plots over the initial values. The study suggested that the inclusion of legumes and FYM application with the recommended NPK in potato-sunflower cropping sequence will sustain the system’s productivity through the efficient use of nutrients, enhanced microbial activity and improved soil health while combating escalating prices of fertilizers as well as environmental issues in the Indo-Gangetic plains of India and similar environments.  相似文献   

2.
    
A field experiment was conducted for eight years at ICAR-Indian Institute of Wheat and Barley Research, Karnal, Haryana, India to study the skipping effect of P application on productivity, profitability and sustainability of rice-wheat cropping system. Rice yield and biomass were 8.35% and 6.6% higher where cowpea was grown after wheat compared to rice-vegetable pea-wheat crop sequence, respectively. Phosphorus application to rice or wheat or both crops exhibited at par rice grain yield, biomass, harvest index. Phosphorus application to both crops or only in rice crop produced maximum and significantly higher wheat yield (4.62 t ha?1) as compared to P application only to wheat (4.48 t ha?1). Eight years growing of green gram, cowpea and vegetable pea increased the organic carbon content 42.89, 16.38 and 4.57 %, respectively compared to the initial level. Skipping of P to either crop, by considering 13.5 million ha rice-wheat area, will save approximately Rs 40,500 million (Rs = Indian rupee) or US $ 623 million ($ = Rs 65) per year. Air pollution may be checked, due to saving on diesel in transportation of P fertilizer, to the tune of 60,383 tonnes of CO2 per year by reducing emission of one of important global warming gas.  相似文献   

3.
System of Rice Intensification (SRI) has spread as an innovation of rice cultivation that can produce higher crop yields and conserve seed and water resources. The SRI innovation is also gaining popularity in north-western (NW) Himalayas on one hand and hybrid rice technology on the other in the region. Moreover, rice productivity in NW Himalayas is quite low owing to the use of low-yielding germplasm and poor crop management. Thus, SRI principles coupled with hybrid rice technology seems to be a boon to boost rice productivity in the irrigated ecosystem of wet-temperate NW Himalayas well known for rice cultivation. Therefore, comparative performance of promising rice hybrids under SRI was assessed at three locations in wet-temperate NW Himalayas (India) using nine promising rice hybrids including state-recommended rice hybrid “Arize–6129” as check cultivar. It was revealed that various hybrids differed significantly w.r.t. days to 50% flowering, days to 75% maturity, plant height, tillers hill?1, panicles hill?1, panicles m?2, and panicle length. Highest number of panicles m?2 (370) was observed in Arize–6129 followed by US–312, Bioseed–786, and NK–3325, respectively. Significantly longer panicles were observed in Dhanya–2366 followed by Arize–6129, US–312, Bioseed–786, NK–3325, and US–10, respectively. Arize–6129 resulted in significantly higher grain (75 q ha?1) and straw yield (125 q ha?1) followed by US–312, Dhanya–2366, NK–3325, PAC–801, US–10, Bioseed–786, Uday–111, and Uday–131, respectively. The production- and monetary-efficiency as well as gross and net returns and B:C ratio also followed the similar trend as that of crop productivity with significantly higher production– (67 kg ha?1 day?1) and monetary–efficiency (INR 608.4 ha?1 day?1), and net returns (INR 68138 ha?1) and B:C ratio (3.66) in check cultivar “Arize–6129” over other rice hybrids. Higher grain productivity (49.5–75.0 q ha?1), net returns (INR 39238–68138 ha?1), and B:C ratio (2.53–3.66) in current study conclusively inferred that SRI coupled with hybrid rice technology can harness higher productivity and profitability. Protein content (8.30–8.45%) exhibited higher values under Bioseed–786 followed by NK–3325, UDAY–111, and Arize–6129; however, NPK uptake (grains, straw, total) was significantly highest in Arize–6129 followed by US–312, Dhanya–2366, and NK–3325, respectively. Total water productivity (6.4–9.75 kg ha?1 mm?1), irrigation water productivity (16.5–25 kg ha?1 mm?1), and economic water productivity (64.0–97.5 INR ha?1 mm?1) collectively followed the trend of Arize–6129 > US–312 > Dhanya–2366 > NK–3325 > US–10 > PAC–801 > Bioseed–786 > Uday–111 > Uday–131 in current study. Overall, Arize–6129, US–312, and Dhanya–2366 were proved as potential rice hybrids in terms of their higher crop and water productivity and economic profitability among above nine rice hybrids for their large-scale cultivation under SRI in wet-temperate NW Himalayas.  相似文献   

4.
    
Abstract

Poor productivity of rice in rainfed lowlands is due to complete submergence as it is a major abiotic stress of these regions. For enhancing the rice productivity of these areas, better nutrient management options are required and results may even better when combined with stress tolerant cultivars, even when tested under natural conditions of farmers’ field. For supporting the above statement, the effect of nitrogen and phosphorus in graded doses was evaluated for submergence tolerance in controlled conditions and the results obtained were tested and validated at farmers’ field in Cuttack, Odisha, India. Shoot elongation, leaf senescence and lodging were lowest with the application of higher phosphorus (60?kg ha?1). Highest dose i.e. 100-60-40 NPK kg ha?1 resulted in higher plant survival of all the varieties by 90–170% over no nutrient application, it was also reflected in the higher growth after recovery, leaf greenness, leaf and stem growth, chlorophyll and carbohydrate concentrations and ultimately higher grain yield. At farmers’ field, application of basal P, K and post-flood N management practice resulted in overall better performance of Swarna and Swarna-Sub1 showing higher yield attributes leading to 65.7 and 37.9% higher grain yield, over conventional practices followed by farmers. Apart from that results were more positive if post-flood nitrogen was applied as urea foliar spray might be due to quick absorption of N by plant leaves and also spraying helps in removing the silt of flood water sticking to the leaf surface and facilitated the plants to photosynthesize and survive after desubmergence. These cost-effective management options may enhance the productivity and profitability of rice in the flood-prone areas where farmers hesitate to apply nutrients.  相似文献   

5.
    
Cereal cropping productivity in the Indo‐Gangetic Plain (IGP) of India is declining, which may be overcome by diversification, alternate crop establishment methods and mulching. This study was conducted to determine whether no‐till flat (NTF), permanent raised beds (PRB) and nontraditional ex situ mulching would improve crop and water productivity, economic profitability and soil biological properties in an irrigated maize (Zea mays)–wheat (Triticum aestivum) system (MWS). NTF systems produced 10% higher economic net returns compared with PRBs. Non‐traditional mulching (Sesbania, Jatropha and Brassica) increased yields by >10% and net returns by >12% compared with no‐mulch. The water saving in PRBs compared with NTF systems was 79, 94 and 173 mm/ha in maize, wheat and MWS, respectively. PRBs saved 29.2% of irrigation water and improved the MWS irrigation water productivity (WPI) by 24.5% over NTF. On average, mulching saved 23.8 mm/ha irrigation water over no‐mulch and improved WPI by 12.0%. PRBs with ex situ mulching produced wheat and maize equivalent system yields lower than NTF but improved WPI and soil biological properties. Jatropha and Sesbania mulching improved yield, water saving, WPI and system profitability. In limited irrigation and no crop residue availability conditions, Sesbania, Jatropha and Brassica vegetation material have potential applications for ex situ mulching under PRBs for water saving and NTF for productivity.  相似文献   

6.
晏娟  沈其荣  尹斌  张绍林  朱兆良 《土壤》2009,41(3):372-376
太湖地区过量施肥现象相当普遍, 导致 N 肥利用率低和 N 肥损失严重.为此,2004-2006年在中国科学院常熟农业生态实验站进行了连续稻麦轮作试验,研究不同施 N 量对该地区水稻和小麦产量及 N肥利用率的影响,以寻找较为适当的 N 肥施用量,该施 N 量即能使作物不减产,又要保持较高的 N 肥利用率.试验结果表明施 N 量超过150 kg/hm2 后,作物产量增加较少.当施N量从100 kg/hm2 增加到350 kg/hm2,连续3 年的水稻平均N肥吸收利用率(REN)为46.1% ~ 32.4%,两年小麦试验结果显示小麦的平均REN为 36.0% ~ 27.8%.相应的水稻和小麦的农学利用率(AEN)是15.0 ~ 5.56 kg/kg 和 17.1 ~ 6.91 kg/kg.研究还表明太湖地区水稻经济适宜施N量为209 kg/hm2,小麦是219 kg/hm2,在当地作物品种、气候条件和管理方式下,作物产量可分别达到8.2 t/hm2和4.7 t/hm2的高产,水稻的REN、N肥生理利用率(PEN)、AEN、N肥偏生产力(PFPN) 可保持为37.6%、29.5 kg/kg、11.0 kg/kg 和44.5 kg/kg;小麦则是31.4%、38.4 kg/kg、12.0 kg/kg和23.7 kg/kg.显然,适宜的施N量不仅没使作物减产,而且保证了作物最大的经济效益,并保持了较高的N肥利用率.  相似文献   

7.
    
Frontline demonstrations technology-transfer program (FLD-TTP) in pulses is a noble initiative of the government of India for higher technology adoption to bridge yield gaps. Thus, a study was conducted in Himachal Pradesh, India, on pulse productivity and profitability enhancement using proven technology besides yield gap analysis under FLD-TTP. Extension yield gaps varied by 485–550, 210–460, 470–640, 290–320, 494–600, and 277–512 kg ha?1 in blackgram (Vigna mungo), kidneybean (Phaseolus vulgaris), pigeonpea (Cajanus cajan), cowpea (Vigna sinensis), chickpea (Cicer arietinum), and lentil (Lens culinaris), respectively, in the current study. Greater technology gaps were registered in cowpea and chickpea and the least in kidneybean. It was inferred that by adopting improved pulse production technology, pulse productivity can be raised by 97–128, 39–82, 112–129, 59–65, 130–141, and 67–126% in blackgram, kidneybean, pigeonpea, cowpea, chickpea, and lentil, respectively. Improved technology package has also enhanced profitability and additional returns enhancing incremental benefit–cost ratio (1.25–7.21). Technology indexes in blackgram (34.3–34.7%), kidneybean (32–37.5%), pigeonpea (47–50.6%), cowpea (68.8–73%), chickpea (59–65%), and lentil (44.3–60.2%) revealed that demonstrated technology under FLD-TTP is quite feasible in prevailing farming situations in Himachal Pradesh, but it strongly emphasizes educating farmers intensively to adopt available technology. Improved technology has also raised water-use-efficiency in Kharif (0.89–1.32 kg ha?1 mm) and Rabi pulses (2.41–5.62 kg ha?1 mm). Overall, FLD-TTP has great potential to scale up pulse productivity and farmers’ livelihoods in Himachal Pradesh and collateral farming situations in the developing world to enhance agricultural production.  相似文献   

8.
    
A long-term field experiment was conducted at the research farm of the All-India Coordinated Research Project for Dryland Agriculture, Phulbani, Orissa, India, from 2001 to 2006 to identify the best integrated nutrient-use treatments for ensuring greater productivity, profitability, sustainability, and improved soil quality in pigeon pea + rice (two rows of pigeon pea followed by five rows of rice alternately) intercropping system. In all, nine treatments, eight comprising integrated nutrient-use practices, chemical fertilizer (CF), farmyard manure (FYM), and green leaf manure (GLM) to supply nitrogen (N) at 45 kg N ha–1 and one farmer's practice equivalent to 25 kg N ha–1 (FYM 5 t ha–1), were tested on a long-term basis. Results of the study revealed that 20 kg N ha–1 (FYM) + 25 kg N (CF) gave maximum mean rice grain yield of 1.52 t ha–1, followed by 20 kg N (GLM) + 25 kg N (urea) with grain yield of 1.51 t ha–1. In the case of pigeon pea, 30 kg N (FYM) +15 kg N (urea) gave maximum pigeon pea grain yield of 0.94 t ha–1, which was 34% greater than the sole application of chemical fertilizer. Pigeon pea grain yield tended to increase with increasing proportion of organic N in FYM + CF or GLM + CF combinations. Application of 20 kg N (FYM) + 25 kg N (urea) recorded maximum mean rice equivalent yield of 3.59 t ha–1 and sustainability yield index of 59%. While studying profitability, application of 20 kg N (FYM) + 25 kg N (CF) gave maximum net returns of US$168.94 ha–1. Impact of treatments on soil quality as assessed in terms of relative soil quality indices (RSQI) increased with increasing proportion of organic sources of N. Using an innovative and new approach, an index of integrated productivity–sustainability–profitability–soil quality performance index (I P,S,Pr,SQ) was computed to make a precise evaluation of the treatments. Based on this index, the order of performance of the treatments was T6 [20 N (FYM) + 25 N (CF)] (7.7) > T7 [30 N (FYM) + 15 N (CF) (6.9)] > T3 [20 N (GL) + 25 N (CF)] (6.8) > T5 [10 N (FYM) + 35 N (CF) (6.6)] > T9 [GL] (6.5) > T8 [CF] (6.2) > T4 [30 N (GL) + 15 N (CF)] (6.0) > T2 [10 N (GL) + 35 N (CF)] (5.7) > T1 [FYM at 5 t ha–1] (4.1). Thus, the results and the methodology adopted in this study using long-term data would be very useful to researchers, farmers, land managers, and other stakeholders not only in India but also across the world under similar climatic and edaphic situations.  相似文献   

9.
The imbalanced use of chemical fertilizers under intensive cultivation practices over a period of years leads to various soil-associated problems particularly nutrient availability. Thus, to examine the effect of long-term application of balanced and imbalanced inorganic fertilizer and farm yard manure (FYM) application on the chemical fraction of DTPA-extractable micronutrients under rice–wheat cropping system after 29 years, the observations were recorded from the ongoing field experiment at Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, India. An application of balanced inorganic fertilizer with FYM in rice, while without FYM in wheat significantly improved the DTPA-extractable Zn, Fe, Mn and Cu after rice and wheat crops in both the surface and sub-surface soil layers. Lowest DTPA-extractable Zn, Fe, Mn and Cu were recorded, in surface and sub-surface soil under rice and wheat crops in control. The highest DTPA-extractable Zn, in both surface and sub-surface layers of rice (3.31, 1.62 mg kg−1, respectively) and wheat (2.96, 0.99 mg kg−1, respectively) was recorded because of application of N180+P80+K40+Zn(F) + FYM in rice and N180+P80+K40+Zn(F) in wheat. However, the DTPA-extractable Fe, Mn and Cu were highest in rice and wheat because of N120+P40+K40+FYM and N120+P40+K40 application, respectively. The balanced use of inorganic fertilizer with FYM (N180+P80+K40+Zn(F) + FYM) in rice and without FYM [N180+P80+K40+Zn(F)] in wheat supported the highest rice (6.74 t ha−1) and wheat (3.50 t ha−1) grain yields, while lowest in control. Based on the study results, long-term application of FYM at 5 tonnes ha−1 in rice crop sustained the availability of DTPA-extractable cationic micronutrients to rice and wheat in Mollisols.  相似文献   

10.
蚯蚓活动对稻麦轮作系统中土壤微生物量碳的影响   总被引:8,自引:2,他引:8       下载免费PDF全文
在建立6 a的稻麦轮作田间小区试验中,研究了2001年稻季至2004年麦季(共6季)蚯蚓活动对土壤微生物量碳(MBC)的影响。本研究设计了秸秆施用方式(混施或表施)×蚯蚓(接种或剔除)以及对照共5个处理,各3个重复。实验结果表明:在该生态系统中,无论采用何种秸秆施用方式,蚯蚓活动均能显著提高土壤MBC(p<0.05)。秸秆的施用会减弱同年内土壤MBC在麦季成熟期高于稻季的趋势,而蚯蚓的作用使该差异变得更显著(p<0.05)。在0~5 cm土层中,蚯蚓对MBC的积极作用在秸秆混施时比表施更明显,在5~10 cm土层中则相反,而在10~20 cm土层中的作用效果基本一致。  相似文献   

11.
通过气体原位采集系统对稻麦轮作体系下土壤剖面不同层次N2O浓度动态变化进行了两年田间原位监测。共设4个处理:对照(N0S0)、施氮无秸秆(N1S0)、配施低量秸秆(N1S1)以及配施高量秸秆(N1S2)。结果表明,土壤剖面N2O浓度具有明显的时空分布特征:各处理在小麦和水稻生长前期均出现明显的浓度峰值,施加氮肥加大峰值,添加高量秸秆降低峰值。水稻生长季N2O主要产生在近表层土壤(7 cm和15 cm),N2O浓度两年均为15 cm≥7 cm≥30 cm≥50 cm;小麦生长季N2O主要产生在下层土壤(30 cm和50 cm)。与N0S0相比,施加氮肥3个处理均显著增加土壤剖面各层次的N2O浓度(p0.05),其中N1S0处理各土层N2O浓度是N0S0处理对应土层的2倍~3倍。配施高量秸秆(N1S2)能显著减少近表层土壤N2O浓度。  相似文献   

12.
The present investigation was carried out at CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh, India, during 2009–2011 to economize inorganic phosphorus (P) and enhance profitability of okra (Abelmoschus esculentus)–pea (Pisum sativum) cropping system through arbuscular mycorrhizal fungi (AMF). A field experiment was replicated thrice in a randomized block design comprising 14 treatments involving AMF (Glomus mosseae) at varying inorganic P (50%, 75%, and 100% of recommended soil test-based P dose) and irrigation regimes (40% and 80% available water capacity] in a Himalayan acid Alfisol. In okra, AMF inoculation at varying P and irrigation regimes registered higher P response ratio (PRR), net returns (10–18%), and benefit:cost (B:C) ratio (17–49%) compared to “generalized recommended P dose (GRD)” and their non-AMF counterparts. Similarly in pea, AMF inoculation at varying P and irrigation regimes again registered higher PRR, net returns (14–23%), and B:C ratio (10–58%) compared to GRD and non-AMF counterparts. Higher system productivity (7–16%) and profitability in terms of net returns (9–23%) and B:C ratio (10–54%) were also registered in AMF-imbedded treatments compared to non-AMF counterparts. Further, “AMF + 75% soil test-based P dose” at either of these irrigation regimes registered statistically similar okra–pea system productivity and profitability as that obtained under “100% soil test-based P dose” at either of two irrigation regimes, thus indicating an economy of soil test-based applied P dose by about 25%. Overall, the current study suggests that practice of AMF inoculation has great potential in enhancing system productivity and profitability besides cutting down about 25% inorganic P requirement in okra–pea production system in the Himalayan acid Alfisol.  相似文献   

13.
Continuous mono-cropping of rice-wheat (RW) system with conventional tillage (CT) based management practices have led to decline in soil health, groundwater table and farmers profit in north-west India. A medium-term (4 years) farmer’s participatory strategic research trial of basmati RW system was conducted to evaluate the effects of conservation agriculture (CA) based management practices on crop yields, water productivity, profitability and soil quality. Six treatments were compared varied in the cropping system, tillage, crop establishment and residue management. CA-based management under zero-till direct seeded rice-wheat-mungbean recorded 36% higher system yield than conventional till rice-wheat system (14.91 Mg ha?1). CA-based rice-wheat system and rice-wheat-mungbean system saved ~35% irrigation water compared to conventional RW system (2168 mm ha?1). Total water productivity (WPI+R) was improved by 67% with CA-based rice-wheat-mungbean system (0.90 kg grain m?3) over the conventional system. On system basis, 42% higher net return was recorded with CA-based rice-wheat-mungbean system compared to conventional system (USD 2570 ha?1). Mungbean integration in basmati RW system contributed 29% share in system net returns across the treatments. Soil chemical and biological properties were improved by ~40% and 150%, respectively, with CA-based management system.  相似文献   

14.
Abstract

The lack of water availability led scientists to breed short duration rice varieties despite their lower yield potential than the long duration rice varieties to ensure sustainability in lowland rice fields. It is not yet clear whether this reduction in yield is due to the reduced crop duration and/or is associated with the reduction in biomass and nutrient accumulation rates. Field experiments were conducted at low-fertile and fertile sites using 22 rice varieties differing in their duration (short, medium, and long), and yield potential (low and high). Straw and grain dry weights (DW), nitrogen (N), phosphorus (P), and potassium (K) concentrations were measured. For rice varieties grown in the low-fertility site, straw and grain DWs, biomass accumulation rate (g plant?1?day?1), and N, P, and K accumulation rates (mg plant?1?day?1) were reduced by 63, 61, 56, 44, 79, and 43%, respectively, than those observed in the fertile site. At the low-fertile site, short duration rice varieties had only 64% straw and 76% grain DWs, 67% biomass accumulation rate, and 87% N, 82% P, and 64% K accumulation rates than those observed in medium and long duration rice varieties. The differences were less pronounced at the fertile site. Reduced biomass, N, P, and K accumulation rates, apart from the reduced crop duration, hindered grain yield and thereby the sustainability of short duration rice varieties, particularly at low-fertile sites. Thus, rice breeding programs for low-fertile soils and short duration varieties should specifically be designed.  相似文献   

15.
长三角地区稻麦轮作土壤养分对秸秆还田响应-Meta分析   总被引:1,自引:1,他引:1  
研究旨在明确稻麦轮作下秸秆还田对土壤基础养分的影响。以稻麦轮作系统为研究对象,采用Meta分析方法定量研究了土壤基础养分对秸秆还田的响应及其影响因素。结果表明,短期内(<2年)秸秆还田能够显著提升土壤有机碳和活性有机碳的含量,其中活性有机碳对秸秆还田的响应程度要高于总有机碳。低秸秆还田量(RS <3750 kg hm^-2和WS <3000 kg hm^-2)对土壤基础养分的提升效果不显著,而全量秸秆还田(RS 3000~6000 kg hm^-2和WS 3750~7000 kg hm^-2)能够显著提升土壤速效磷、有机碳和活性有机碳的含量。对于不同耕作措施而言,旋耕或翻耕措施均可以显著提升土壤有机碳的含量;此外,旋耕显著提高全氮和活性有机碳的含量,翻耕显著提高土壤速效磷和速效钾的含量。稻麦轮作下秸秆全量还田配合旋耕或者翻耕措施能够增加土壤基础养分含量,达到土壤地力培育的效果。  相似文献   

16.
Rice is a major cereal crop in Himachal Pradesh, a Himalayan state of India, where paddy acreage is about 78,000 ha with a low average yield of 19.62 q ha?1 due to rainfed upland farming. High seeding rates and poor resource-use efficiency of conventional fertilizer nitrogen (N) management practices in rainfed upland paddy have also been major production constraints in rainfed upland ecosystems. To validate and refine the production technology on seed rate and fertilizer N management, the Farm Science Centre, Sundernagar, India, conducted numerous on-farm trials (OFTs) during 2006–2010 under an on-farm participatory technology development approach to enhance resource use efficiency through these resource conservation technologies and boost the paddy productivity in the region. Results of two OFTs conducted during Kharif 2006 in the Mandi District of Himachal Pradesh on different seed rates under different sowing methods on VL Dhan-221 and Sukaradhan-1 (HPR-1156) cultivars suitable for rainfed upland conditions revealed that the seed rate at 80 kg ha?1 sown in rows 20 cm apart resulted in the greatest average paddy productivity to the tune of 25.6 q ha?1 besides greater profitability, followed by a seed rate at 60 kg ha?1 sown in rows 20 cm apart (25.2 q ha?1), over the earlier State Agricultural University (SAU)–recommended practice, that is, seed rate at 100 kg ha?1 in rows 20 cm apart. This refinement in the seed rate was accepted by the participating farmers of the region. The greatest average benefit/cost (B/C) ratio was observed in plots with seed rate at 60 kg ha?1 sown in rows 20 cm apart. Based on these results and data compilation from other locations of the state, now the SAU has refined the seed rate from earlier recommendation of 100 kg ha?1 to 60 kg ha?1 in rows 20 cm apart as well as 80 kg ha?1 through broadcast method under rainfed upland paddy in Himachal Pradesh. Results of two OFTs conducted during Kharif 2009 on integrated nutrient management in rainfed upland paddy revealed that farmyard manure (FYM) at 10 t ha?1 + nitrogen, phosphorus, and potassium (N, P, K) at 15:30:30 kg ha?1 at sowing followed by 15 kg N ha?1 15 days after sowing (DAS) and remaining the N [i.e., 30 kg N ha?1] at tillering (45–50 DAS) resulted in the greatest grain yield of 29.85 and 31.67 q ha?1 in VL Dhan-221 and HPR-1156, respectively, with respective greater yields of 35.99 and 36.51% over farmers’ practice, besides better profitability. To further standardize fertilizer N split doses and assess their effect on paddy productivity, another OFT was conducted during Kharif 2010 under rainfed upland paddy conditions in HPR-1156. The results revealed that NPK at 60:30:30 kg ha?1 (whole of P and K as basal, 50% N at 15 DAS, 25% N each at 45–50 DAS and 70–75 DAS splits) resulted in better grain yield (34.3 q ha?1) and net profitability (?29,786 ha?1) over other treatments. Overall, it is concluded that these resource conservation technologies developed under the OFT participatory approach can enhance the rainfed upland paddy productivity and strongly show that there is dire need to split the N requirement of rainfed upland paddy in 2–3 splits to reduce the fertilizer N losses, enhance resource-use efficiency, and increase productivity and profitability in Himachal Pradesh, India.  相似文献   

17.
猪粪沼液施用对稻、麦产量和氮磷吸收的影响   总被引:11,自引:0,他引:11  
黄红英  曹金留  常志州  曹云 《土壤》2013,45(3):412-418
在江苏太湖稻麦轮作区,开展了连续2年不同沼液替代化肥比例及沼液基追比的等氮田间试验,结果表明:单施化肥处理(NPK)及沼液化肥配施处理水稻、小麦生物量及产量均显著高于无肥对照,各处理以75%沼液替代比例分3次施入(N75%)处理的水稻生物量和产量为最高,其生物量及产量分别比单施化肥处理提高2.7%和7.5%;而小麦生物量和产量以50%沼液替代比例(N50%)处理最高,其生物量和产量比单施化肥处理分别提高15.9%和7.8%.沼液化肥配施对稻麦的增产作用主要体现在提高水稻与小麦总穗数及穗粒数上;各处理水稻、小麦的氮素累积量和氮素当季表观利用率分别以75%(N75%)和50%(N50%)替代比例为最高;在50%~ 100%替代比例内沼液分次施用,水稻、小麦氮肥农学效率、偏生产力都高于化肥处理.水稻、小麦不同器官的氮分配比例显示,沼液配施化肥促进氮素向籽粒转移;相同沼液替代比例下,沼液分次施用水稻、小麦的产量、氮素累积量及氮素利用率均较基肥一次性施入高.稻、麦根、叶部磷含量分别以N75%和N100%处理最高.以上表明稻麦配施50% ~ 75%的沼液分3次施用,可获得与纯化肥处理相当的产量,且在一定程度上提高稻麦氮素利用率.  相似文献   

18.
采用涡度相关技术对我国长三角地区典型稻麦轮作农田生态系统(2011年11月—2012年10月)的CO2通量进行连续观测,分析了农田生态系统净碳交换(NEE)的变化特征及其环境影响因子。结果表明:长三角地区稻麦轮作生态系统NEE具有明显的日变化和季节变化特征,具有很强的固碳能力。NEE月平均日变化总体呈\"U\"型曲线,不同月份\"U\"型高度不同;NEE季节变化则呈显著的\"W\"型双峰特征,分别对应两季作物(小麦、水稻)的生长季节。小麦/水稻月平均最大碳吸收峰出现在4月/8月,分别达到-1.12 mg·m-2·s-1、-1.45 mg·m-2·s-1;日最大累积碳吸收量分别为-12.88 g(C)·m-2·d-1、-10.63 g(C)·m-2·d-1,长三角地区稻麦轮作生态系统年固碳量达到-769.61 g(C)·m-2·a-1。光合有效辐射是影响白天NEE的主要环境影响因子,Michaelis-Menten方程可以很好地表示作物生长季节两者之间的关系(R2=0.37~0.83);在同一光合有效辐射条件下,长三角地区稻麦轮作生态系统白天NEE随着气温的升高而增加,而当光合有效辐射大于1 800μmol·m-2·s-1时存在着一定程度的光抑制。温度是影响夜间农田生态系统呼吸特征的主要环境影响因子,长三角地区稻麦轮作生态系统夜间NEE与不同层次温度之间均存在显著的指数相关关系,但是不同作物夜间NEE的最适温度略有差异,小麦夜间NEE与土壤温度(10 cm)相关性最好(0.60),而水稻夜间NEE与气温相关系数最高(0.49)。  相似文献   

19.
太湖地区稻麦高产的氮肥适宜用量及其对地下水的影响   总被引:76,自引:11,他引:76       下载免费PDF全文
通过田间定位试验与土壤渗漏仪 (Lysimeter)模拟试验 ,研究太湖地区稻麦生产中氮肥过量施用带来氮肥利用率低与环境污染问题 ,探讨本区稻麦高产与减少氮肥淋洗的适宜氮肥用量。初步试验结果表明 ,氮肥适宜用量随着稻麦产量的提高而增加 ,本区两种主要土壤水稻、小麦高产的氮肥适宜用量(以N计 )分别为 2 2 5~ 2 70kghm- 2 与 1 80~ 2 2 5kghm- 2 ;适宜的氮肥用量使单位面积的有效穗数和每穗的结实颖花数均高 ,因而产量高。氮素的淋洗以NO- 3 N为主 ,主要发生在麦季与泡田插秧初期 ,其含量随着施氮量的增加而增加 ,每hm2 施N 2 2 5kg的模拟试验 ,麦季渗漏液的NO- 3 N浓度在 5 4~ 2 1 3mgL- 1,有60 %的样次超过污染标准 (NO- 3 N 1 0mgL- 1) ;田间试验 ,麦季施N量在 2 70~ 31 5kghm- 2 范围内 ,地下水NO- 3 N浓度在 1 9~ 1 1 0mgL- 1,有 2 0 %的样次接近 ,1 0 %的样次超过污染标准。长期NO- 3 N渗漏累积 ,势必对地下水构成潜在威胁。  相似文献   

20.
生物质热解提质制高品位生物油技术是当前研究热点,该文基于能值投入产出结构和能值指标,考虑环境因素,运用能值分析方法对樟子松快速热解催化加氢提质(方案1)和超临界乙醇提质(方案2)制高品位生物油系统进行综合评价,并分别从生产效率、自然环境支持力以及可持续性3个角度进行对比。结果表明,在生产等量燃料情况下,方案2消耗的太阳能更少,效率更高,但在人类社会投入及总投入方面方案1少于方案2,方案1系统的可再生率更高,对环境的压力更小,可持续性更好,工艺更受环境支持。该文为提高生物质热解提质制生物油系统的综合性能提供理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号