首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
不同铁形态对水稻根表铁膜及铁吸收的影响   总被引:5,自引:0,他引:5  
通过溶液培养试验研究了FeCl2?4H2O和FeCl3?6H2O对水稻根表铁膜数量及铁吸收的影响。结果表明,FeCl2处理时水稻根表铁膜浓度是FeCl3处理的197%~233%。利用EDTA-BPDS对铁膜形态分析看出,根表铁膜中Fe3+占85%~92%,Fe2+占8%~15%。水稻天优998根表铁膜数量显著高于培杂泰丰,其铁吸收是培杂泰丰的115%~138%。两种铁形态处理明显提高水稻的根系活力,其中,FeCl2处理时水稻根系活力增加24%~69%,FeCl3为16%~54%。FeCl2处理时水稻根系SOD、POD和CAT活性分别增加11%~32%、15%~30%和30%~31%,但FeCl3处理没有明显影响。上述结果表明一定浓度铁处理明显增加水稻根表铁浓度和铁吸收;与FeCl3处理相比,FeCl2处理能提高根系抗氧化酶活性,增加水稻的铁吸收和根表铁膜数量。  相似文献   

3.
Drip irrigation offers potential for rice (Oryza sativa L.) production in regions where water resources are limited. However, farmers in China’s Xinjiang Province report that drip-irrigated rice seedlings sometimes suffer salt damage. The objective of this study was to learn more about the effects of soil salinity and soil temperature on the growth of drip-irrigated rice seedlings. The study consisted of a two-factor design with two soil salinity treatments (0 and 1.8 g kg?1 NaCl) and three soil temperature treatments (18°C, 28°C and 36°C). The results showed that shoot biomass, root biomass and root vigor were greatest when seedlings were grown with no salt stress (0 g kg?1 NaCl) at 28°C. Moderate salt stress (1.8 g kg?1 NaCl) combined with high temperature (36°C) significantly reduced root and shoot biomass by 39–53%. Moderate salt stress and high temperature also increased root proline concentration by 77%, root malonyldialdehyde concentration by 60% and seedling mortality by 60%. Shoot and root Na+ concentrations, shoot and root Na+ uptake and the Na+ distribution ratio in shoots were all the greatest when moderate salt stress was combined with high temperature. In conclusion, high soil temperature aggravates salt damage to drip-irrigated rice seedlings. Therefore, soil salinity should be considered before adopting drip-irrigation for rice production.  相似文献   

4.
Abstract

The Earlirose cultivar of rice (Oryza sativa L.) grown in calcareous Hacienda loam soil was extremely Fe deficient. The Fe deficiency was corrected by premixing 40 ppm Fe (as FeSO4) into the soil before transplanting plants. The Fe deficiency appeared to be induced by high plant levels of Cu and Mn. Addition of Zn (40 ppm as ZnSO4) intensified the Fe deficiency. The Fe addition did not overcome the effect of the Zn. BPDS (bathophenanthroline disulfonate), a chelator of Fe++, had little effect on the results.  相似文献   

5.
Abstract

Co-situs is the placement with one application of a sufficient amount of controlled-release fertilizer for an entire growing season at any site, together with seeds or seedlings, without causing fertilizer salt injury. An experiment was conducted to find an efficient method for ameliorating Fe deficiency in two rice cultivars (cv. Tsukinohikari and cv. Sasanishiki) grown in a calcareous soil (pH 9.2, CaCO3 384 g kg?1), which was poor in organic matter (0.1 g kg?1) and available Fe (3.0 μg g?1 soil). The field treatments consisted of co-situs application of the following fertilizers: 1) controlled-release NPK fertilizer (CRF-NPK) containing no micronutrients; 2) controlled-release NPK fertilizer containing micronutrients (CRF-M1); and 3) controlled-release NPK fertilizer containing micronutrients (CRF-M2). The main difference between CRF-M1 and CRF-M2 was that the former had larger granules than the latter. All the fertilizers were placed in contact with the roots of rice seedlings at transplanting time. Plants in the CRF-M1 and CRF-M2 treatments had similar lengths, number of stems, leaf age, and leaf color (SPAR value) during the cultivation period. By contrast, plants from the CRF-NPK treatments grew poorly, showed severe chlorosis symptoms of Fe deficiency, and all died on 30 DAT. Plants of both cultivars accumulated more macroand micronutrients with the CRF-M2 treatment than with the CRF-M1 treatment. The grain yield of cv. Tsukinohikari was 0.0, 1,910, and 2,160 kg ha?1 for the CRF-NPK, CRF-M1, and CRF-M2 treatments, respectively, and 0.0, 2,490, and 2,860 kg ha?1 for the same treatments for cv. Nihonbare. Chlorosis due to iron deficiency was successfully ameliorated and world-average grain yields were obtained with the co-sites application of both controlled-release fertilizers.  相似文献   

6.
Drip irrigation can produce high rice yields with significant water savings; therefore, it extends rapidly in water-scarce northern China. However, drip-irrigated rice seedlings often exhibit Fe chlorosis. The objective of this field experiment was thus to determine the ability of plant growth regulators to alleviate chlorosis in drip-irrigated rice seedlings. The study compared three plant growth regulators (1-naphthylacetic acid, NAA; sodium nitrophenolate, CSN; and diethyl aminoethyl hexanoate, DA-6) applied in two ways (seed-soaking and drip-application). The results showed that CSN increased root oxidation activity by 37% in the seed-soaking treatment and by 45% in the soil-application treatment. Seed soaking with NAA, CSN, and DA-6 increased the active Fe content in leaves by 8.8%, 17.5%, and 11.4%, respectively, compared with untreated seedlings. Iron absorption and SPAD values were both greater in the soil-application plots than in the seed-soaking plots. Among the plant growth regulators, CSN resulted in the highest yield (2.2% greater than untreated rice in the seed-soaking treatment and 12.8% greater than untreated rice in the soil-application treatment). In conclusion, CSN significantly improved root Fe uptake at the seedling stage and reduced chlorosis in drip-irrigated rice. Therefore, CSN drip application can be recommended for alleviating rice chlorosis in practical use.  相似文献   

7.
A study was carried out on contribution of iron phosphate to phosphorus nutrition of rice plant under waterlogged and moist conditions,respectively,by use of synthetic Fe^32 PO4.nH2O,tagging directly the iron phophate in calcareous paddy soils.Results showed that under waterlogged condition,similar to iron phosphate in acidic paddy soils.that in clacareous paddy soils was an important source of phosphorus to rice plant ,and the amount of phosphorus originated from it generally constituted 30-65% of the total phosphorus absorbed by rice plant.  相似文献   

8.
缺铁胁迫对草莓幼苗光合特性及细胞器铁含量的影响   总被引:3,自引:0,他引:3  
为了探讨缺铁胁迫对草莓(Fragaria ananassa Duch.)幼苗的光合特性及细胞器铁含量的影响,本研究选取4个草莓品种(红颜、 章姬、 甜查理、 童子一号)幼苗,采用溶液培养方法,设置Fe(Ⅱ)-EDTA浓度为0 mol/L、 110-4 mol/L两组处理,分别于处理后0、 4、 8、 12、 16 d对其叶绿素含量(SPAD)、 光合速率(Pn)、 叶绿体铁含量、 根系线粒体铁含量以及叶片铁含量、 根系铁含量、 生物量进行分析。结果表明,缺铁胁迫显著降低草莓幼苗叶绿素含量、 光合速率、 叶绿体铁含量、 叶片铁含量、 根系铁含量、 生物量,并且不同品种间差异达显著水平(P0.05);缺铁胁迫对根系细胞线粒体铁含量影响较小。草莓的叶绿体铁含量与叶片铁含量、 叶片净光合速率和生物量呈极显著正相关(r=0.93**, r=0.87**, r= 0.72**), 根系线粒体铁含量与叶片铁含量、 叶片净光合速率和生物量呈极显著正相关或显著正相关(r= 0.83**, r= 0.72**, r= 0.52*)。本试验条件下,供试草莓品种红颜受缺铁胁迫的影响大于其他3个品种。  相似文献   

9.
Abstract

Iron deficiency is a major production constraint of upland rice in the tropics despite is abundance in the soil. This investigation aimed to explicate the effect of iron deficiency on the growth, development, grain yield and its attributes of some selected upland rice in the rainforest. Field experiments were established at Africa Rice sub-Station, Ibadan, Nigeria. The treatments consisted of 35 upland rice genotypes and availability of iron in the soil (Fe-sufficient and Fe-deficient). The treatments were arranged in alpha lattice design with three replications. It was observed that upland rice sown in iron (Fe) deficient soils had significantly lower growth (plant height, number of tillers and seedling vigor), flowered later, with significantly lower yield attributes (1000 grain weight, filled grain) and grain yield than those sown in Fe-sufficient soils. Conversely, the number of unfilled grains were significantly higher in upland rice sown in Fe-deficient than those in sufficient soils. Percentage yield loss was in the range 98.00% to 22.95% for China best and Faro 65 respectively. Genotypes were identified to be tolerant (Faro 65, NERICA 3 and IRAT 109) and susceptible (Ofada 2, NERICA 5 and China Best) to Fe-deficiency based on their percentage grain yield loss. These evidences suggested that despite the increased phenology of upland rice sown in Fe-deficient soils their reproductive growth was suppressed through increased number of unfilled grains as witnessed in China Best and Faro 64.  相似文献   

10.
低温胁迫下增施锌肥对水稻氮代谢与干物质积累的影响   总被引:2,自引:1,他引:2  
[目的]施锌是缓解低温胁迫对水稻伤害的有效途径之一,低温胁迫下研究增加施锌量对水稻氮代谢与物质积累的影响,为低温年提高水稻抗低温能力提供理论依据.[方法]采用三叶一心期水稻幼苗进行水培试验,设置低(Zn?0.08?μmol/L)、常规(Zn?0.15?μmol/L)、高(Zn?0.30?μmol/L)?3个ZnSO4·...  相似文献   

11.
12.
Abstract

When Fe‐inefficient plants were grown in mixtures of calcareous Hacienda loam soil and noncalcareous Yolo loam soil compared with plants grown in unmixed soils, characteristics and composition of the plants including Fe deficiency were generally intermediate to those with either soil alone. Noncalcareous soil adjacent to calcareous soil allowed PI 54619–5–1 soybeans (Glycine max L.) to obtain sufficient Fe.  相似文献   

13.
Abstract

A hydroponic experiment was conducted to observe the effect of arsenic (As) on a number of physiological and mineralogical properties of rice (Oryza sativa L. cv. Akihikari) seedlings. Seedlings were treated with 0, 6.7, 13.4 and 26.8 µmol L?1 As (0, 0.5, 1.0 and 2.0 mg As L?1) for 14 days in a greenhouse. Shoot dry matter yield decreased by 23, 56 and 64%; however, the values for roots were 15, 35 and 42% for the 6.7, 13.4 and 26.8 µmol L?1 As treatments, respectively. Shoot height decreased by 11, 35 and 43%, while that of the roots decreased by 6, 11 and 33%, respectively. These results indicated that the shoot was more sensitive to As than the root in rice. Leaf number and width of leaf blade also decreased with As toxicity. Arsenic toxicity induced chlorosis symptoms in the youngest leaves of rice seedlings by decreasing chlorophyll content. Concentrations and accumulations of K, Mg, Fe, Mn, Zn and Cu decreased significantly in shoots in the 26.8 µmol L?1 As treatment. However, the concentration of P increased in shoots at 6.7 and 13.4 µmol L?1 As levels, indicating a cooperative rather than antagonistic relationship. Arsenic and Fe concentration increased in roots at higher As treatments. Arsenic translocation (%) decreased in the 13.4 and 26.8 µmol L?1 As treatments compared with the 6.7 µmol L?1 As treatment. Arsenic and Fe were mostly concentrated in the roots of rice seedlings, assuming co-existence of these two elements. Roots contained an almost 8–16-fold higher As concentration than shoots in plants in the As treatments. Considering the concentration of Mn, Zn and Cu, it was suggested that chlorosis resulted from Fe deficiency induced by As and not heavy-metal-induced Fe deficiency.  相似文献   

14.
15.
Micronutrient deficiency in cultivable soil, particularly that of iron (Fe) and zinc (Zn), is a major productivity constraint in the world. Low Fe availability due to the low solubility of the oxidized ferric forms is a challenge. An experiment was, thus, executed to assess the performance of eight genetically diverse rice genotypes on Fe-sufficient (100 µM) and Fe-deficient (1 µM) nutrient solution, and their ability to recover from Fe deficiency was measured. Fe efficiency under Fe deficiency in terms of biomass production showed a significant positive correlation with the root release of phytosiderophore (PS) (R2 = 0.62*). This study shows that the Fe deficiency tolerance of Pusa 33 was related to both a high release of PS by the root and an efficient translocation of Fe from the root to the shoot as the Fe–PS complex, which could be useful for improving the Fe nutrition of rice particularly under aerobic conditions.  相似文献   

16.
pH与石灰性水稻土铁氧化还原过程的关系   总被引:2,自引:1,他引:2  
光照和pH是调控土壤铁氧化物厌氧生物氧化还原的关键环境因素。本文采用恒温厌氧培养试验研究了黑暗、光照条件下土壤pH的变化及pH对铁氧化还原的影响,探索了pH与Fe(II)和水溶性无机碳的关系。结果表明,光照可改变土壤厌氧培养过程中pH的变化趋势,避光培养时土壤pH呈降低趋势,光照时呈先降低后增加趋势。pH介于4~9之间均可发生铁的还原反应,pH=7时还原量最大,128.5μmol g-1,pH调至4和9均可抑制避光条件下的铁还原。光照条件下pH 6~8时可发生Fe(II)的再氧化,控制初始pH为7时可使其再氧化量增加77.13%,达49.17μmol g-1。厌氧培养过程中Fe(II)与水溶性无机碳在避光时存在显著线性正相关关系,pH与Fe(II)和水溶性无机碳之间均存在显著线性负相关关系。  相似文献   

17.
A two-year experiment was conducted in an iron(Fe)-deficient orchard with calcareous soil to find out an alternate method for soil application of Fe ethylenediamine-N,N'-bis(2-hydroxyphenylacetic acid) (Fe-EDDHA) in orange trees. Foliar sprays of Fe-EDDHA (5 g l?1, pH = 7.8), sulfuric acid (pH = 3), citric acid (5 g l?1, pH = 2.4), Fe (II) sulfate solutions (250, 500, and 750 mg Fe l?1) with their initial pH (6.5, 6.35, and 6.12) and reduced ones to pH of 3 were compared with soil applied (75 g tree?1) Fe-EDDHA and a control test. Although optimum chlorophyll content, leaf Fe concentration, fruit quantitative and qualitative attributes were resulted from soil application of Fe-EDDHA, repeated sprays of Fe-EDDHA or acidified Fe solutions created suitable results. Acidification of Fe solutions made them more effective in alleviation of leaf Fe concentration and Fe chlorosis, probably due to remobilization of inactive Fe within the plant and prevention of Fe oxidation and precipitation in foliar solutions.  相似文献   

18.
The development of iron deficiency symptoms (growth depression and yellowing of the youngest leaves) and the distribution of iron between roots and leaves were investigated in different vine cultivars (Silvaner, Riparia 1G and SO4) grown in calcareous soils. As a control treatment all cultivars were also grown in an acidic soil. Only the cultivars Silvaner and Riparia 1G showed yellowing of the youngest leaves under calcareous soil conditions at the end of the cultivation period. All cultivars including SO4 showed severe shoot growth depression, by 50 % and higher, before yellowing started or without leaf yellowing in the cultivar SO4. Depression of shoot growth occurred independently from that of root growth. In a further treatment the effect of Fe‐EDDHA spraying onto the shoot growth of the cultivar Silvaner after cultivation in calcareous soil was investigated. Prior to Fe application plants were non‐chlorotic, but showed pronounced shoot growth depression. Spraying led to a significant increase in shoot length, though leaf growth was not increased. Accordingly, depression of shoot growth of non‐chlorotic plants under calcareous soil conditions and with ample supply of nutrients and water has been evidenced to be at least partly an iron deficiency symptom. We suggest that plant growth only partially recovered because of dramatic apoplastic leaf Fe inactivation and/ or a high apoplastic pH which may directly impair growth. Since growth was impaired before the youngest leaves showed chlorosis we assume that meristematic growth is more sensitively affected by Fe deficiency than is chlorophyll synthesis and chloroplast development. In spite of high Fe concentrations in roots and leaves of the vines grown in calcareous soils plants suffered from Fe deficiency. The finding of high Fe concentrations also in young, but growth retarded green leaves is a further indication that iron deficiency chlorosis in calcareous soils is caused by primary leaf Fe inactivation. However, in future, only a rigorous study of the dynamic changes of iron and chlorophyll concentration, leaf growth and apoplastic pH at the cellular level during leaf development and yellowing will provide causal insights between leaf iron inactivation, growth depression, and leaf chlorosis.<?show $6#>  相似文献   

19.
Abstract

Problems are invariably encountered when attempts are made to explain the variability in Bray percent yields or plant response in terms of soil or plant iron (Fe). To resolve this inconsistency, the present investigation was initiated to identify a combination of soil extractable Fe, soil properties and form of plant Fe that may be used as a measure of Fe deficiency. The study involved 16 diverse soils, using upland rice (Oryza sativa L.) as the test crop and Fe‐EDDHA [ferric ethylenediamine di (o‐hydroxyl‐phenyl acetic acid)] as source of Fe. The results showed that Bray percent yields were neither related to DTPA (diethylenetriamine pentaacetic acid) or EDTA (ethylenediamine tetraacetic acid) extractable Fe nor with total plant Fe. Even the inclusion of pH, lime, organic carbon and clay data in the regression equations was of no value. However, Bray percent yields were significantly and positively (r = 0.57* ) associated with ferrous Fe (Fe2+) in 40‐day‐old rice plants. The explanation concerning variability in Bray percent yields obtained on diverse soils could be increased about one and half 2 times (R2= 0.59*) if the contribution of lime and soil pH was also incorporated in the stepwise regression analysis. The individual contribution to R of lime, pi respectively. Thus, it appears that Fe2+ concentration in plants (along with soil pH) may identify Fe deficiency. The critical limit to separate Fe deficient from green rice plants was set at 45 ug Fe2+/g in the leaves.  相似文献   

20.
Barley ( Hordeum vulgare L.) nicotianamine synthase gene ( HvNAS1 ) expression in barley is strongly induced by Fe deficiency in the roots and rice ( Oryza sativa L.) nicotianamine synthase gene ( OsNAS1 ) expression in rice is induced by Fe deficiency both in the roots and in the shoots. In dicots, NAS genes are not strongly induced by Fe deficiency, and they function to maintain Fe homeostasis. Rice OsNAS1promoter::GUS or barley HvNAS1promoter::GUS was introduced into tobacco ( Nicotiana tabacum L.) and tissue specificities and systemic regulation of their expression were compared. A split-root experiment revealed that the HvNAS1 promoter exhibited functions similar to those of Fe-acquisition-related genes in tobacco roots, suggesting that this promoter responded to certain Fe-deficiency systemic signals and to the Fe concentration in the rhizosphere. The HvNAS1 promoter might harbor a type of universal system of gene expression for Fe acquisition. However, the OsNAS1 promoter did not respond to local application of Fe to the roots and induced GUS activities in mature leaves in response to Fe deficiency. This promoter might possess numerous types of cis -acting sequences that are involved in Fe metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号