共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of rice straw (RS) incorporated at the time of plowing in the previous cr–p season on CH4 emission from rice paddies was investigated in a pot experiment. Rice straw that incorporated just before transplanting of rice seedlings (June) into a paddy field was collected after the harvest (October) and at the beginning of the next cropping period (May). Methane emission rates from the rice-planted pots with the application of fresh RS, RS collected in October. and RS collected in Mayas well as the pots without RS application were measured using the chamber method. The composition of organic constituents in the three kinds of RS was estimated by the proximate analysis. The cumulative amount of CH4 emitted during the first 50–d period was lower in the order of the pots with RS collected in May, pots with RS collected in October, and pots with fresh RS. The cumulative amount of CH4 emitted throughout the rice growth period from the pots with fresh RS and with RS collected in October was significantly larger while that from the pots with RS collected in May did not differ statistically compared with the total CH4 emission from the pots without RS. These results suggested that there was an overall decrease in the amount of organic constituents in RS based on the large differences in T-C content and similar composition of organic constituents between the fresh RS and RS collected in May. Significant effect of RS continuously applied during the previous cropping period on the increase in CH4 emission was discussed. 相似文献
2.
稻田CH4和N2O综合排放对控制灌溉的响应 总被引:4,自引:6,他引:4
为了揭示水稻控制灌溉对稻田CH4和N2O综合排放的影响,该文采用静态暗箱-气相色谱法对控制灌溉稻田CH4和N2O排放进行原位观测,分析稻田CH4和N2O综合排放对控制灌溉水分调控的动态响应。结果表明,控制灌溉稻田CH4排放通量多低于常规灌溉稻田,且主要集中在水稻分蘖前期,峰值出现在土壤脱水后第1~2d,排放总量较常规灌溉稻田减少81.2%~82.8%;N2O排放通量多高于常规灌溉稻田,峰值出现在肥后且土壤脱水后3~4d,排放总量较常规灌溉稻田增加了121.8%~144.3%。控制灌溉稻田CH4和N2O的综合全球增温潜势较常规灌溉稻田显著减少(p<0.05),减少幅度为15.0%~34.8%。控制灌溉显著降低了稻田CH4和N2O的综合温室效应。 相似文献
3.
早稻秸秆原位焚烧对红壤晚稻田CH4和N2O排放及产量的影响 总被引:1,自引:0,他引:1
选取湖南双季稻田为研究对象,采用静态箱-气相色谱法对晚稻田在常规施肥(NPK)、常规施肥+秸秆原位焚烧(NPK+SB)处理下的CH4和N2O排放通量进行观测,同时根据设定参数对秸秆焚烧排放的CH4和N2O进行估算。结果表明,晚稻生长期间NPK和NPK+SB 处理的CH4排放量差异很小,秸秆焚烧会增加N2O排放22.8%,但差异不显著(p>0.05)。两种施肥方式下N2O排放峰值都出现在追肥后的土壤水分饱和时期而晒田期排放很少。据估算秸秆焚烧排放的CH4和N2O分别占NPK+SB处理总排放的4.27% 和17.31%。NPK+SB处理单位产量的全球增温潜势比NPK处理高22%。综合考虑生产效应和环境效应,水稻秸秆焚烧不是明智的选择。 相似文献
4.
Emissions of trace gases (CO2, CO, CH4, N2O) resulting from rice straw burning were measured by using the open chamber method. The carbon contained in rice straw was mainly released to the atmosphere as CO2. The percentage of CO2-C emitted in total C in rice straw was in the range of 57–81%, followed by CO-C (5–9%). The percentages of CH4-C and N2O-N in total C and N in rice straw were in the range of 0.43–0.90 and 1.16–1.50%, respectively. In the case of the rice straw which had been left in the field for a period of one month after harvest, emission of imperfect combustible gases such as CO and CH4 during burning increased slightly, while that of perfect combustible gas, CO2, was reduced. The amount of CH4 emission from rice straw burning was comparable to that from paddy fields. 相似文献
5.
6.
Huan X. Nguyen Van T. Nguyen Chinh T. Tran Anh T. Q. Nguyen Lan Nguyen-Thanh Anh T. K. Bui 《Archives of Agronomy and Soil Science》2019,65(10):1354-1369
Rice straw contains up to 2.3% K in dry matter, including potassium (K) subcompartmented in phytoliths, complex siliceous structures formed in plant tissue via precipitation of Si. Rice straw is usually returned to the soil as a conventional practice to sustain soil nutrients, and therefore, the K pool accompanied with rice straw phytoliths is also cycled. Based on phytoliths obtained by ashing of rice straw at 400 °C and dissolution experiments using batch extraction in combination with physical separation of phytoliths by heavy liquid, this study evaluated the phytolith K(phytK) pool in rice straw and aged phytoliths in paddy soils. Entrapped organic matter containing K within phytolith silica cells was visualized by X-ray tomographic microscopy, and releases of this phytK pool accompanying phytolith dissolution were quantified. A 1% Na2CO3 solution, which has been commonly used to extract amorphous Si and to quantify soil phytoliths, showed obvious responses for K derived from phytolith dissolution, indicating that the Na2CO3 method can be developed for measurement of phytK. In 13 soil samples, Na2CO3-dissolvable K content assignable to phytK was 0.55 ± 0.39 g kg?1 in the puddled horizon, suggesting the phytK pool is of high significance for the management of K in paddy soils. 相似文献
7.
Zhijun Wei Chenglin Li Xiaofang Ma Shutan Ma Zongyang Han Xiaoyuan Yan Jun Shan 《European Journal of Soil Science》2023,74(6):e13428
Biochar is an efficacious amendment for mitigating nitrous oxide (N2O) emissions in soils. Nevertheless, the underlying mechanisms responsible for reduced N2O emissions by biochar in paddy soils remain inadequately elucidated. Here, using two typical paddy soils with contrasting pH values (5.40 and 7.56), the N2 and N2O fluxes and the associated functional genes were investigated in soil amended with varying amounts of biochar (0%, 0.5%, and 5%, weight/weight) via soil slurry incubation integrated with the N2/Ar technique and qPCR analysis. The results showed that N2O fluxes were significantly (p < 0.05) reduced by 0.65–3.64 times following biochar amendment, concomitant with a significant (p < 0.05) increase in N2 fluxes (5.47–46.14%) in both acidic and alkaline paddy soils. As a result, the N2O/(N2O + N2) ratios were significantly (p < 0.05) reduced by 1.53–4.65 fold in both soil types. In acidic paddy soils, the enhanced denitrification rates and the decreased N2O/(N2O + N2) ratios exhibited a strong correlation with increased pH values. In alkaline paddy soil, these changes were ascribed to the enhanced nosZ Clade I gene abundance and nosZ/(nirS + nirK) ratio. Our findings reveal that biochar primarily mitigates N2O emissions in paddy soils by promoting its reduction to N2. 相似文献
8.
耕作方式和稻草还田对双季稻田CH_4和N_2O排放的影响 总被引:11,自引:5,他引:11
稻田温室气体(甲烷和氧化亚氮)排放强度受多种田间管理的影响,以往对各种措施间的交互效应研究较少。为此,该研究利用改进的静态箱-气相色谱法进行了连续4个生长季的湖南典型双季稻田温室气体排放强度观测,旨在分析耕作和稻草还田2种措施的交互效应并探寻多措施联合减缓温室气体排放强度的途径。试验设4个处理:翻耕(CWS,conventional tillage without straw residue)、免耕(NWS,no till without straw residue)、免耕高茬还田(HN,no till with high stubble straw residue)和翻耕高茬还田(HC,conventional tillage with high stubble straw residue)。结果表明,耕作和稻草还田2种措施对稻田甲烷排放有显著的交互效应(P0.05),但对氧化亚氮交互效应不显著。2种措施对稻田温室气体排放强度的影响有明显的季节和年际变异。多生长季平均而言,各处理甲烷排放顺序为HCHNCWSNWS(HC显著高于HN,HN和CWS差异不显著),水稻产量顺序为CWSHNHCNWS(HN和CWS差异不显著),而温室气体排放强度(greenhouse gas intensity)顺序为HCCWSHNNWS(HN显著低于HC和CWS,P0.05)。可见,"免耕高茬还田"模式能抵消翻耕处理的高温室气体排放,并能比NWS处理提高水稻产量,显著减缓双季稻田温室气体排放强度。在保护性耕作和农田碳库提升的需求下,该模式应被予以高度重视。该研究可为中国双季稻主产区温室气体排放强度减缓措施的选择提供科学支撑。 相似文献
9.
Samuel Munyaka Kimani Putu Oki Bimantara Satoshi Hattori Keitaro Tawaraya Shigeto Sudo 《Soil Science and Plant Nutrition》2020,66(1):152-162
ABSTRACT To investigate the influence of Azolla (A. filiculoides Lam.) incorporated as a green manure and its subsequent growth as a dual crop with rice on simultaneous methane (CH4) and nitrous oxide (N2O) emissions from a flooded alluvial soil planted with rice, a pot experiment with three treatments, chemical fertilizers (NPK) as the control, incorporation of Azolla as green manure (AGM), and AGM plus basal chemical fertilizers (NPK+AGM) was conducted in Tsuruoka, Yamagata, Japan in 2017. AGM and NPK+AGM treatments significantly increased CH4 emissions at early rice growth stages before 63 days after transplanting (DAT) by 123.0% and 176.7% compared to NPK, respectively. At late rice growth stages (after 63 DAT), only the NPK+AGM treatment significantly increased CH4 emission by 22.1% compared to NPK. However, percentage of CH4 emitted after 63 DAT relative to the seasonal CH4 emission followed the order of NPK (86.2%) > AGM (76.5%) > NPK+AGM (73.3%). Higher CH4 emissions from AGM and NPK+AGM before 63 DAT were attributed to the incorporated Azolla, while the higher emissions after 63 DAT in all treatment groups were ascribed to rice photosynthesis. AGM and NPK+AGM treatments significantly decreased N2O emissions by 71.6% and 81.1% compared to NPK, respectively, at early rice growth stages. Azolla incorporation may have restricted N2O emission from initial soil nitrate before 63 DAT and not have contributed to N2O emissions after 63 DAT. Significantly higher grain yields were observed under the AGM (32.5%) and NPK+AGM (36.3%) compared to NPK. Together, AGM and NPK+AGM treatments significantly increased seasonal CH4 emissions by 31.5% and 43.5%, and decreased seasonal N2O emissions 3.4- and 4.6- fold compared to NPK, respectively. There were no significant differences in the CH4 emissions per grain yield among the treatments; however compared to NPK, AGM and NPK+AGM treatments significantly reduced N2O emissions per grain yield by 78.7% and 84.1%, respectively. 相似文献
10.
Soil phosphorus availability and rice phosphorus uptake in paddy fields under various agronomic practices 总被引:3,自引:0,他引:3
Bingshen JIANG Jianlin SHEN Minghong SUN Yajun HU Wenqian JIANG Juan WANG Yong LI Jinshui WU 《土壤圈》2021,31(1):103-115
Agronomic practices affect soil phosphorus(P) availability, P uptake by plants, and subsequently the efficiency of P use. A field experiment was carried out to investigate the effects of various agronomic practices(straw incorporation, paddy water management, nitrogen(N) fertilizer dose, manure application,and biochar addition) on soil P availability(e.g., soil total P(STP), soil available P(SAP), soil microbial biomass P(SMBP), and rice P uptake as well as P use efficiency(PUE)) over four cropping seasons in a rice-rice cropping system, in subtropical central China. Compared to the non-straw treatment(control,using full dose of chemical N fertilizer), straw incorporation increased SAP and SMBP by 9.3%–18.5% and 15.5%–35.4%, respectively;substituting half the chemical N fertilizer dose with pig manure and the biochar application increased STP, SAP, and SMBP by 10.5%–48.3%, 30.2%–236.0%, and 19.8%–72.4%,respectively, mainly owing to increased soil P and organic carbon inputs;adding a half dose of N and no N input(reduced N treatments) increased STP and SAP by 2.6%–7.5% and 19.8%–33.7%, respectively, due to decreased soil P outputs. Thus, soil P availability was greatly affected by soil P input and use. The continuous flooding water regime without straw addition significantly decreased SMBP by 11.4% compared to corresponding treatments under a mid-season drainage water regime. Total P uptake by rice grains and straws at the harvest stage increased under straw incorporation and under pig manure application, but decreased under the reduced N treatments and under biochar application at a rate of 48 t ha-1, compared to the control. Rice P uptake was significantly positively correlated with rice biomass, and both were positively correlated with N fertilizer application rates, SAP, SMBP, and STP. Phosphorus use efficiency generally increased under straw incorporation but decreased under the reduced N treatments and under the manure application(with excessive P input), compared to the control. These results showed that straw incorporation can be used to increase soil P availability and PUE while decreasing the use of chemical P fertilizers. When substituting chemical fertilizers with pig manure, excess P inputs should be avoided in order to reduce P accumulation in the soil as well as the environmental risks from non-point source pollution. 相似文献
11.
12.
耕作措施对双季稻田CH4与N2O排放的影响 总被引:4,自引:8,他引:4
随着全球气温的不断升高,温室气体减排成为研究的热点。该文旨在研究不同耕作措施下双季稻田CH4及N2O排放特征及其消长关系,为稻田温室气体减排及土壤固碳潜力评价提供依据。试验在湖南省宁乡县进行,通过静态箱法测定翻耕秸秆还田(CT)、旋耕秸秆还田(RT)、免耕秸秆还田(NT)的稻田CH4及N2O排放。结果表明:CH4排放主要来自于晚稻田,翻耕、旋耕和免耕晚稻田CH4排放分别占研究时段CH4排放的69%,67%,73%;各处理冬闲季CH4排放均不到研究时段排放量1%,冬闲CH4排放量为RT>CT>NT,差异显著;N2O排放时间变异性较大,早稻稻田N2O排放量为RT>NT>CT,晚稻稻田N2O排放量为NT>RT>CT,冬闲期各处理稻田N2O均为负排放;从研究时段排放量分析,翻耕秸秆还田有利于减少N2O排放,免耕秸秆还田有利于减少CH4排放;CH4与N2O排放呈显著负相关,冬闲季稻田CH4与N2O排放相关性不显著。总之,NT减少了CH4排放,虽N2O排放略有增加,但CH4与N2O引发的综合温室效应有所减弱。 相似文献
13.
14.
黑麦草鲜草翻压还田对双季稻CH4与N2O排放的影响 总被引:2,自引:3,他引:2
为了研究黑麦草鲜草翻压还田对稻田温室气体排放的影响,该文利用静态箱-盆栽装置观测了尿素、黑麦草鲜草翻压还田、半量尿素与半量黑麦草鲜草混施和对照4个处理稻田CH4和N2O排放.结果表明:黑麦草鲜草翻压还田、半量尿素与半量黑麦草鲜草混施的CH4排放通量分别比对照增加了371%和210%,比尿素增加了152%和66%:尿素的CH4排放比对照高87%,差异均达到显著水平(P<0.05).黑麦草鲜草翻压还田的CH4排放在3个时期(早稻移栽前,早稻生长期和晚稻生长期)分布均匀,约60%的CH4排放于早稻移栽前和早稻生长期.尿素的N2O排放分别为黑麦草鲜草翻压还田、半量尿素与半量黑麦草鲜草混施和对照的18倍、6.6倍和25倍.CH4和N2O的全球增温潜势(GWP)依次为黑麦草鲜草翻压还田>半量尿素与半量黑麦草鲜草混施>尿素>对照,差异均显著(P<0.05).黑麦草鲜草翻压还田虽然增加了稻田CH4排放,但减少了N2O排放,抑制了 尿素对N2O的排放. 相似文献
15.
Shinichi Koyama Fumihiko Inazaki Kazunori Minamikawa Morio Kato Hisayoshi Hayashi 《Soil Science and Plant Nutrition》2013,59(5):873-884
AbstractBiochar application has been recognized as an effective option for promoting carbon (C) sequestration, but it may also affect the production and consumption of methane (CH4) and nitrous oxide (N2O) in soil. A 1-year field experiment was conducted to investigate the effects of rice husk charcoal application on rice (Oryza sativa L.) productivity and the balance of greenhouse gas exchanges in an Andosol paddy field. The experiment compared the treatments of rice husk charcoal applied at 10, 20 and 40 Mg ha?1 (RC10, RC20 and RC40, respectively), rice husk applied at 20 Mg ha?1 (RH20), and the control (CONT). Rice straw and grain yields did not significantly differ among the treatments. The seasonal cumulative CH4 emissions were 38–47% higher from RC10, RC20 and RC40 than from the CONT. However, the increases were not in proportion to the application rates of rice husk charcoal, and their values did not significantly differ from the CONT. On the contrary, the RH20 treatment significantly increased the cumulative CH4 emission by 227% compared to the CONT. The N2O emissions during the measurement were not affected by the treatments. As a result, the combined global warming potential (GWP) of CH4 and N2O emissions was significantly higher in RH20 than in the other treatments. There was a positive linear correlation between C storage in the top 10 cm of soil and the application rate of rice husk charcoal. The increases in soil C contents compared to the CONT corresponded to 98–149% of the C amounts added as rice husk charcoal and 41% of the C added as rice husk. Carbon dioxide (CO2) fluxes in the off season were not significantly different among RC10, RC20, RC40 and CONT, indicating that C added as rice husk charcoal remained in the soil during the fallow period. The CO2 equivalent balance between soil C sequestration and the combined GWP indicates that the rice husk charcoal treatments stored more C in soil than the CONT, whereas the RH20 emitted more C than the CONT. These results suggest that rice husk charcoal application will contribute to mitigating global warming without sacrificing rice yields. 相似文献
16.
17.
Bt-transgenic rice straw affects the culturable microbiota and dehydrogenase and phosphatase activities in a flooded paddy soil 总被引:1,自引:0,他引:1
There have been few investigations of the possible effects of genetically engineered plants on the microbiota and enzyme activities in flooded soil. We studied the influence of the transgenic rice KeMingDao (KMD) straw on the culturable microbiota and enzymatic activities in a flooded paddy soil under laboratory conditions. KMD contained a synthetic cry1Ab gene from Bacillus thuringiensis under the control of a maize ubiquitin promoter and linked in tandem with the gusA and hpt genes. The results showed that there were only some occasional significant differences (P<0.05) in the number of Colony forming units of aerobic bacteria, actinomycetes and fungi and in the number of anaerobic fermentative bacteria, denitrifying bacteria, hydrogen-producing acetogenic bacteria, and methanogenic bacteria between the paddy soil amended with Bt-transgenic rice straw and with the non-Bt parental rice straw during the early stages of incubation. From d14 to d84 there were significant increases (P<0.05) in soil dehydrogenase and soil neutral phosphatase activity in soils amended with rice straw compared to soil without added straw. The dehydrogenase activity was significantly greatly (almost 1.95-fold) in soil amended with Bt-transgenic straw from d7 to d14 but from d21 to d49 there was significantly greater activity (about 1.47-fold) in the soil amended with non-Bt-straw. There were no apparent differences between the activity of soil neutral phosphatase in the soils to which non-Bt-straw and Bt-straw had been added. However, both soils to which rice straws were added demonstrated significant differences in the number of microorganisms except for aerobic bacteria and enzymatic activities with respect to the control soil throughout the incubation. The above results indicated that the Bt-straw from KMD transgenic rice is not toxic to a variety of culturable microorganisms in the studied flooded paddy soil. 相似文献
18.
Fumiaki Takakai Yasuhiro Kominami Satoshi Ohno Osamu Nagata 《Soil Science and Plant Nutrition》2020,66(1):84-95
ABSTRACT The influence of the long-term combination of rice straw removal and rice straw compost application on methane (CH4) and nitrous oxide (N2O) emissions and soil carbon accumulation in rice paddy fields was clarified. In each of the initial and continuous application fields (3 and 39?51 years, respectively), three plots with different applications of organic matter were established, namely, rice straw application (RS), rice straw compost application (SC) and no application (NA) plots, and soil carbon storage (0?15 cm), rice grain yield and CH4 and N2O fluxes were measured for three years. The soil carbon sequestration rate by the organic matter application was higher in the SC plot than in the RS plot for both the initial and continuous application fields, and it was lower in the continuous application field than in the initial application field. The rice grain yield in the SC plot was significantly higher than those in the other plots in both the initial and continuous application fields. Cumulative CH4 emissions followed the order of the NA plot < the SC plot < the RS plot for both the initial and continuous application fields. The effect of the organic matter application on the N2O emissions was not clear. In both the initial and continuous application fields, the increase in CH4 emission by the rice straw application exceeded the soil carbon sequestration rate, and the change in the net greenhouse gas (GHG) balance calculated by the difference between them was a positive, indicating a net increase in the GHG emissions. However, the change in the GHG balance by the rice straw compost application showed negative (mitigating GHG emissions) for the initial application field, whereas it showed positive for the continuous application field. Although the mitigation effect on the GHG emissions by the combination of the rice straw removal and rice straw compost application was reduced by 21% after 39 years long-term application, it is suggested that the combination treatment is a sustainable management that can mitigate GHG emissions and improve crop productivity. 相似文献
19.
利用地面实测资料研究稻田地表反照率,一方面可以更好地刻画以稻田为主要土地利用方式的流域地气之间的能量分配过程;另一方面,可以为陆面模式提供更为准确的参数值,以及为遥感反演的地表反照率提供验证,从而为更好地解释土地利用/覆被变化对全球气候变化的影响机制提供参考。本文利用江苏省农业科学院溧水试验基地四分量仪测得的2016年稻田地表反照率数据,分析了稻田地表反照率特征,并结合同期观测的太阳短波辐射、温度、湿度、风速、风向等气象数据,进行相关性分析,识别影响稻田地表反照率的主要气象因子,为进一步量化地表反照率与温度及湿度等的参数化关系提供参考。结果表明:晴天稻田地表反照率整体上呈"U"型分布,中午较低,下午和上午较高。晴天稻田地表反照率在一天内的变化呈不对称特性,其不对称性主要是由露水和风速、风向引起。太阳高度角较小时,露水的散射作用使得上午时分的地表反照率值较下午高;而太阳高度角较大时,西南风促使作物叶面倾斜,从而使得下午的地表反照率值较上午高。稻田晴天地表反照率值较阴雨天高。地表反照率在晴天与出射短波辐射相关系数最高(0.670,P0.01),在阴天与相对湿度之间的相关程度最高(-0.480,P0.05)。在整个观测期间,稻田生长季内地表反照率呈现先升高后降低的趋势,地表反照率最高值出现在灌浆期到成熟期之间,插秧到分蘖期之间最低,其中灌浆期地表反照率与太阳短波辐射及湿度间的相关程度较高,并且均通过了P0.01显著性检验。分蘖期和拔节期是水稻生长季内地表反照率变化较快的两个生育期,并受气象因素的显著影响。 相似文献
20.
Cho Cho Tun Makoto Ikenaga Susumu Asakawa Makoto Kimura 《Soil Science and Plant Nutrition》2013,59(6):805-813
Rice straw including leaf sheaths and blades put in nylon mesh bags was placed in the plow layer of a Japanese paddy field after harvest under upland conditions and after transplanting of rice seedlings under flooded conditions. In addition, rice straw that was decomposed under the upland conditions during the off-crop season in winter was placed again in soil at the time of transplanting. The materials were collected periodically to analyze the community structure of the bacteria and fungi responsible for rice straw decomposition by PCR-RFLP analysis. The PCR products with 27f and 1492r primers designed for bacterial 16S rDNA and with EF3 and EF4 primers designed for fungal 18S rDNA were digested with four restriction endonucleases (Hinf I, Sau3A I, Hae III, EeoR I). Bacterial communities in the decomposing rice straw were different from each other between upland and flooded conditions, between leaf sheaths and blades, and between straw samples with and without decomposition under upland conditions during the off-crop season. Fungal communities in the decomposing rice straw were also different between the leaf sheaths and blades under upland soil conditions. Score plots of bacterial and fungal communities in the principal component analysis were separated from the plot of the straw materials along with the duration of the placement, indicating the succession of bacterial and fungal communities in decomposing rice straw with time. 相似文献