首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
The variation in the seed shape, colour and yield, and content, yield and fatty acid composition of seed oil of 109 accessions of opium poppy Papaver somniferum, (majority of them Indian land races), was investigated. The seeds were white, pale yellow or light brown in colour, reniform or round in shape and varied in size up to three fold. The oil content, seed and the oil yield varied between 26 to 52%, 1.0 to 7.4 g/plant and 0.4 to 2.7 g/plant, respectively. The % content of palmitic, oleic and linoleic acid in the seed oil ranged between 9.3 to 40.0%, 7.5 to 58.4% and 0.7 to 72.7%, respectively. On average basis, the levels of major fatty acids in the seed oil were: oleic (37.1%) > palmitic (27.3%) > linoleic acid (17.2%). The palmitoleic, stearic and linolenic acids were present in the oils of only some of the accessions. Two of the accessions yielded linoleic acid rich seed oil of about the same quality as soybean and maize oils, and in four accessions, the proportion of palmitic, oleic and linoleic acids was roughly equal. The palmitic acid was relatively less and linoleic acid more in the seed oil from accessions rich in oil content. The oil that contained higher amount of oleic acid also contained higher amount of palmitic acid and relatively lower amount of linoleic acid. The correlation analyses revealed a strong positive relationship between seed yield and oil yield (r = +0.81), oil yield and oil content (r = +0.54) and oleic acid and palmitic acid content in the seed oil (r = +0.49), and a weak positive relationship between oil content and linoleic acid content of oil (r = +0.24), and a negative correlation was observed between oil content and palmitic acid content (r = –0.32), palmitic acid and linoleic acid (r = –0.55) and oleic acid and linoleic acid contents of oil (r = –0.68). The observations have permitted selection of accessions that are high seed and oil yielding and/or rich in linoleic, palmitic and oleic acids or containing palmitic, oleic and linoleic acids in about equal amounts.  相似文献   

2.
Field experiments were conducted to determine the interactive effect of sulfur (S) and nitrogen (N) on growth and yield attributes of oilseed crops [Brassica campestris L. (V1) and Eruca sativa Mill. (V2)] differing in yield potential. Two combinations of S and N (in kg ha?1): 0S + 100N (?S+N;T1) and 40S + 100N (+S+N;T2) were used. Biomass accumulation, leaf area index (LAI), leaf area duration (LAD), and photosynthetic rate in the leaves were determined at various phenological stages. The results showed that the combined application of S and N (+S+N) significantly (P<0.05) improved the growth and yield attributes of both the genotypes compared with N applied alone (?S+N). Genetic variability was observed between the two genotypes in response to combined application of S and N (T2). Genotype V1 had higher biomass accumulation, photosynthetic rate, seed yield, oil yield, biological yield, and harvest index when compared with genotype V2. Treatment T2 resulted in 142, 95, 56, and 349% enhancement in biomass accumulation, leaf-area index (LAI), leaf-area duration (LAD) and photosynthetic rate, respectively in comparison with treatment T1 in genotype V1. Seed yield, oil yield, biological yield, and harvest index were improved by 141, 171, 85, and 30%, respectively, by treatment T2 in comparison with T1. In the case of genotype V2, increase in biomass accumulation, LAI, LAD, and photosynthetic rate due to application of treatment T2 were 156, 137, 125 and 467%, respectively, over the results of T1. Seed yield, oil yield, biological yield and harvest index improved by 193, 251, 98, and 48%, respectively, with this treatment. On the basis of results obtained in this study, it can be concluded that sulfur must be included in the nutrient management package for optimum growth and yield attributes of oilseed crops. Furthermore, the yield potential of oilseed crops with low seed and oil yield can be improved using this treatment as achieved in our study in case of taramira (Eruca sativa Mill.), a genotype with low seed and oil yield.  相似文献   

3.
Dry bean is an important legume worldwide, and potassium (K) deficiency is one of the important constraints for bean production in most of the bean growing regions. A greenhouse experiment was conducted with the objective to evaluate fifteen dry bean genotypes grown on a Brazilian lowland (Inceptisol) United States Soil Taxonomy classification and Gley humic Brazilian Soil Classification system), locally known as “Varzea” soil. The K rate used was 0 mg kg?1 (low, natural soil level) and 200 mg kg?1 (high, applied as fertilizer). Straw yield, seed yield, pods per plant, seeds per pod, 100 seed weight, and seed harvest index were significantly increased with the addition of K fertilizer. These traits were also significantly influenced by genotypic treatment. Similarly, root length and root dry weight were also influenced significantly by K and genotype treatments. The K X genotype interactions for most of these traits were also significant, indicating variation in these traits with the variation in K level. Based on seed yield efficiency index (SYEI), genotypes were classified as efficient, moderately efficient, and inefficient in K use efficiency. Maximum grain yield was obtained with 74 mg K kg?1 extracted by Mehlich 1 extracting solution. Similarly, K saturation required for maximum grain yield was 1.1%.  相似文献   

4.
ABSTRACT

The objective of this study was to determine phenotypic variation for yield and yield-related traits among cowpea genotypes and select best candidate genotypes for breeding. Hundred cowpea genotypes were evaluated across two environments using an alpha lattice design with two replications. The pooled data were subjected to analysis of variance, correlation and principal component analyses (PCA). Significant differences were observed among cowpea genotypes for assessed traits. PCA revealed three principal components contributing to 77.75% of the total variation. Grain yield was significantly correlated with most of the traits. The genotypic coefficient of variation was relatively higher, whereas the phenotypic coefficient of variation values were moderate for branch number, seed number per pod, and high for seed number per plant and pod weight per plant. Heritability and genetic advance values respectively ranged from 37.27% to 97.2% and 73.3% to 2242.6% for the studied traits. High direct path coefficient value of 0.71 for pod weight per plant with highly significant correlation with grain yield was observed. The study identified cowpea genotypes such as Glenda RV 465, RV 574, RV 115, RV 28, RV 419, RV 28, RV 419, RV 213, RV 550, RV 470, RV 111, RV 315 and RV 550 with better responses for yield and yield-related traits.  相似文献   

5.
The Hibiscus genus encompasses more than 300 species, but kenaf (Hibiscus cannabinus L.) and roselle (Hibiscus sabdariffa L.) are the two most economically important species within the genus. Seeds from these two Hibiscus species contain a relatively high amount of oil with two unusual fatty acids: dihydrosterculic and vernolic acids. The fatty acid composition in the oil can directly affect oil quality and its utilization. However, the variability in oil content and fatty acid composition for these two species is unclear. For these two species, 329 available accessions were acquired from the USDA germplasm collection. Their oil content and fatty acid composition were determined by nuclear magnetic resonance (NMR) and gas chromatography (GC), respectively. Using NMR and GC analyses, we found that Hibiscus seeds on average contained 18% oil and seed oil was composed of six major fatty acids (each >1%) and seven minor fatty acids (each <1%). Hibiscus cannabinus seeds contained significantly higher amounts of oil (18.14%), palmitic (20.75%), oleic (28.91%), vernolic acids (VA, 4.16%), and significantly lower amounts of stearic (3.96%), linoleic (39.49%), and dihydrosterculic acids (DHSA, 1.08%) than H. sabdariffa seeds (17.35%, 18.52%, 25.16%, 3.52%, 4.31%, 44.72%, and 1.57%, respectively). For edible oils, a higher oleic/linoleic (O/L) ratio and lower level of DHSA are preferred, and for industrial oils a high level of VA is preferred. Our results indicate that seeds from H. cannabinus may be of higher quality than H. sabdariffa seeds for these reasons. Significant variability in oil content and major fatty acids was also detected within both species. The variability in oil content and fatty acid composition revealed from this study will be useful for exploring seed utilization and developing new cultivars in these Hibiscus species.  相似文献   

6.
Copper (Cu) is an essential micronutrients and its deficiency has been reported in many crops including dry bean. A greenhouse experiment was conducted to evaluate thirty dry bean genotypes (G) for Cu-use efficiency. The Cu levels used were low (natural soil level) and adequate [10 mg Cu kg?1 soil, applied with copper sulfate (24 percent Cu)]. Straw yield, seed yield, number of pods per plant, seed per pod, seed harvest index (SHI), maximum root length (MRL), and root dry weight (RDW) were significantly affected by Cu and genotype treatments. The Cu × G interactions were also significant for these traits, indicating variation in genotype responses with the variation in Cu levels. Based on seed yield efficiency index (SYEI), genotypes were grouped in three classes: Cu efficient, moderately Cu efficient, and Cu inefficient. Fifty-three percent of the genotypes were classified as efficient, 40 percent were classified as moderately efficient, and 7 percent were classified as inefficient in Cu-use efficiency.  相似文献   

7.
Whether due to the genotype or the environment of the mother plant, the nutrient content of seeds vary over a wide range; the amount of the nutrient contributes greatly to seedling vigor, especially on deficient soils and may result in major differences in grain yield. This effect has important implications for breeding programs. This paper examines the impact of seed manganese (Mn) on screening of durum wheats for tolerance to Mn‐deficient soils. Seed stocks with a range of Mn contents (0.4–2.4 μg seed‐1) were produced, and the effect on expression of Mn efficiency measured as either relative yield or shoot Mn content for two durum wheat (Triticum turgidum L. var. durum) genotypes differing in Mn efficiency. Both genotypes responded to seed Mn content in terms of enhanced root and shoot growth; there was no genotype by seed Mn interaction, so Mn provided in seed was utilized additively by both Mn‐efficient and Mn‐inefficient genotypes. Manganese efficiency, measured as relative yield, was a function of seed Mn content and varied from 40 to 70% in Hazar and 58 to 90% in Stojocri 2, in the same assay using seed of variable Mn content. From the response curves of yield vs. soil Mn added, the Mn required for 90% relative yield was determined for each level of seed Mn content. Seed Mn was regressed against the soil added Mn needed to obtain 90% of maximal growth at each level of seed Mn content (a total of 8 levels) for each of two genotypes. There was an inverse linear relationship between the amount of soil Mn and seed Mn needed for each genotype. Using the Mn‐efficient genotype with high seed Mn content, the soil Mn needed to obtain 90% growth was nil, while inefficient genotypes with low Mn content required 75 mg Mn kg‐1 soil to produce the same relative yield. This relationship can be used to adjust the levels of soil applied Mn to be used in a pot bioassay when seeds have a certain Mn content, so as to maintain the screening at an optimal overall level of Mn stress.  相似文献   

8.
Dry bean (Phaseolus vulgaris L.) is an important legume worldwide and nitrogen (N) is most yield limiting nutrients. A field experiment was conducted for two consecutive years to evaluate response of 15 dry bean genotypes to nitrogen and rhizobial inoculation. The N and rhizobia treatments were (i) control (0 kg N ha?1), (ii) seed inoculation with rhizobia strains, (iii) seed inoculation with rhizobia strains + 50 kg N ha?1, and (iv) 120 kg N ha?1. Straw yield, grain yield, and yield components were significantly influenced by N and rhizobial treatments. Grain yield, straw yield, number of pods m?2, and grain harvest index were significantly influenced by year, nitrogen + rhizobium, and genotype treatments. Year × Nitrogen + rhizobium × genotype interactions were also significant for these traits. Hence, these traits varied among genotypes with the variation in year and nitrogen + rhizobium treatments. Inoculation with rhizobium alone did not produce maximum yield and fertilizer N is required in combination with inoculation. Based on grain yield efficiency index, genotypes were classified as efficient, moderately efficient, and inefficient in nitrogen use efficiency (NUE). NUE defined as grain produced per unit N applied decreased with increasing N rate. Overall, NUE was 23.17 kg grain yield kg?1 N applied at 50 kg N ha?1 and 13.33 kg grain per kg N applied at 120 kg N ha?1.  相似文献   

9.
Crude vegetable oils are usually oxidatively more stable than the corresponding refined oils. Tocopherols, phospholipids (PL), phytosterols, and phenols are the most important natural antioxidants in crude oils. Processing of vegetable oils, moreover, could induce the formation of antioxidants. Black cumin (Nigella sativa L.), coriander (Coriandrum sativum L.), and niger (Guizotia abyssinica Cass.) crude seed oils were extracted with n-hexane and the oils were further fractionated into neutral lipids (NL), glycolipids (GL), and PL. Crude oils and their fractions were investigated for their radical scavenging activity (RSA) toward the stable galvinoxyl radical by electron spin resonance (ESR) spectrometry and toward 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical by spectrophotometric method. Coriander seed oil and its fractions exhibited the strongest RSA compared to black cumin and niger seed oils. The data correlated well with the total content of polyunsaturated fatty acids, unsaponifiables, and PL, as well as the initial peroxide values of crude oils. In overall ranking, RSA of oil fractions showed similar patterns wherein the PL exhibited greater activity to scavenge both free radicals followed by GL and NL, respectively. The positive relationship observed between the RSA of crude oils and their color intensity suggests the Maillard reaction products may have contributed to the RSA of seed oils and their polar fractions. The results demonstrate the importance of minor components in crude seed oils on their oxidative stability, which will reflect on their food value and shelf life. As part of the effort to assess the potential of these seed oils, the information is also of importance in processing and utilizing the crude oils and their byproducts.  相似文献   

10.
Dry bean is important pulse for the diet of South American population and results related to comparison of genetically modified and conventional dry bean genotypes to soil fertility are limited. A greenhouse experiment was conducted to compare genetically modified and conventional dry bean genotypes to soil fertility. Genotypes evaluated were Olathe Pinto, Olathe 5.1 (genetically modified), BRS Pontal, BRS Pontal 5.1 (genetically modified), Pérola and Pérola 5.1 (genetically modified). Fertility levels were 1 g fertilizer (5-30-15) kg?1 soil (low fertility level) and 2 g fertilizer (5-30-15) per kg soil (high fertility level). These fertility levels were designated as low and high, respectively. Grain yield, number of pods per plants, and seed per pod were significantly increased with the increase in soil fertility. Shoot dry weight, seed per pod, and 100 seed weight were also significantly influenced by genotype treatment. Fertility X genotypes interaction was significant for maximum root length and root dry weight, indicating genotypes responded differently at two fertility levels in relations to these two traits. Shoot dry weight, number of pods per plant, and grain harvest index had significant association with grain yield, indicating that increase in these three traits grain yield can be increased. Grain yield efficiency index (GYEI) was having significant linear association with grain yield. Hence, on the basis of GYEI, genotypes were classified as efficient (E), moderately efficient (ME), and inefficient in nutrient use. Three conventional genotypes (Olathe Pinto, BRS Pontal and Pérola) and one genetically modified genotype (Olathe Pinto 5.1) were classified as moderately efficient and two genetically modified genotypes (Pérola 5.1 and BRS Pontal 5.1) were classified as efficient. None of the genotypes fall into the inefficient group.  相似文献   

11.
Four new accessions (BSP1-4) of rose scentedgeranium Pelargonium graveolens were derivedfrom the spontaneous half-sib seed progeny of mostly sterilepopulations of the cultivar accession Bipuli. The seed producingplants of Bipuli had been growing among the populations of cultivaraccessions Hemanti and Kunti in the temperate agroclimate ofKodaikanal, Tamilnadu in India. The four new accessions were comparedwith the cultivar accessions Bipuli, Hemanti and Kunti in fieldexperiments under subtropical agroclimate of Lucknow, Uttar Pradeshfor essential oil yield and quality related traits and in terms oftheir RAPD profiles. The crop yield and essential oil parameters andDNA profiles of the four new accessions and three cultivar accessionsallowed the conclusion that the accessions BSP-1, BSP-2 andBSP-3 were Bipuli × Kunti hybrids and BSP-4was a Bipuli × Hemanti hybrid. The accession BSP-4demonstrated hybrid vigour in several of the essential oil yieldrelated traits; on average basis it out yielded other accessions by afactor of about 2.4. The essential oil of BSP-4 had 89%rhodinol content in which citronellol to geraniol ratio was 1:1 andthe contents of isomenthone, menthone, 10-epi--eudesmol, 6,9-guaiadiene, decanoic acid andisodecanoic acid were relatively lower than in the oils of accessionsBipuli and/or Hemanti. The present study has shown a way for thegeneration of new genotypes in rose scented geranium in which thecultivars have been vegetatively maintained for decades and thegenetic resources are scanty.  相似文献   

12.
This study was conducted to elucidate the effect of salinity (2, 6, 9, and 12 dS m?1 sodium chloride (NaCl)) on three Iranian German chamomile genotypes (Shiraz, Ahvaz, and Isfahan). The Shiraz and Ahvaz genotypes, respectively, had the highest productivity and tolerance level, while the Isfahan was the less salt-tolerant genotype. In contrast to quantitative traits, the Isfahan genotype exhibited superior qualitative traits in terms of essential oil and chamazulene percentage. The differential responses to productivity and salt-resistance were attributed to the genetic variation, higher root to shoot ratios, and compartmentalization of sodium in roots of the Shiraz and Ahvaz genotypes, leading to better nutrient uptake and balance. While the nutrient composition was relatively in the same range for all genotypes, the higher accumulation of phosphorus in root and anthodia of the Shiraz genotype was evident. In addition, anthodia of the Ahvaz and root of the Shiraz genotype stored more nitrogen nutrient element.  相似文献   

13.
To investigate the effect of Spent Mushroom Compost (SMC) as an organic fertilizer on German chamomile (Matricaria recutita L.) nutrient, growth, yield, essential oil and osmolytes a greenhouse experiment was conducted through a randomized complete design in six replications. A mixture of sandy loam soil with 5, 10 and 15% volume rates of spent mushroom compost was used as the partial substrate for German chamomile pot culture. Finding of results revealed that usage of SMC in the growing media increased significantly plant growth, flower yield, essential macro nutrient uptake, sodium concentration, proline and soluble sugars content as well as essential oil percentages in compared to control. Comparison between the treatments indicated that addition of 10% SMC to the plant soil substrate cause to higher growth and addition of higher rates of SMC (10% and 15%) led to better yield. The obtained results showed that absorption of K and Na enhanced significantly by increasing of SMC percentage in growing media but there was no significant difference in N and P uptake in SMC treatments. The results of GC and GC-MS analysis presented that the main compositions of essential oil extracted from German chamomile flowers accounted for 83.99–99.84% of total essential oil in SMC treatments. Regarding important role of SMC on the essential oil yield, we can consider SMC could be a suitable substitute for chemical fertilizers as environmentally friendly material in cultivation medicinal plant German chamomile.  相似文献   

14.
Sweet potato (Ipomoea batatas [L.] Lam) is a versatile crop globally serving as food, feed and raw material for industries. Designed selection for higher yields and related traits is crucial to identify complementary sweet potato clones for breeding. The objective of this study was to determine phenotypic variation among diverse sweet potato collections with regard to yield, dry matter content (DMC) and sweet potato virus disease (SPVD) resistance and to identify suitable clones for breeding. A total of 144 sweet potato genotypes were evaluated at 2 sites in Tanzania using a 12?×?12 simple lattice design. Data collected included 10 quantitative and 17 qualitative agro-morphological traits and virus reaction. Results indicated differences among genotypes for most traits studied. The mean DMC was 36% with clones Zapallo and Ukerewe exhibiting the lowest and highest values of 29% and 45%, respectively. The mean storage root yield of clones was 5.1?t/ha with genotype Jewel expressing the highest yield of 11.3?t/ha. Genotypes Resisto and Mataya were early flowering at 40 and 50 days, respectively, while Ex-Mwanza and Kandoro did not flower at all. Fifty-eight per cent of the genotypes showed resistant reaction to SPVD, while 31% and 11% were moderately susceptible and susceptible to the disease, respectively. A positive correlation was observed for the number of roots and fresh root yield. Seven clones including Simama, Ukerewe, Mataya, Resisto, 03–03, Ex-Msimbi-1 and Gairo were selected for high storage root yield and related traits or SPVD resistance. The selected genotypes are recommended as potential parents for sweet potato breeding.  相似文献   

15.
ABSTRACT

To select and introduce the best rapeseed genotypes under withholding irrigation, two field experiments were carried out in seasons 2015–2016 and 2016–2017 in Iran. Factorial arrangement of treatments was set up as RCBD with three replications. The experiment factors were two irrigation treatments (normal irrigation during the growing season and withholding irrigation from silique setting stage until the end of the growing season) and 17 genotypes of rapeseed. Grain yield, oil content and fatty acid contents were measured. The results revealed that oleic acid (62.15%) was the highest followed by linoleic (19.28%), linolenic (5.65%), palmitic (5.24%) and stearic acids (2.44%). ODR (oleic desaturation ratio) and LDR (linoleic desaturation ratio) were significantly affected by genotypes and irrigation treatments. The biosynthetic pathway of fatty acids affected by drought stress. This means that linoleic acid increases under withholding irrigation condition, while linolenic acid decreases in such a water deficit stress condition. The highest performance of qualitative and quantitative was detected in HL3721 genotype due to high values of grain yield (3892.45 kg ha?1), oil content (437.05 g kg?1), unsaturated fatty acids (87.63%) and low values of saturated fatty acids (7.98%), and it could be used under withholding irrigation in arid and semi-arid climates.  相似文献   

16.
Information on the nutrient contents of newly developed orange-fleshed sweetpotato (OFSP) varieties is required for recommendations to growers and the food industry. Therefore, the objectives of this study were to determine the nutritional value of newly developed OFSP clones and to establish the associations between β-carotene content and micro-nutrients for targeted large scale production to alleviate nutrient deficiencies. Seventeen OFSP and eight white/cream-fleshed sweetpotato clones were evaluated across six diverse environments (Halaba, Kokate, Areka, Arbaminch, Hawassa and Dilla) in southern Ethiopia in 2014 using a 5?×?5 simple lattice design. Nutritional traits data were collected on dry-weight basis and subjected to analysis of variance and correlation analyses. Environment, genotype, and genotype?×?environment interaction effects were highly significant (p??1), protein (7.08%), iron (2.55 mg 100?g?1), zinc (1.42 mg 100?g?1), fructose (4.45%), glucose (5.34%) and sucrose (16.20%). Genotypes G15 and G19 also performed relatively well for the above nutritional traits. The three genotypes, G8, G15 and G19 had mean fresh root yield of 23.5,13.7 and 21.3?tha?1, respectively. These genotypes had root dry matter content of 26.99%, 25.23% and 33.09%, respectively. Β-carotene content had significant positive correlations with iron, zinc, fructose, glucose and sucrose content. This reflects the potential to breed for OFSP varieties enriched with the important micro-nutrients. Overall, the candidate OFSP clones, G8 (Resisto?×?PIPI-2), G15 (Resisto?×?Temesgen-23) and G19 (Resisto × Ogansagen-23) were good sources of nutritional traits such as vitamin A, iron, zinc, protein, sucrose, glucose and fructose. The selected genotypes can be recommended for large-scale production, food processing or further sweetpotato improvement to alleviate nutrient deficiencies in Ethiopia or similar environments in sub-Saharan Africa.  相似文献   

17.
Few attempts have been made to explore the effect of Zn fertilization on the performance of medicinal plants in general and fennel in particular, under adverse conditions. This study was conducted to examine the efficacy of zinc(Zn) in correcting physiological responses of fennel to water deficit. Twelve field-grown fennel genotypes were subjected to two levels of irrigation(irrigation after 25%–35% and 75%–85% depletion of available soil water) and two levels of foliar-applied Zn(0 and 4 g kg~(-1)). Water deprivation had significant effects on all characteristics; i.e., in contrast to seed essential oil concentration, harvest index, and superoxide dismutase(SOD) and catalase activities, it led to decreases in the rest of the attributes. Varietal differences in response to drought were meaningful for most of the traits. Genotypic variations for dry mass and seed yield were consistent with differences among the genotypes in leaf water potential, relative water content, proline concentration, and chlorophyll concentrations. Zinc led to significant increases in all physiological attributes, including activation of antioxidant defense responses manifested in ascorbate peroxidase and SOD activities and carotenoid concentration. The Zn-effect tended to be more notable in drought-stricken fennel plants in a majority of the traits.Based on our findings, Zn could be considered an effective micronutrient for ameliorating, at least in part, the stressful effects of water deficit on fennel.  相似文献   

18.
Abstract

Co-application of nano, chemical, and biological fertilizers has been recommended to increase quality and quantity of plants in sustainable production systems. Field experiments (factorial split plot experiment based on completely randomized block design) were conducted during two consecutive years to investigate the effect of nitrogen (nitroxin, urea, and nitroxin + 50% urea) and potassium (without fertilizer, soil and foliar application of potassium nano-chelate, and potassium dioxide) forms on grain yield, physiological traits, oil content, and fatty acids composition of sesame under water stress conditions (normal irrigation, irrigation up to 50% seed ripening and flowering (mild and severe stresses, respectively). Severe water stress was caused decreasing chlorophyll content, grain yield (25.4%), seed oil content (2.87%), and unsaturated fatty acid content, while it increased catalase and peroxidase activities, total carbohydrate, and saturated fatty acids content in compared to the control. As shown, the grain yield in the second year was more than the amount in the first year. The highest grain yield was achieved in co-application of 50% urea and nitroxin in combined with potassium dioxide under normal irrigation during the second year, which showed an increase of 42%, compared to the control treatment. Application of potassium fertilizer (nano or chemical) increased unsaturated fatty acids content in compared to the control treatment. While non-application of fertilizer had the highest saturated fatty acids content. Finally, the co-application of potassium fertilizer (nano or chemical forms) with nitrogen fertilizer (nitroxin + 50% urea) could alleviate the adverse effects of water stress on the studied traits.  相似文献   

19.
Castor has tremendous potential as a feedstock for biodiesel production. The oil content and fatty acid composition in castor seed are important factors determining the price for production and affecting the key fuel properties of biodiesel. There are 1033 available castor accessions collected or donated from 48 countries worldwide in the USDA germplasm collection. The entire castor collection was screened for oil content and fatty acid composition by nuclear magnetic resonance (NMR) and gas chromatography (GC), respectively. Castor seeds on the average contain 48.2% oil with significant variability ranging from 37.2 to 60.6%. Methyl esters were prepared from castor seed by alkaline transmethylation. GC analysis of methyl esters confirmed that castor oil was composed primarily of eight fatty acids: 1.48% palmitic (C16:0), 1.58% stearic (C18:0), 4.41% oleic (C18:1), 6.42% linoleic (C18:2), 0.68% linolenic (C18:3), 0.45% gadoleic (C20:1), 84.51% ricinoleic (C18:1-1OH), and 0.47% dihydroxystearic (C18:0-2OH) acids. Significant variability in fatty acid composition was detected among castor accessions. Ricinoleic acid (RA) was positively correlated with dihydroxystearic acid (DHSA) but highly negatively correlated with the five other fatty acids except linolenic acid. The results for oil content and fatty acid composition obtained from this study will be useful for end-users to explore castor germplasm for biodiesel production.  相似文献   

20.
To determine the possible alternative use of tobacco, the seeds representing seven Maryland tobacco cultivars were investigated for their phytochemical, antioxidant, and antiproliferative properties. Tobacco seed oils were extracted by the Soxhlet method, and analyzed for their yield, density, refractive index, fatty acid profiles, and tocopherol profile. The defatted flours were extracted in 50% acetone and 80% ethanol. The tobacco seed oil and flour extracts were analyzed for total phenolic contents (TPC) and scavenging capacities against peroxyl, hydroxyl and 2,2-diphenyl-1-picryhydrazyl (DPPH) radicals. The fatty acid compositions of phospholipids and the protein content of the flours were also analyzed. In addition, oil and flour extracts of varieties MD609 and MD609LA were evaluated for their antiproliferative effects on HT-29 human colon cancer cells. All of the tested extracts significantly inhibited HT-29 cell proliferation except that from MD609 oil. The data from this study suggest the potential alternative use of tobacco seeds in developing natural antioxidants and antiproliferative agents for improving human health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号