首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
盆栽试验研究了土壤不同施Cd水平(0、20、50 mg kg-1)下,接种矿区污染土壤中丛枝菌根真菌对万寿菊根系侵染率、植株生物量及Cd吸收与分配的影响。结果表明:接种丛枝菌根真菌显著提高了Cd胁迫下万寿菊的根系侵染率和植株生物量;随着施Cd水平提高,各处理植株Cd浓度和Cd吸收量显著增加。各施Cd水平下万寿菊地上部Cd吸收量远远高于根系Cd吸收量,尤其在20 mg kg-1施Cd水平下,接种处理地上部Cd吸收量是根系的3.90倍,对照处理地上部Cd吸收量是根系的2.33倍;同一施Cd水平下接种处理地上部Cd吸收量要显著高于对照。总体上,试验条件下污染土壤中分离的丛枝菌根真菌促进了万寿菊对土壤中Cd的吸收,并增加了Cd向地上部分的运转,表现出植物提取的应用潜力。  相似文献   

3.
    
Root colonization by arbuscular mycorrhizal (AM) fungi has traditionally been analyzed by microscopy. However, this method is time consuming and it is often difficult to distinguish between AM and non-AM fungi. In this study, we analyzed the fatty acid profiles in soybean roots colonized by AM fungi to determine if specific fatty acids derived from AM fungi can be used as markers for the intensity of the AM fungal colonization. The wild-type Enrei and hypernodulating Kanto100 soybean cultivars were inoculated with an AM fungus (Gigaspora rosea) alone or with Bradyrhizobium diazoefficiens, which nodulates soybean roots. Fatty acids 20:1ω9, 20:4ω6, and 20:5ω3 were specifically detected in the lateral roots of AM fungus-inoculated and dual-inoculated soybean plants. In the second lateral roots, the percentage of AM-specific fatty acids (i.e., 20:1ω9, 20:4ω6, and 20:5ω3) derived from AM fungi was closely correlated with the intensity of the AM fungal colonization. We propose that the AM-specific fatty acids represent useful markers for estimating the degree of AM fungal colonization. The percentage of AM-specific fatty acids was more than twofold higher in the second lateral roots than in the first lateral roots. Thus, the degree of AM fungal colonization is probably twofold higher in the second lateral roots than in the first lateral roots.  相似文献   

4.
为获得番红花种球大田规模化生产的最佳施肥方案,以番红花鳞茎为试验材料,设置7个施肥处理,探讨施肥对番红花种球生长动态、仔球品质和仔球产量的影响效应。结果表明:在根系生成前,母球是仔球生长的“营养源”,根系生成后逐渐替代母球为仔球输送营养;返青期氮显著促进仔球增重,增强光合作用和蛋白合成,磷和微量元素促进可溶性糖和淀粉积累;快速生长期和成熟期羊粪表现出最佳的供肥能力,对磷、钾需求量也较大。建议生产中以羊粪为基肥,返青期追施氮肥,快速生长期和成熟期追施磷肥和钾肥,追肥中适当添加微肥。  相似文献   

5.
A greenhouse experiment was conducted to investigate the effects of a root-lesion nematode, Pratylenchus coffeae, two arbuscular mycorrhizal (AM) fungi, Acaulospora mellea and Glomus clarum, and timing of inoculation on the growth and nutrition of a nematode-susceptible Arabica coffee cultivar. The late AM inoculation (added simultaneously with nematodes) did not enhance coffee tolerance to P. coffeae. In the presence of P. coffeae, late-mycorrhizal plants were P deficient during the entire experiment and their foliar P concentration remained as low as that of non-mycorrhizal plants. After 7.5 months, nematodes decreased AM colonization of late-mycorrhizal plants by half and their biomass was only 20–30% that of the controls. In contrast, early AM inoculation (4 months before nematode inoculation) with either AM species improved the tolerance of coffee to P. coffeae. Root colonization by AM was not significantly reduced by P. coffeae. Despite higher densities of nematodes, root lesions were less numerous and more localized in early AM inoculated plants than in those of non-mycorrhizal plants. In the presence of P. coffeae, early AM-inoculated plants remained P sufficient and their biomass was still 75–80% that of their nematode-free controls. This study shows that in soils with low P levels, enhanced tolerance to P. coffeae seems limited to mycorrhizal coffee plants with well established AM symbiosis and improved P status. Received: 11 March 1997  相似文献   

6.
蚯蚓与丛枝菌根真菌的相互作用及其对植物的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
李欢  李晓林  张俊伶  王冲  向丹 《土壤学报》2011,48(4):847-855
蚯蚓和丛枝菌根(Arbuscular mycorrhiza,AM)真菌都是有益的土壤生物,对提高土壤养分有效性和植物吸收利用营养元素具有重要影响。本文综述了蚯蚓对AM真菌取食、传播和侵染的影响、蚯蚓与AM真菌相互作用的效应和机制方面的最新研究进展,以及AM真菌与蚯蚓互作改善植物营养和生长以及协同修复土壤重金属方面的作用,以期为今后研究发展提供依据。  相似文献   

7.
AM 真菌对蔬菜品质的影响   总被引:10,自引:0,他引:10       下载免费PDF全文
大田生产条件下试验研究丛枝菌根(Arbuscular mycorrhiza,AM)真菌4个高效菌种Glomus mosseae、Glo-mus versiforme、Gigaspora rosea 和Sclerocystis sinousa对西瓜、黄瓜、芋头和菜豆品质的影响结果表明,AM真菌能显著提高这些蔬菜维生素C、氨基酸、粗蛋白等营养成分含量,接种Glomus mosseae处理可分别增加菜豆维生素C含量25%、磷63%,芋头粗蛋白19%、氨基酸总量24%,黄瓜可溶性糖20%、磷26%、粗蛋白40%,西瓜可溶性固形物25%、维生素C32%。  相似文献   

8.
Arbuscular mycorrhizal fungi (AMF) have great potential for assisting metal-hyperaccumulating plants in the remediation of contaminated soils. However, little information is available about the symbiosis and community composition of AMF associated with manganese (Mn) hyperaccumulator, such as Phytolacca americana, growing on Mn-contaminated soils under natural conditions. Therefore, the objective of this study was to analyze AMF diversity and community composition in P. americana roots growing at an Mn mining site. Molecular techniques were used to analyze AMF community composition and phylogenetic relationship in P. americana roots sampled from three Mn mine spoils and one adjacent reference areas. Results obtained showed that mycorrhizal symbionts successfully established even in the most heavily Mn-polluted sites. Root colonization and AMF diversity were significantly negatively correlated with total and extractable Mn concentrations. Principal component analysis (PCA) revealed that Mn contamination impacted AMF diversity, and shaped AMF community structure. Phylogenetic analyses demonstrated that all species were affiliated with Glomus, suggesting that Glomus was the dominant genus in this AMF community. Some unique sequences that occurred exclusively in heavily polluted sites associated with P. americana may belong to symbiotic fungi with great potential for improving the phytoremediation efficiency of Mn-contaminated soils.  相似文献   

9.
ABSTRACT

A pot experiment was carried out to investigate the tolerance of cucumber plants (Cucumis sativus L.) to root-knot nematode after inoculation with Glomus intraradices. Plants were inoculated with G. intraradices for four weeks and then transplanted in soil treated with Meloidogyne incognita for a further five weeks. The low phosphorus (P) loamy soil was amended with 50 and 100 mg P kg?1 soil. Mycorrhizal colonization increased shoot dry weight, shoot length, leaf numbers, root fresh weight and shoot P concentration, whereas nematode penetration and reproduction were significantly decreased. Similarly, P fertilization usually increased shoot growth and significantly decreased the number of galls and the number of egg masses and eggs per g root. Our results indicate that inoculation with G. intraradices and P fertilizer confer tolerance of cucumber plants to M. incognita by enhancing plant growth and by suppressing reproduction and/or galling of nematodes during the early stages of plant growth.  相似文献   

10.
丛枝菌根真菌(Glomus mosseae)对玉米吸镉的影响   总被引:5,自引:0,他引:5  
盆栽试验研究了不同培养条件(土壤与河沙)下,3种施Cd水平(0、5、50 mg kg-1)对菌根玉米生长、根系侵染率及重金属Cd吸收的影响。结果表明:施Cd水平显著影响玉米吸Cd能力。随Cd浓度增加,各处理根系与地上部分Cd浓度和吸收量显著增加,各施Cd水平下玉米根系Cd浓度和吸收量远远高于地上部分。不同培养条件下,各处理也表现出明显的差异。以河沙为培养基质,接种菌根真菌显著增加玉米的生物量及根系侵染率;在高Cd水平下,接种处理玉米根系中的Cd浓度和吸收量较对照显著增加,但地上部分的Cd浓度和吸收量却相应降低。以土壤为培养基质,随施Cd水平提高,植株吸Cd量增加,但接种处理植株根部与地上部Cd浓度均显著低于对照。试验表明,丛枝菌根真菌Glomus mosseae可减少重金属Cd向玉米植株地上部的运输,将更多的Cd固持在菌根之中,这可能是菌根减轻宿主植物Cd毒害的一个重要机制。  相似文献   

11.
AM真菌与地上草食动物的互作及其对宿主植物的影响   总被引:2,自引:0,他引:2  
丛枝菌根是自然生态系统中广泛存在的一种植物根系与菌根真菌的共生体.放牧是草原生态系统的一种重要生态学功能.目前,关于AM真菌和植物的关系,以及草食动物与植物的相互作用研究已经非常深入,但有关AM真菌-植物-草食动物的多重相互作用研究尚处于发展初期.本文从揭示AM真菌-植物-草食动物三者相互作用机理的角度出发,围绕动物采食作用对AM真菌的侵染、孢子群落组成的变化及其作用机理,丛枝菌根对动物采食行为的影响,以及植物个体与群落对二者共同作用的响应等方面,对AM真菌-植物-草食动物研究领域最新的成果进行综述,并在此基础上,提出AM真菌-植物-草食动物相互作用领域未来的研究方向.  相似文献   

12.
    
Seed-applied fungicides are commonly used to prevent or suppress fungal disease organisms in pulse crop production. However, non-target beneficial fungi, such as arbuscular mycorrhizal fungi (AMF), also may be affected. Seed-applied fungicides Agrox® FL (active ingredient: captan), Allegiance™ FL (metalaxyl), Apron Maxx® RTA® (fludioxonil and metalaxyl), Thiram 75WP (thiram), Vitaflo® 280 (carbathiin and thiram), Crown® (carbathiin and thiabendazole), and Trilex® AL (trifloxystrobin and metalaxyl) were assessed in a greenhouse study for their effects on colonization and development of AMF in pea and chickpea, and the consequent impact on plant growth. In the absence of disease pressure, systemic fungicides Allegiance™ FL, Apron Maxx® RTA®, Vitaflo® 280, Crown® and Trilex® AL restricted mycorrhizal colonization, host growth and P uptake to different levels. In contrast, contact fungicides Agrox® FL and Thiram 75WP had minimal effects on mycorrhizal colonization, host growth and P uptake. Although consequent sporulation and glomalin-related protein production were not significantly affected by fungicides at an early host growth stage, the compositional structure of the AMF community in host roots was significantly altered in response to Agrox® FL, Allegiance™ FL, Apron Maxx® RTA®, and Trilex® AL as revealed by pyrosequencing-based analysis of fungal 18S rRNA. These results indicate that the suppressive effects of seed-applied fungicides on AMF development depend on specific fungicide-AMF interactions.  相似文献   

13.
    
Common mycorrhizal network (CMN) links up several coexisting plant individuals via underground root communication for resource sharing, while it is not known whether phytohormones participate in such communication. A two-chambered rootbox separated through 37-μm mesh was used to establish the CMN by Diversispora spurca between trifoliate orange (TO) and white clover (WC). After 20 weeks of inoculation, the CMN was established, as evident from high mycorrhizal buildup under supplier (mycorrhizal inoculation) TO–target (non-mycorrhizal inoculation) WC association. This CMN was eventually responsible for the significant increase in plant biomass of these associated plants. CMN decreased root abscisic acid (ABA) level in supplier and target plants, but increased root indole-3-acetic acid (IAA) level in supplier plant alone. CMN mediated significantly higher gibberellins (GAs) and zeatin riboside (ZR) concentration in roots of target plant, leaving supplier plant unaffected. Root ZR was bidirectionally transferred through the CMN. A higher root methyl jasmonate (MeJA) concentration was observed in supplier WC–target TO or supplier TO–supplier WC association, indicating an unidirectional communication from WC to TO. It suggested that except IAA, GAs, brassinosteroid (BR), and ABA, root MeJA and ZR were apparently involved in the underground communication by CMN.  相似文献   

14.
    
Arbuscular mycorrhizal fungi (AMF) play an important role in plants growth and soils dynamic in all most ecosystems. The main objective of the present study was to evaluate the plant-AMF interactions on soil functions under arid protected area ‘Zarat-Gabès’ in Tunisia.

AMF colonization was evaluated by visual observation of AMF in fine roots of eight herbaceous plants. The level of mycorrhizal colonization varied between plants. Astragalus corrugatus and Hippocrepis areolata showed the highest mycorrhizal performance. The relative spore number was significantly different across rhizosphere soils. Statistical analysis showed a clearly positive correlation between the number of spores and plant-mycorrhizal intensity.

For microbiological parameters, our results showed that mycorrhizal plants improved significantly the various microbiological parameters. Rhizosphere soils of Astragalus corrugatus and Hippocrepis areolata presented the necessary microbial densities and microorganisms more stable compared to unplanted soil. This study allowed obtaining a new result that challenges us about the need for efficient management of natural resources in the objective of nature conservation.  相似文献   


15.
    
The interaction between legumes, rhizobial and arbuscular mycorrhizal (AM) partners benefits plant nutrition and improves plant tolerance to water stress. The present research evaluated the effectiveness of symbioses between cowpea plants (Vigna unguiculata (L.) Walp.), AM fungi (Glomus intraradices) and two strains of Bradyrhizobium japonicum on the mycorrhization, acid phosphatase activity (APase), enzymes related to nitrogen fixation and assimilation, and biomass accumulation at three soil moisture levels. The results revealed that the soil moisture optimal for the formation of active symbiotrophic associations in cowpea cultivation was about 60% water-holding capacity (WHC), where both Bradyrhizobium strains and AM fungi function well with respect to mycorrhization, nitrogen and phosphorus uptake, nitrogen fixation and plant biomass production. Under conditions of reduced water supply, the symbiotic association between Br. japonicum-273 and Gl. intraradices was better for cowpea cultivation, while in elevated soil moisture association between Br. japonicum-269 and Gl. intraradices was more appropriate.  相似文献   

16.
柑橘砧木和砧穗组合对丛枝菌根发育的影响   总被引:4,自引:0,他引:4  
倍体体细胞杂种砧木)对丛枝菌根发育的影响。结果表明,柑橘丛枝菌根侵染幅度为 4.88 % ~ 40.52 %,土壤内孢子密度不等,大致在 347 ~ 750 个孢子/kg(干土)内。田间菌根侵染率和孢子密度在不同土层深度的分布以深度 10 ~20 cm 为最高。遗传关系相近的国庆 1 号/枳和国庆 4 号/枳组合间以及红肉脐橙/罗伯逊脐橙 36 号/枳和纽荷尔脐橙/罗伯逊脐橙 36 号/枳间的丛枝菌根发育没有显著差异,与红肉脐橙和纽荷尔脐橙遗传关系远的脐血橙组合,较红肉脐橙和纽荷尔脐橙组合的孢子密度间有极显著差异。红桔 枳的菌根侵染率和土壤孢子密度均最高,且显著高于其他 4 种砧木。盆栽砧木孢子密度与菌根侵染率呈显著正相关性。10 种试材的根围土壤孢子密度与菌根侵染率间呈极显著正相关性。  相似文献   

17.
Abstract

The influence of the addition of Chinese peat and Canadian peat on arbuscular mycorrhizal colonization, mycorrhizal effectiveness and host-plant growth was investigated in a pot experiment. Chinese peat or Canadian peat was mixed with Masa soil (weathered granite soil) at different levels (0, 25, 50, 100, 150 or 200 g kg?1) into which an arbuscular mycorrhizal fungus (AMF) Gigaspora margarita Becker & Hall was inoculated, and seedlings of Miscanthus sinensis Anderess were planted. There was a significant increase in plant growth with increasing amounts of Chinese peat. The growth-promoting effect of the AMF on the host was enhanced when the addition of Chinese peat was increased from 25 to 100 g kg?1. Root colonization and the number of spores proliferating increased with increases at low levels of Chinese peat (from 25 to 100 g kg?1), and decreased gradually with higher Chinese peat increments. Although plant growth and root colonization with the addition of Canadian peat increased slightly, Canadian peat suppressed mycorrhizal effectiveness. In contrast to Canadian peat, the addition of Chinese peat improved considerably the physical and chemical properties of the soil, which might result in the promotion of AM formation and mycorrhizal effectiveness.  相似文献   

18.
Glomalin is a glycoprotein produced by the hyphae of arbuscular mycorrhizal fungi (AMF). The chemical methods usually employed to extract glomalin from the soil obtain something more than this pure glycoprotein, and therefore it would be better to call this fraction soil protein related to glomalin (SPRG) or glomalin associated with humic substances (GAHS). On this account, its isolation is controversial. The SPGR or GAHS has a significant influence on the physical, chemical, and biological properties of soils and could then be considered as an indicator of soil use change. In the present study, the storage of SPRG was evaluated, as well as carbon (C) associated with the latter (CG) and the content of soil organic C (SOC) in cultivated tepetates in the State of Mexico. Tepetates are hardened volcanic tuffs of the fragipan type, ameliorated for agricultural production. The specific objectives of the present study were (1) to evaluate the SPRG levels in tepetates, (2) measure the contribution of carbon (C) made by the SPRG to soil organic C (SOC), and (3) compare the extraction of SPRG with sodium pyrophosphate and sodium citrate. The samples used in this experiment came from 87 tepetate-cultivated plots (0–20 cm) located in the Texcoco River basin, State of Mexico. The levels of SPRG were observed among traces, 2.3 mg g–1 for citrate and up to 5.6 mg g–1 for pyrophosphate. The latter reactive allowed us to extract nearly three times more SPRG and two times more C-SPRG than sodium citrate (P?=?0.05) in the tepetates having about 4% of SOC; yet when the latter was less than 0.5%, the extraction levels with both solutions were similar. The SPRG and CG were closely correlated with SOC (r > 0.90). Tepetates have levels of SPRG similar to those observed in arid soils.  相似文献   

19.
    
ABSTRACT

Arbuscular mycorrhizal fungi (AMF) are found in the soil of most ecosystems where they form mutualistic associations that affect plants growth. We have investigated the community structure of AMF associated to Retama raetam growing in five regions of Tunisia. The total number of spores was significantly different across sites, ranging from 633 to 1062 spores per 100 g dry soil. A dominance of small spores was revealed. The large subunit region of the rDNA of AMF spores associated to the rhizosphere of R. raetam was sequenced. Sequences clustered into 13 operational taxonomic units. Phylogenetic analysis revealed that the majority of sequences were grouped within Glomeraceae and Claroideoglomeraceae families. Only two sequences were affiliated to the Scutellospora genus. These results suggest the dominance of the genus Glomus in the soil rhizosphere of R. raetam. A correlation between phylogenetic analysis, soil chemicals properties, and AMF community richness was also detected.  相似文献   

20.
为阐明毛乌素沙地3种典型克隆植物沙鞭[Psammochloa villosa(Trin.)Bor.]、羊柴(Hedysarum leaveMaxim)和油蒿(Artemisia ordosica Krasch.)根际AM真菌多样性,2006年的5月、7月、10月从毛乌素沙地选取东北缘的中国科学院植物研究所鄂尔多斯沙地草地生态研究站和西南缘的陕西榆林珍稀沙生植物保护基地两个样地,按0~10 cm、10~20 cm、20~30 cm、30~40 cm、40~50 cm 5个土层采集3种克隆植物根际土壤样品,研究了其根际AM真菌物种多样性和生态分布。在分离出的4属23种AM真菌中,球囊霉属(Glomus)15种,无梗囊霉属(Acaulospora)5种,巨孢囊霉属(Gigaspora)2种,盾巨孢囊霉属(Scutellospora)1种。摩西球囊霉(G.mosseae)是沙鞭根际的优势种,黑球囊霉(G.melanosporum)是3种克隆植物共同的常见种;不同属种的AM真菌生态分布亦存在差异。AM真菌孢子密度、种的丰度和物种多样性指数均表现为在研究站样地的羊柴根际最高。该研究结果表明,毛乌素沙地的3种典型克隆植物与AM真菌之间形成良好的共生关系,这对开发漠境AM真菌资源和利用菌根生物技术维护沙地生态系统结构的完整性具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号