首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Land evaluation is the act of predicting the use potential of land on the basis of its attributes. The objective of this study was to evaluate qualitative and quantitative land suitability for the north-west of Iran on the basis of a FAO model for sunflower and maize crops. Growing cycle was determined using the CDBm (Monthly Climate Database) model and soils were classified in two orders of Mollisols and Vertisols, which consisted of seven soil families based on soil data and Keys to Soil Taxonomy 2010. Qualitative evaluation was carried out using the square root of parametric (SRP) method and quantitative evaluation was performed on the basis of observed yields under an average management level. The results showed that in the surveyed area, the climatic class had moderate suitability (S2) for maize and sunflower due to limitations imposed by the relative humidity of the growing cycle. The most important land limitation factors were soil parameters like pH, CaCO3 content, texture and coarse fragments, as well as topography and drainage in the area of study. Based on qualitative evaluation with SRP, 24.69 and 17.71% of land had non-suitable class (N1) for maize and sunflower, respectively. Quantitative land suitability for maize and sunflower showed that 24.69 and 9.81% of land had non-suitable class (N1), respectively.  相似文献   

2.
Efficient land-use management could be optimized through appropriate advice regarding land suitability and achieving a reasonable yield while preserving soil and environmental conditions. The main objective of this study was to determine and define those locations capable of wheat cultivation with irrigation in the municipality of N’goussa (Southern Algeria). Expert opinion (EO) method was used for selecting minimum soil data set (MDS-EO), where six influencing soil properties (sand, pH, salinity, organic matter, gypsum and lime) and other three key parameters (slope, land use/land cover, and proximity to roads and electricity network) were considered important for irrigated wheat cultivation in the study area. Indicators were weighted according to principal component analysis (PCA) loadings and summed. PCA revealed that the selected nine indicators are appropriate for accounting 73.63% of the total variance. Two maps of land suitability were created here (expressed as a soil quality index within a range from 0 to 1) from multivariate analysis and already known standard scoring functions (SSFs) by using two data sets (pure and scored). The distribution of soil quality index (IQI) showed that above 70% of the land was moderately (MS) to highly suitable (HS) for irrigated wheat. The estimation accuracy of soil quality classes has been evaluated using random forests (RF), having as a dependent variable the final class of land suitability used in each map. It was determined that estimation accuracy could reach 60% (pure data set) and 65% (scored data set) at 0.5 cut-off value for soil quality classes. Final prioritizing according to ranks of sensitivity index (SI) and efficiency ratio (ER) showed that IQI obtained from scored data set is the most suitable approach in soil quality assessment of arid areas. Therefore, it could be applied in southern Algeria for land management, integrated planning and environmental assessments.  相似文献   

3.
4.
等高反坡阶对玉米生长及光合特性的影响   总被引:2,自引:1,他引:1  
[目的] 探讨坡耕地等高反坡台阶措施对玉米生长及光合特性的影响,为云南省坡耕地作物种植提供科学依据。[方法] 以玉米(云瑞668)为供试材料,采用田间试验,试验设置2个布设有反坡台阶的坡耕地样地(2#和3#,CR)及1个未扰动的对照样地(1#,CK),通过野外定位监测方法,测定玉米生长相关指标,净光合速率、蒸腾速率、水分利用效率以及作物产量,研究等高反坡阶对玉米生长特征、光合特性的影响。[结果] 等高反坡阶措施对玉米茎粗、穗位高影响不显著。反坡阶坡中地块对玉米株高促进作用最为显著,增幅为27.9%;反坡阶样地玉米叶面积指数显著高于原状坡耕地,LAI最高达5.01~5.78,灌浆期后可维持相对较高的LAI,而CK组LAI范围为3.78~4.79,且下降较快;反坡阶处理下玉米叶片净光合速率(Pn)、气孔导度(Gs)、叶片瞬时水分利用效率(WUEL)、作物水分利用效率(WUE)均高于坡耕地;玉米产量分别较坡耕地提高了9.6%,13.8%。[结论] 在云南省坡耕地作物种植地区,通过布设等高反坡阶减少水土流失,提高土壤水分,增加土壤贮水量,进而使叶片维持较高的光合作用以及生理状态,为玉米干物质生产奠定了生理基础,提高了作物产量。自然降雨情况下,坡耕地坡度为15°时布设高反坡阶对玉米光合特性、WUE及产量促进作用最佳。  相似文献   

5.
玉米/大豆套作可显著提高粮食产量和养分利用效率。研究间套作作物根茬分解、养分释放规律及其对土壤生物学特性的影响,对阐释该系统中作物养分高效利用具有重要意义。本研究采用室内培养方式,控制根茬总量为2%(2 g根茬+98 g土壤),分别设置单独的大豆根茬(S)和玉米根茬(M)及两种根茬按3∶1、1∶1和1∶3混合(分别表示为SM 3∶1、SM 1∶1和SM 1∶3)共5个不同根茬配比处理和1个不加根茬处理(CK),动态测定根茬矿化速率,碳、氮含量和土壤微生物量碳等指标。研究结果表明:培养前9 d,根茬矿化速率最快,而后矿化速率逐渐降低,到培养60 d后所有处理根茬矿化速率趋于稳定。整个培养周期内玉米根茬CO_2累积释放量显著高于大豆根茬处理,但SM 1∶3处理的CO_2累积释放量始终高于其他处理。培养结束后,SM 1∶3处理的有机碳矿化量显著高于其他处理。根茬总碳含量在前10 d无显著变化,10~60 d时显著降低,后趋于平稳。培养结束后SM 1∶3处理的根茬碳含量相比初始值降低最多,降幅达到24.8%,其次是玉米根茬(M)处理,降幅为21.4%,大豆根茬(S)处理碳含量降低最少,为9.7%。根茬总氮含量在前10 d显著降低,10~100 d总氮含量显著增加。培养结束后大豆根茬(S)总氮含量最高,SM 1∶3处理总氮含量最低。土壤微生物量碳含量在培养周期内呈先增加后降低而后趋于平稳的变化规律。培养结束后与CK相比,SM 1∶3、SM 1∶1、M、S和SM 3∶1处理的土壤微生物量碳含量分别增加89.4%、58.8%、47.1%、41.2%和37.5%。因此,玉米、大豆根茬混合后在土壤中的矿化速率、养分释放速率明显高于单一根茬处理,且有利于土壤微生物的繁殖。在本试验所选的3种配比中,SM 1∶3的配置效果最佳。  相似文献   

6.
Imbalanced application of nitrogen (N) and phosphorus (P) fertilizers can result in reduced crop yield, low nutrient use efficiency, and high loss of nutrients and soil nitrate nitrogen (NO3--N) accumulation decreases when N is applied with P and/or manure; however, the effect of applications of N with P and/or manure on root growth and distribution in the soil profile is not fully understood. The aim of this study was to investigate the combined effects of different N and P fertilizer application rates with or without manure on maize (Zea mays L.) yield, N uptake, root growth, apparent N surplus, Olsen-P concentration, and mineral N (Nmin) accumulation in a fluvo-aquic calcareous soil from a long-term (28-year) experiment. The experiment comprised twelve combinations of chemical N and P fertilizers, either with or without chicken manure, as treatments in four replicates. The yield of maize grain was 82% higher, the N uptake 100% higher, and the Nmin accumulation 39% lower in the treatments with combined N and P in comparison to N fertilizer only. The maize root length density in the 30--60 cm layer was three times greater in the treatments with N and P fertilizers than with N fertilizer only. Manure addition increased maize yield by 50% and N uptake by 43%, and reduced Nmin (mostly NO3--N) accumulation in the soil by 46%. The long-term application of manure and P fertilizer resulted in significant increases in soil Olsen-P concentration when no N fertilizer was applied. Manure application reduced the apparent N surplus for all treatments. These results suggest that combined N and P fertilizer applications could enhance maize grain yield and nutrient uptake via stimulating root growth, leading to reduced accumulation of potentially leachable NO3--N in soil, and manure application was a practical way to improve degraded soils in China and the rest of the world.  相似文献   

7.
Because conventional Boolean retrieval of soil survey data and logical models for assessing land suitability treat both spatial units and attribute value ranges as exactly specifiable quantities, they ignore the continuous nature of soil and landscape variation and uncertainties in measurement which can result in the misclassification of sites that just fail to match strictly defined requirements. This paper uses fuzzy classification to determine land suitability from (i) multivariate point observations of soil attributes, (ii) topographically controlled site drainage conditions, and (iii) minimum contiguous areas, and compares the results obtained with conventional Boolean methods. The methods are illustrated using data from the Alberta Agricultural Department experimental farm at Lacombe in Alberta, Canada. Data on site elevation and soil chemical and physical properties measured at 154 soil profiles were interpolated by ordinary block kriging to 15 m × 15 m cells on a 50 × 50 grid. The soil property data for each cell were classified by Boolean and fuzzy methods. The digital elevation model created by interpolating the elevation data was used to determine the surface drainage network and map it in terms of the numbers of cells draining through each cell on the grid. This map was reclassified to yield Boolean and fuzzy maps of surface wetness which were then intersected with the soil profile classes. The resulting classification maps were examined for contiguity to locate areas where a block of minimum size (45m × 45m) could be located successfully. In this study Boolean methods reject larger numbers of cells than fuzzy classification, and select cells that are insufficiently contiguous to meet the aims of the land classification. Fuzzy methods produce contiguous areas and reject less information at all stages of the analyses than Boolean methods. They are much better than Boolean methods for classification of continuous variation, such as the results of the drainage analysis.  相似文献   

8.
利用吉林省1980-2016年春玉米作物资料、50个气象站的逐日气象资料,构建春玉米生长季各旬的气候适宜度模型。分别采用绝对值法、归一化法和相关系数法确定各旬气候适宜度权重系数,进而计算4月上旬-预报日前一旬的气候适宜度指数,分析不同方法得到的气候适宜度指数与春玉米产量气象影响指数的相关性,并进行回归分析,建立产量动态预报模型,对吉林省春玉米单产进行预报。结果表明:三种方法研究的权重系数之间存在一定差异,但总体上随生育期的变化趋势基本一致。利用1981-2012年资料回归分析建立的产量丰歉预报模型多数通过0.05水平的有效性检验,各预报模型历史拟合平均准确率均在85.0%以上,归一化均方根误差NRMSE均小于17.0%,丰歉趋势预报准确率普遍在60.0%~80.0%,三种方法差异不明显。利用模型对2013-2016年春玉米单产进行外推预报,各预报时间准确率存在波动,但绝对值法、归一化法和相关系数法所有预报时间的平均准确率分别为93.5%、90.8%、87.2%,预报结果准确率的标准差分别为32.6、69.4、116.1。且绝对值法各预报时间平均准确率均在85.0%以上。可见绝对值法预报结果的准确率和稳定性均较高,可以满足业务服务需要。  相似文献   

9.
不同氮肥施用方式下春玉米根系时空分布特征   总被引:1,自引:0,他引:1       下载免费PDF全文
通过剖析不同氮肥施用方式下,玉米根系统随生育进程在0~ 60 cm不同土层内分布特征及地上部产量和氮累积量的变化,以期为氮肥合理施用提供理论依据.以先玉335为供试品种,进行了4年田间定位试验.设3个处理:无氮区(N0);氮肥一次性基施200kg/hm2 (N1);氮肥分次施用(N2),基肥50 kg/hm2,拔节期1...  相似文献   

10.
河西绿洲灌区玉米间作绿肥根茬还田的氮肥减施效应   总被引:1,自引:0,他引:1  
  【目的】  明确玉米与间作豆科绿肥根茬还田生产方式在河西绿洲灌区的氮肥减施效应。  【方法】  玉米间作豆科绿肥,绿肥(针叶豌豆和毛叶苕子)地上部乂割做饲草根部还田,定位试验位于甘肃河西绿洲,始于2011年,至本试验取样时已进行了10年。试验共设8个处理,包括无绿肥根茬还田条件下后茬玉米不施肥对照,施常规量氮肥(N 375 kg/hm2),只有针叶豌豆、毛叶苕子根部还田,以及根部还田配合常规氮肥量的80%、90%。于2020年玉米收获后测产,并测定了玉米秸秆和籽粒氮、磷、钾养分含量,同时分析了0—20 cm土壤有机质、速效氮磷钾含量及土壤氮库(全氮、有机氮、无机氮、颗粒态有机氮、可溶性有机氮、土壤微生物量氮)。  【结果】  与常规施氮肥相比,根茬单独还田降低了玉米产量;绿肥根茬配施80%、90%常规量氮肥处理之间的玉米籽粒产量没有显著变化,其中针叶豌豆配合80%常规量氮肥还显著增加了玉米产量7.6%;玉米地上部氮磷钾累积量略有增加,而籽粒氮、磷、钾养分累积量分别增加了31.7%~56.4%、37.8%~60.0%、61.7%~96.8%;玉米氮肥农学效率、偏生产力、氮素吸收效率和氮肥表观利用率均显著增加,以针叶豌豆根茬配施80%常规量氮肥处理的增加幅度最高,增加值分别为43.6%、34.5%、107.9%、35.8个百分点 (P<0.05)。采用改进的内梅罗指数法对土壤综合肥力进行评价,以针叶豌豆根茬还田配施80%常规量氮肥处理提升土壤肥力的效果最为显著,土壤综合肥力指数较常规施氮肥处理提升23.0%。偏最小二乘法路径模型和聚合增强树分析表明,施肥处理主要通过调节土壤氮贮量影响玉米产量,土壤全氮、无机氮对产量的贡献率较高,分别为36.5%、26.8%。  【结论】  绿肥根茬连续还田条件下,减少后茬玉米氮肥常规用量的20%可维持甚至提高玉米产量,大幅提升玉米的氮磷钾吸收量和氮肥表观利用率。根茬还田配合适量氮肥可以通过提升土壤氮库贮量提高土壤综合肥力。在河西走廊,玉米产量和环境效益俱佳的栽培管理方式是针叶豌豆根茬还田配合80%的常规氮肥用量,毛叶苕子根茬还田配合80%~90%的常规氮肥用量。  相似文献   

11.
[目的]对ECH2O EC-5土壤水分传感器测定科尔沁沙地土壤含水率的可靠性进行验证。[方法]以烘干法测定数据为基准值,采用回归分析方法建立ECH2O EC-5水分传感器测定沙地土壤含水率的校正方程,并用独立的样本进行验证。[结果]ECH2O EC-5水分传感器测定值与烘干法测定值之间具有很好的线性回归关系(R2=0.96),呈显著正相关(p0.01);验证结果显示,ECH2O EC-5土壤水分传感器测定值经回归方程校正后与基准值之间的均方根误差(RMSE)、相对均方根误差(RRMSE)分别为0.38%和6.29%。[结论]ECH2O EC-5土壤水分传感器测定的沙地土壤水分值准确度较高,具有很高的可靠性。  相似文献   

12.
Relationship between the contents of soil sulphur and plant sulphur was studied in order to evaluate the distribution of plant-available sulphur in Zambian soils. Four soils series with distinct differences in texture and organic carbon content had been selected among representative benchmark soil series and used to cultivate maize (Zea mays L.) as a test plant in pots. From the results of the pot experiment, critical levels of sulphur deficiency in plants and soils were evaluated and the levels of available sulphur for maize nutrition were rated into four classes using data on the relative yield of maize. The optimum method to determine the available sulphur content of the soils was applied to the analysis of other benchmark soils. Satisfactory regression models for assessing the relation between the content of available soil sulphur with other soil constituents among benchmark soil could not be identified. A distribution map for available sulphur was drawn in a step-by-step format by using a different scale of the soil map, soil units and the legends of soil map databases. As a result, it was confirmed that sulphur-deficient and marginal areas were widely distributed throughout the country. Finally, soil acidity problems associated with sulphur application, the inconsistency of the content of available sulphur with that of total sulphur and limitation of the map utility were examined.  相似文献   

13.
The continuous use of heavy machinery and vehicular traffic on agricultural land led to an increase in soil compaction, which reduces crop yield and deteriorates the physical conditions of the soil. A pot experiment was conducted under greenhouse conditions to study the effects of induced soil compaction on growth and yield of two wheat (Triticum aestivum) varieties grown under two different soil textures, sandy loam and sandy clay loam. Three compaction levels [C0, C1, and C2 (0, 10 and 20 beatings)], two textural classes (sandy loam and sandy clay loam), and two genotypes of wheat were selected for the experiment. Results indicated that induced soil compaction adversely affected the bulk density (BD) and total porosity of soil in both sandy loam and sandy clay loam soils. Compaction progressively increased soil BD from 1.19 Mg m?3 in the control to 1.27 Mg m?3 in C1 and 1.40 Mg m?3 in C2 in sandy loam soil while the corresponding increase in BD in sandy clay loam was 1.56 Mg m?3 in C1 and 1.73 Mg m?3 in C2 compared to 1.24 Mg m?3 in the control. On the other hand, compaction tended to decrease total porosity of soil. In case of sandy loam, porosity declined by 5% and 17% in C1 and C2, respectively, and declined in sandy clay loam by 29% and 54%, respectively. Averaged over genotypes and textures, shoot length decreased by 15% and 26% at C1 and C2, respectively, and straw yield decreased by 21% and 61%, respectively. The compaction levels C1 and C2 significantly decreased grain yield by 12% and 41%, respectively, over the control. The deleterious effect of compaction was more pronounced on root elongation and root mass, and compaction levels C1 and C2 decreased root length by 47% and 95% and root mass by 41% and 114%, respectively, over the control. Response of soil texture to compaction was significant for almost all the parameters, and the detrimental effects of soil compaction were greater in sandy clay loam compared to sandy loam soil. The results from the experiment revealed that soil compaction adversely affected soil physical conditions, thereby restricting the root growth, which in turn may affect the whole plant growth and grain yield. Therefore, appropriate measures to avoid damaging effects of compaction on soil physical conditions should be practiced. These measures may include soil management by periodic chiseling, controlled traffic, conservation tillage, addition of organic manures, and incorporating crops with deep tap root systems in a rotation cycle.  相似文献   

14.
The impact of degradation on functional properties of land and its productive capacity may vary between land units and soils. The present study explores the methodology for assessment of the impact of 20 years of simulated water erosion on production of maize in Kenya. It uses databases on soils, climate and crops and several models are combined to arrive at a productivity impact calculation. Outcome of the modelling exercise may serve as a basis for prioritizing land-use policies, conservation measures and research at a national level. The methodology comprises four steps: (1) creating basic evaluation units, by climatic zonation of soil and terrain units, (2) suitability assessment for low input and rainfed maize cultivation, (3) definition of a water erosion scenario, by translating computed water erosion risk into four classes of depth of topsoil lost over 20 years' time, (4) calculation of crop yield potentials for the current situation and with inclusion of the erosion scenario, accounting for lost nutrients through topsoil erosion and for altered soil physical conditions. The study shows that a major part of Kenya is too dry for growing maize. Potentially suitable areas for growing maize in Kenya generally have a high yield potential, but considerable yield gaps exist. Furthermore, these areas are highly vulnerable to water erosion. In the very steep patches of land in the central and central-western part of Kenya, water-limit yield decline projected over 20 years is over 50 per cent. Nutrient-limited yield potentials are even more affected by the loss of topsoil. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
The indicator approach to categorical soil data   总被引:7,自引:0,他引:7  
In this paper, the first of two, we present the indicator approach to describe the spatial variability of categorical soil data. Indicator kriging is used to obtain conditional probabilities of soil data classes at unsampled locations. A new concept of map purity is defined. Using Sequential Indicator Simulation (SIS), equiprobable realizations of classified maps can be drawn which reflect the probability of occurrence of each class and honour the observed spatial connectivity patterns of the classes and the classes found at the observation sites. When categorical data are used for land resources assessment, the uncertainties accruing from map impurities can be assessed by performing the analysis on each of the maps generated by SIS. In Part I1 of this series, the methods are demonstrated using a case study on the mapping of water table classes and a land use suitability analysis for pasture.  相似文献   

16.
A soil map at the scale 1:10,000 serves as a major important document for land owners and local governments, which allows them to use soil information in their daily activity. The intensity of exploitation of soil maps will increase when the very map and its legend are supplemented, within colored and indexed polygons, with information about soil texture and reaction by layers, but also about the thickness and characterization of the epipedon, quality indices for soil assessment, classes of stoniness, and prevalent fractions of stones, erosion risk, etc. Special maps of agronomical status, with a list of proper measures for improvement of soils and their associations, should form a regular component of large‐scale mapping. As decrease in arable land and increase in the forest area are common trends in land use, these maps and general soil data should serve as the fundamental source of information for decision making concerning land use. Data indicating the suitability of any soil for any crop should be entered in a database. Application of GIS on any level of national economy, digitization of a large‐scale soil database and making it accessible to land users would allow to expand the amount of available information for each soil map polygon.  相似文献   

17.
为了探索启动磷肥不同施用方式对玉米生长和产量的影响,设置启动磷肥大田滴施(T1)、穴施(T2)和不施启动磷肥(CK)3个施肥处理,其中启动肥磷肥用量为P2O5 30 kg·hm-2,探究启动磷肥不同施用方式对玉米生长、养分分配和产量构成的影响;设置启动磷肥根箱土壤滴施(P1)、穴施(P2)和不施启动肥(CF)3个处理,其中启动肥磷肥用量为P2O5 0.2 g·kg-1土,探究启动磷肥施用后土壤中磷素的空间分布与迁移效果。结果表明,玉米四叶期和六叶期,T1和T2处理均显著增加了苗期玉米总根长,根表面积,地上、地下部生物量和N、P、K养分积累量。在六叶期,T1和T2处理玉米总根长较CK分别增加了21.10%和30.35%,根系表面积分别增加了23.48%和29.20%,地上和地下部生物量分别增加了31.24%和52.38%、33.61%和57.81%。与CK相比,T1和T2处理促进了玉米N、P、K养分的积累,同时促进了养分由营养器官向生殖器官的转移。在玉米吐丝期至成熟期,T1和T2处理玉米N、P、K养分转移量较CK分别增加了29.75和44.73 kg·hm-2、10.76和14.65 kg·hm-2、2.20和24.67 kg·hm-2。玉米穗长、行粒数、产量和磷肥偏生产力均表现为T2>T1>CK,玉米穗秃尖长度表现为T2相似文献   

18.
藏碳于土是减少温室气体排放的重要途径,紫云英等绿肥回田能显著促进土壤有机碳积累,且培肥地力,但至今有关其种植布局的研究极少结合用地适宜性和固碳培肥现实需求性进行探讨。本文以福建省浦城县为研究区,借助GIS与修正的加权指数和、动态聚类等数学模型集成技术,在基于1∶5万比例尺的区域紫云英用地适宜性评价和耕层土壤碳密度分析的基础上,以适宜性和耕层土壤有机碳密度为指标,遵循最适宜生长和耕层土壤碳密度较低的耕地优先安排为种植用地的原则,将研究区紫云英优化种植区划分为优先、次优先和一般种植区。结果表明,研究区81.82%的耕地不同程度地适宜种植紫云英,耕层有机碳密度介于2.50~5.74 kg×m~(-2),空间差异较为明显。经优化布局的研究区紫云英用地面积占耕地总面积的59.72%,以优先种植区和次优先种植区占优势,分别占研究区紫云英优化布局用地总面积的25.72%和50.34%;其中耕地土壤固碳培肥需求较为强烈的莲塘、水北、古楼、永兴和忠信等乡镇可作为紫云英重点种植区,富岭、仙阳、石陂和九牧等乡镇可作为紫云英种植的后备种植区。基于土地适宜性和固碳需求,择优选取紫云英适宜种植区域,对于其高效种植利用、区域耕地土壤有机质提升计划的科学实施以及耕地质量的有效提高具有重要指导意义。  相似文献   

19.
A field study was conducted over two years on maize at Islam Abad Research Station at 34°7′42′′N and 46°27′23′′E and elevation of 1348 m a.s.l in Kermanshah Province, western Iran in order to compare the effects of different irrigation methods and treatments on irrigation water use efficiency, crop yield, yield response factor, pan and seasonal crop coefficients, and other maize parameters. The experiment was a complete randomized block design with three replicates. During the study, irrigation water was applied at 40, 60, 80 and 100% of the maize seasonal water requirement for different surface drip tape (SDT) treatments, and 100% only for conventional furrow irrigation treatments with and without soil and water monitoring. The results showed that by using the above-mentioned different drip tape and surface treatments with soil and water monitoring, maize seasonal irrigation water use savings of 81, 71, 61, 52 and 36% were achieved compared with local conventional furrow irrigation without any soil, water and root monitoring, respectively. The yield response factor (K y), seasonal crop (K c) and pan coefficient (K p) for maize were 0.80, 0.76 and 0.97, respectively.  相似文献   

20.
Relationship between the contents of soil sulphur and plant sulphur was studied in order to evaluate the distribution of plant-available sulphur in Zambian soils. Four soils series with distinct differences in texture and organic carbon content had been selected among representative benchmark soil series and used to cultivate maize ( Zea mays L.) as a test plant in pots. From the results of the pot experiment, critical levels of sulphur deficiency in plants and soils were evaluated and the levels of available sulphur for maize nutrition were rated into four classes using data on the relative yield of maize. The optimum method to determine the available sulphur content of the soils was applied to the analysis of other benchmark soils. Satisfactory regression models for assessing the relation between the content of available soil sulphur with other soil constituents among benchmark soil could not be identified. A distribution map for available sulphur was drawn in a step-by-step format by using a different scale of the soil map, soil units and the legends of soil map databases. As a result, it was confirmed that sulphur-deficient and marginal areas were widely distributed throughout the country. Finally, soil acidity problems associated with sulphur application, the inconsistency of the content of available sulphur with that of total sulphur and limitation of the map utility were examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号