首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aiming at learning the effects of soil conditions and cultivar on the bacterial diversity in the rhizosphere of soybean (Glycine max(L.) Merr.), bacterial communities associated with four soybean cultivars grown in two soils were revealed by terminal-restriction fragment length polymorphism (T-RFLP) combined with sequencing analysis of a 16S rDNA clone library. Lower bacteria diversity was found in soil A which has higher salinity and nutrient contents, while the highest bacterial diversity was found in the rhizosphere of cv. Jidou 12 in both soils. These results revealed that both the soil conditions and soybean cultivar affected the community composition of rhizosphere bacteria, but the effect of soil conditions was greater than that of soybean cultivar as demonstrated by the principal component analysis. It also revealed that the abundant rhizosphere bacteria may also the main symbiotic or non-symbiotic nodule endophytes.  相似文献   

2.
The relative importance of specific plant properties versus soil characteristics in shaping the bacterial community structure of the rhizosphere is a topic of considerable debate. Here, we report the results of a study on the bacterial composition of the rhizosphere of the wild plant Carex arenaria (sand sedge) growing at 10 natural sites in The Netherlands. The soil properties of the sandy soils at these sites were highly disparate, most notably in pH, chloride and organic matter content. Rhizosphere and bulk soil bacterial communities were examined by culture-independent means, namely, 16S rDNA-directed PCR-DGGE profiling. Large differences were observed between the bacterial communities of the different sites for both bulk and rhizosphere soil. Cluster analysis of bacterial profiles revealed that the rhizosphere community of each site was generally more closely related to the bulk soil community of that site rather than to rhizosphere communities of other sites. Hence, bacterial community structure within the rhizosphere of C. arenaria appeared to be determined to a large extent by the bulk soil community composition. This conclusion was supported by a reciprocal planting experiment, where C. arenaria shoots of different sites yielded highly similar rhizosphere communities when planted in the same soil.  相似文献   

3.
Abstract

We studied the effects of the application of organic matter (OM) and chemical fertilizer (CF) on soil alkaline phosphatase (ALP) activity and ALP-harboring bacterial communities in the rhizosphere and bulk soil in an experimental lettuce field in Hokkaido, Japan. The ALP activity was higher in soils with OM than in soils with CF, and activity was higher in the rhizosphere for OM than in the bulk soil. Biomass P and available P in the soil were positively related to the ALP activity of the soil. As a result, the P concentration of lettuce was higher in OM soil than in CF soil. We analyzed the ALP-harboring bacterial communities using polymerase chain reaction based denaturing gradient gel electrophoresis (DGGE) on the ALP genes. Numerous ALP genes were detected in the DGGE profile, regardless of sampling time, fertilizer treatment or sampled soil area, which indicated a large diversity in ALP-harboring bacteria in the soil. Several ALP gene fragments were closely related to the ALP genes of Mesorhizobium loti and Pseudomonas fluorescens. The community structures of the ALP-harboring bacteria were assessed using principal component analysis of the DGGE profiles. Fertilizer treatment and sampled soil area significantly affected the community structures of ALP-harboring bacteria. As the DGGE bands contributing to the principal component were different from sampling time, it is suggested that the major bacteria harboring the ALP gene shifted. Furthermore, there was, in part, a significant correlation between ALP activity and the community structure of the ALP-harboring bacteria. These results raise the possibility that different ALP-harboring bacteria release different amounts and/or activity of ALP, and that the structure of ALP-harboring bacterial communities may play a major role in determining overall soil ALP activity.  相似文献   

4.
Aspalathus linearis is a commercially important plant species endemic to the Cape Floristic Region of South Africa and is used to produce a herbal tea known as rooibos tea. Symbiotic interactions between A. linearis and soil bacteria play an important role in the survival of Aspalathus plants in the highly nutrient-poor, acidic fynbos soil. The aim of this study was to characterize and compare rhizosphere and bulk soil bacterial communities associated with natural and commercially grown A. linearis, as well as the effect of seasonal changes on these communities. Bacterial communities were characterized using high throughput amplicon sequencing, and their correlations with soil chemical properties were investigated. The N-fixing bacterial community was characterized using terminal restriction fragment length polymorphism and real time quantitative polymerase chain reaction. Actinobacteria, Proteobacteria, and Acidobacteria were the most dominant bacterial phyla detected in this study. Highly similar bacterial communities were associated with natural and commercially grown plants. Significant differences in the bacterial community were observed between rhizosphere and bulk soils collected in the dry season, while no significant differences were detected in the wet season. This study provides insights into bacterial community structure and potential factors shaping bacterial community structure with commercially important A. linearis.  相似文献   

5.
The Glycine subgenus Soja includes two species, cultivated soybean [(Glycine max (L.) Merr.)] and the progenitor wild soybean (G. soja). However, a morphologically intermediate form, the semi-wild soybean (G. gracilis), exists between the two species, and its taxonomic position is under debate. In this study, we evaluated phylogenetic relationships and occurrence events within the subgenus Soja based on genetic variation of SSR loci using a set of accessions comprising wild soybeans (≤3.0?g 100-seed weight), semi-wild soybeans (>3.0?g) and soybean landraces (≥4.0?g). The results showed that semi-wild soybean accessions collected in natural fields should be treated as a variant of G. soja and not of G. max, and were genetically differentiated from the soybean landraces, even large-seeded semi-wild soybean accessions (6.01–9.0?g) with seed weights overlapping with or exceeding those of soybean landraces. Evolutionary bottleneck analysis indicated that semi-wild soybean is not a transitional form in the domestication of cultivated soybeans from wild soybean. G. soja contained two genetically differentiated forms, small-seeded type (typical, plus 2.01–2.50?g) and a large-seeded type (2.51–3.0?g). Genetically, the large-seeded wild soybean was closer to the semi-wild soybean, although in morphology it resembled the typical wild soybean. Ancestry analysis confirmed that cultivated soybean genes have introgressed into modern wild soybean populations. The green cotyledon character and other rare characters such as white flower, grey pubescence, no-seed bloom, and coloured seed-coats (brown, green, and yellow) in wild soybean were shown to be involved in introgression from cultivated soybeans.  相似文献   

6.
黄河三角洲刺槐根际与非根际细菌结构及多样性   总被引:4,自引:0,他引:4  
为精确分析黄河三角洲刺槐根际与非根际土壤细菌群落定殖情况,本研究采用高通量测序方法对刺槐根际与非根际土壤细菌结构及多样性进行了研究。研究表明,根际土壤细菌共有36门214属,非根际土壤细菌共有33门153属。变形菌门(Proteobacteria)、放线菌门(Actinobacteria)、酸杆菌门(Acidobacteria)细菌丰度超过15%,是根际与非根际土壤中的优势菌落。根际与非根际土壤中酸杆菌门、硝化螺旋菌门(Nitrospirae)丰度差异显著。根际土壤中红游动菌属(Rhodoplanes)、溶杆菌属(Lysobacter)、热单胞菌属(Thermomonas)、链霉菌属(Streptomyces)及非根际土壤中红游动菌属、溶杆菌属、链霉菌属、Kaistobacter细菌丰度超过4%。根际土壤中固氮菌丰度显著高于非根际土壤,解磷、解钾细菌丰度差异不显著。根际与非根际土壤细菌Chao丰富度分别为2 054、2 376,差异显著。根际与非根际土壤细菌之间的权重(Weighted Unifrac)距离在0.12~0.25之间。综上所述,黄河三角洲刺槐根际与非根际土壤细菌结构具有一定差异,多样性差异显著。  相似文献   

7.
In this study, we compared the differences of bacterial abundance and diversity between rhizosphere and surrounding bulk soils under soil salinization and petroleum contamination in the Yellow River Delta on a 110-km-distance scale. In comparison with bulk soils, rhizosphere soils were mainly characterized by lower salinity and higher water content in saline soils. For bacterial abundance, the numbers of total bacteria and hydrocarbon degraders were significantly higher in rhizosphere soils than those in bulk soils. Although there was no significant difference in total petroleum hydrocarbon (TPH) concentration between the two types of soils, TPH had distinctly different effects on bacterial abundance in rhizosphere and bulk soils. TPH concentration was the major determinant of total bacterial abundance and had positive effects on abundances of hydrocarbon degraders. However, the abundances of total bacteria and hydrocarbon degraders in bulk soils were primarily determined by soil salinity and water content. Great abundance of rhizosphere bacteria suggested that plant roots could alleviate the stresses from soil salinization and provide more favorable microhabitats for bacterial growth. TPH had positive effects on bacterial diversity of both rhizosphere and bulk soils. Our results support the view that petroleum in the environments functions as both toxic chemicals and carbon sources to soil bacteria. Great abundance and diversity of total bacteria in plant rhizospheres would potentially improve the roles of bacteria in maintaining ecosystem functioning in the degraded ecosystems. Our results would improve our understanding of the relationships between rhizosphere effects and multiple environmental stresses that control the development of bacterial community in fragile anthropologically-affected ecosystems.  相似文献   

8.
 This review summarizes and discusses the current knowledge and the, as yet, unanswered questions on the interactions of Azospirillum spp. in bulk soil (but not in the rhizosphere). It contains sections on the isolation of these bacteria from tropical to temperate soils, and on their short- and long-term persistence in bulk soil. The interactions of these bacteria with soil particles and minerals such as clay, sand and Ca, and the effect of soil pH, soil redox potential, and the cation exchange capacity of the soil on them is demonstrated. Data is presented on the distribution of Azospirillum spp. in soils, on their production of fibrillar material essential for anchoring the cells to soil particles, on the effects of soil irrigation, and of external soil treatments, and on the effect of soil C and C used in bacterial inoculants on the cells. It shows that root exudates possibly govern bacterial motility in the soil. Finally, the effect of pesticide applications, the relationships with other soil microorganisms such as Bdelovibrio spp., Bradyrhizobium spp., and phages, and the potential use of a community-control model of Azospirillum spp. in soil and in the rhizosphere is suggested. Received: 11 November 1998  相似文献   

9.
Wild soybeans, Glycine soja, are a source of genetic variation to improve soybeans. To improve the efficiency evaluation of conserved germplasm a core or mini-core collection approach that maximizes allelic diversity in a proportion of the whole collection has frequently been advocated. The genetic diversity of a wild soybean collection (1,305 accessions) plus Japanese cultivated soybeans (53 accessions) were analyzed at 20 SSR marker loci. Higher levels of allelic diversity were found in wild soybeans (28 alleles per locus) than Japanese cultivated soybean (five alleles per locus). The genetic distance between wild soybeans from different regions reflected their proximity. Accessions from Russia consisted of a diverse array of alleles resulting in accessions being spread further apart in a PCA plot than accessions from other regions. Accessions of wild soybean from Korea included many rare alleles and thus had a high representation in the core collection. The two core collections developed here, traditional and mini, consisted of 192 accessions with 97% of the allelic diversity (14% of the whole collection) and 53 accessions with 62.4% of the allelic diversity (5% of the whole collection), respectively.  相似文献   

10.
Proteolytic bacterial communities, which mineralize organic nitrogen, play a key role in agricultural systems. In this study, alkaline metalloprotease (apr) gene fragments from proteolytic bacteria were investigated in bulk and rhizosphere paddy soil from four fields under organic management (for 2, 3, 5, and 9 years), and from one field under conventional management (for 2 years). We analyzed the abundance and structure of the proteolytic bacterial communities using real-time quantitative PCR and denaturing gradient gel electrophoresis. Our results showed that the abundance of proteolytic bacteria ranged from 1.57?×?108 to 8.02?×?108?copies/g of soil. In addition, the abundance of the proteolytic bacteria in the paddy soils under organic management was significantly higher than those in the paddy soil under conventional management. Moreover, the gene copy numbers in the rhizosphere soils were significantly higher than those in the bulk soils. The abundance of proteolytic bacteria tended to increase with the duration of organic management, with the highest abundance being found in the soil that had been under organic management for 5 years. However, the proteolytic bacteria communities in the paddy soils were not significantly affected by management practices. Phylogeny analysis showed that all gel bands obtained represented genes from Pseudomonas. Additionally, correlation analysis and canonical correspondence analysis showed that C/N, C, and N were important factors that influenced the abundance and community structure of the proteolytic bacteria. These results suggest that proteolytic bacteria are indicators in organic management systems, depolymerize organic N and hence maintain soil sustainability.

Abbreviations: CM: conventional management; OM: organic management; DGGE: denaturing gradient gel electrophoresis; qPCR: real-time quantitative PCR detecting system; COFCC: China organic food certification center; CCA: canonical correspondence analysis  相似文献   

11.
We studied the effects of the application of organic (OM) and inorganic fertilizer (CF) on soil protease activity and proteolytic bacterial communities in rhizosphere and bulk soil on an experimental lettuce field in Hokkaido, Japan. The protease activity always was higher in soils of the OM than with the CF treatment, and also higher in the rhizosphere than in the bulk soil. We analyzed proteolytic bacterial communities by denaturing gradient gel electrophoresis (DGGE) of the alkaline metalloprotease (apr) and neutral metalloprotease (npr) genes. Most apr forms detected were closely related to apr of Pseudomonas fluorescens, and all npr variants closely resembled the gene of Bacillus megaterium. These results were consistent with findings from tests using cultured bacterial communities, indicating a high specificity of our PCR-DGGE for amplifying apr and npr genes. The community compositions of proteolytic bacteria were assessed by principal component analysis of the DGGE profiles. There were significant differences in the effects of CF and OM on the community compositions of apr- and npr-expressing bacteria, and the communities of the two types of bacteria played different roles in rhizosphere and bulk soil. We found significant correlations between the protease activity and the communities of the two types of bacteria. The results indicate that different proteolytic bacteria release different amounts or activities of protease, and that the composition of proteolytic bacterial communities may play a major role in determining overall soil protease activity.  相似文献   

12.
健康与罹患青枯病的番茄土壤细菌群落特征比较   总被引:1,自引:1,他引:1  
应用实时荧光定量PCR及MiSeq高通量测序技术,全面地研究了连作番茄田块中健康与感染青枯病植株周围土体及根际土壤细菌群落结构和组成.结果表明:健康番茄土体土壤的pH及全碳含量显著高于感病番茄土体土壤;土体及根际土壤的细菌群落结构和组成明显不同于感病番茄土体及根际土壤细菌群落.与感病番茄根际相比,健康番茄根际细菌的数量...  相似文献   

13.
There is an increasing concern about rice (Oryza sativa L.) soil microbiomes under the influence of mixed heavy metal contamination.We used the high-throughput Illumina MiSeq sequencing approach to explore the bacterial diversity and community composition of soils in four paddy fields,exhibiting four degrees of mixed heavy metal (Cd,Pb and Zn) pollution,and examined the effects of these metals on the bacterial communities.Our results showed that up to 2 104 to 4 359 bacterial operational taxonomic units (OTUs) were found in the bulk and rhizosphere soils of the paddy fields,with the dominant bacterial phyla (greater than 1% of the overall community) including Proteobacteria,Actinobacteria,Firmicutes,Acidobacteria,Gemmatimonadetes,Chloroflexi,Bacteroidetes and Nitrospirae.A number of rare and candidate bacterial groups were also detected,and Saprospirales,HOC36,SC-I-84 and Anaerospora were rarely detected in rice paddy soils.Venn diagram analysis showed that 174 bacterial OTUs were shared among the bulk soils with four pollution degrees.Rice rhizosphere soils displayed higher bacterial diversity indices (ACE and Chao 1) and more unique OTUs than bulk soils.Total Cd and Zn in the soils were significantly negatively correlated with ACE and Chao 1,respectively,and the Mantel test suggested that total Pb,total Zn,pH,total nitrogen and total phosphorus significantly affected the community structure.Overall,these results provided baseline data for the bacterial communities in bulk and rhizosphere soils of paddy fields contaminated with mixed heavy metals.  相似文献   

14.
It has been reported for many soils that maize (Zea mays L.) has a higher soil‐P critical level than soybean (Glycine max L.) and sunflower (Helianthus annuus L). The objective of this work was to compare the rhizosphere P depletion in these three species in order to investigate if they differ in their capacity to acquire soil P. Sequential P fractionation and pH were determined in rhizosphere and nonrhizosphere soil samples from field and greenhouse experiments. Neither sunflower (the species with highest rhizosphere acidification) nor soybean or maize showed a significant relationship between P depletion and rhizosphere pH. The labile P fraction and the NaOH‐Pi fraction had lower values in the rhizosphere than in the bulk soil in 38% and 77% of the studied cases, respectively. Sunflower and especially maize presented a more intense Pi depletion than soybean. The comparison between sunflower and maize revealed that neither of them took a clear advantage over the other in terms of P depletion. Rhizosphere Pi depletion was associated with the amount of P acquired by the plants. We conclude that the accessibility to different P pools does not explain the differences in soil‐P critical levels among the three species.  相似文献   

15.
东北地区四种农作物根际磷细菌的分布   总被引:4,自引:0,他引:4  
从小麦、水稻、玉米,大豆根际土壤中磷细菌数量及其群落结构、多样性和相似性等几个方面,对东北地区代表性农作物根际磷细菌生态分布规律进行了系统研究.结果表明,4种作物根际土壤中分布大量解磷菌和溶磷菌,其中解磷菌达到2.15~6.68×105cfu·g-1、溶磷菌达到0.7~3.9×104cfu·g-1,解磷菌数量多于溶磷菌;作物根际土壤有效磷含量与磷细菌数量问无直接相关性;东北地区农作物根际磷细菌种群结构复杂,小麦、玉米、水稻、大豆根际土壤解磷菌分别涉及9个、11个、13个、12个菌属,溶磷菌分别涉及9个、8个、9个、7个菌属:4种主要农作物根际土壤中分布的磷细菌具有较高的多样性指数,且一般来说根际土壤中解磷菌多样性更高;作物根际磷细菌组成相似性系数在0.50~1.00之间,总体处于较高水平,且溶磷菌的相似性系数高于解磷菌.  相似文献   

16.
In literature, it remains little explored the soil–plant relationships within Capsicum agroecosystem. We studied how chili peppers plants contribute to influence microbial diversity. Across the bulk and rhizosphere soils of three genotypes of Capsicum annuum, the structure, the diversity and the abundance of bacteria was evaluated by means of DNA-based culture-independent approach. Furthermore, 515 bacterial strains isolated from the bulk and rhizosphere soil, were used to investigate the effect of C. annuum on four plant growth promoting bacteria (PGPB) abilities. Our results indicated that the three genotypes influence differently the physical-chemical and microbial properties of soil around the roots. Bacterial abundance resulted in increasing with different trend rhizospheres to bulk soil ratio; however, bacterial diversity was significantly higher only in the rhizosphere of one genotype. Only the indolic compounds production was stimulated in the rhizosphere of the three cultivars. Inhibition of Fusarium oxysporum was stimulated just with one genotype, where 53 of rhizosphere isolates showed more than 10% of inhibition. 165 of isolates produced siderophores and the major part belonged to the high production level. Interactions between PGPB features revealed that anti-phytopathogenic activity was not associated with the others characteristics; however, phosphate solubilization was associated with both siderophores and indolic compounds productions.  相似文献   

17.
This study aimed to investigate the correlation between organic acids secreted by two soybeans genotypes, BX10 [aluminum (Al) tolerant] and BD2 (Al sensitive) and rhizosphere microbial communities in acid soil. The organic acids secreted by BX10 and BD2 were significantly different at each growth stage. Both fungi/bacteria and gram-negative bacteria/gram-positive bacteria ratio values were affected by the two soybean genotypes at different growth periods. Compared with BD2, phospholipid fatty acid of BX10 showed higher Shannon diversity at the seedling and flowering stages, but had lower Shannon diversity at the pod-setting stage. Redundancy analysis and canonical correspondence analysis revealed that the organic acids including tartaric acid, lactic acid, and citric acid significantly affected rhizosphere bacterial communities. Sequence analysis indicated that uncultured Acidobacterium, Chloroflexi, and actinomycete enriched in BD2, whereas some uncultured bacteria enriched in BX10. The two soybean genotypes exhibit distinct rhizosphere microbial communities; root organic acid exudates may affect composition of microbial communities of rhizosphere soil: tartaric acid may negatively affect rhizosphere bacteria at the seedling stage, lactic acid may positively affect rhizosphere actinomycetes at the flowering stage, and succinic acid may stimulate fungi at the pod-setting stage.  相似文献   

18.
薛壮壮  冯童禹  王超  沈仁芳 《土壤》2022,54(4):733-739
为了研究土地利用方式对酸性红壤丛枝菌根真菌(arbuscular mycorrhizal fungi, AMF)群落的影响,调查了酸性红壤4种土地利用方式(草地、玉米、花生和大豆)下非根际和根际土壤AMF群落多样性和组成结构。结果表明:土地利用方式显著影响了AMF群落优势属球囊霉属(Glomus)和巨孢囊霉属(Paraglomus)的相对丰度,但是根际作用影响不明显。土地利用方式而非根际作用显著影响了AMF群落香农指数和物种丰富度,其中大豆地表现出最低的香农指数和物种丰富度。土地利用方式和根际作用都显著影响AMF群落组成结构,但是土地利用方式的作用强度明显高于根际作用。球囊霉属主要解释了不同土地利用方式之间的AMF群落组成差异。土壤p H是影响土壤AMF群落结构的最关键因子。因此,土地利用方式比根际作用表现出对酸性红壤AMF群落更大的影响,展现了土地利用变化在影响土壤AMF群落方面的重要作用。  相似文献   

19.
《Applied soil ecology》2007,37(2-3):147-155
A number of studies have reported species specific selection of microbial communities in the rhizosphere by plants. It is hypothesised that plants influence microbial community structure in the rhizosphere through rhizodeposition. We examined to what extent the structure of bacterial and fungal communities in the rhizosphere of grasses is determined by the plant species and different soil types. Three grass species were planted in soil from one site, to identify plant-specific influences on rhizosphere microbial communities. To quantify the soil-specific effects on rhizosphere microbial community structure, we planted one grass species (Lolium perenne L.) into soils from three contrasting sites. Rhizosphere, non-rhizosphere (bulk) and control (non-planted) soil samples were collected at regular intervals, to examine the temporal changes in soil microbial communities. Rhizosphere soil samples were collected from both root bases and root tips, to investigate root associated spatial influences. Both fungal and bacterial communities were analysed by terminal restriction fragment length polymorphism (TRFLP). Both bacterial and fungal communities were influenced by the plant growth but there was no evidence for plant species selection of the soil microbial communities in the rhizosphere of the different grass species. For both fungal and bacterial communities, the major determinant of community structure in rhizospheres was soil type. This observation was confirmed by cloning and sequencing analysis of bacterial communities. In control soils, bacterial composition was dominated by Firmicutes and Actinobacteria but in the rhizosphere samples, the majority of bacteria belonged to Proteobacteria and Acidobacteria. Bacterial community compositions of rhizosphere soils from different plants were similar, indicating only a weak influence of plant species on rhizosphere microbial community structure.  相似文献   

20.
Zhang  Wenyuan  Liu  Shun  Zhang  Manyun  Li  Yinan  Sheng  Keyin  Xu  Zhihong 《Journal of Soils and Sediments》2019,19(7):2913-2926
Purpose

Rhizosphere and fertilization might affect soil microbial activities, biomass, and community. This study aimed to evaluate the impacts of Phyllostachys edulis (moso bamboo) rhizospheres on soil nutrient contents and microbial properties in a moso bamboo forest with different fertilizer applications and to link soil microbial activities with abiotic and biotic factors.

Materials and methods

The experiment included three treatments: (1) application of 45% slag fertilizer (45%-SF); (2) application of special compound fertilizer for bamboos (SCF); and (3) the control without any fertilizer application (CK). Simultaneously, bulk soils and 0.5, 2.5, 4.5, and 6.5-year-old (y) bamboo rhizosphere soils were selected. Soil nutrient contents were analyzed. Microbial activities were evaluated based on the activities of soil enzymes including β-glucosidase, urease, protease, phosphatase, and catalase. The total microbial biomass and community were assessed with the phospholipid fatty acids (PLFAs) method.

Results and discussion

In the CK and SCF treatments, organic matter contents of rhizosphere soils were significantly higher than those of bulk soils. Soil β-glucosidase, urease, protease, phosphatase, and catalase activities in rhizosphere soils were higher than those of bulk soils, with the sole exception of β-glucosidase of 0.5 y rhizosphere soil in the 45%-SF treatment. Compared with the CK treatment, fertilizer applications tended to increase soil total PLFAs contents and changed soil microbial community. Moso bamboo rhizospheres did not significantly increase the total microbial biomass. In the SCF treatment, the Shannon index of bulk soil was significantly lower than those of rhizosphere soils.

Conclusions

Our results suggested that both rhizospheres and fertilizer applications could change the soil microbial community structures and that moso bamboo rhizosphere could increase microbial activity rather than biomass in the forest soils with different fertilizer applications.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号