首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
水稻直播机气流式分层施肥系统设计与试验   总被引:1,自引:1,他引:0  
针对水稻不同生长期施肥劳动强度大和肥料易堵塞的问题,该文提出了一种水稻分层施肥技术,根据水稻种植农艺要求和根系分布特点,在水稻直播时将整个生长期所需肥料一次性分层施入土壤中,浅层施肥深度为30~40 mm,距离水稻行距离为50 mm,为水稻苗期生长提供养分;深层施肥深度为70~100 mm,深层施肥沟在2行水稻中间,为水稻的后期生长提供养分。设计了一种气流式分层施肥系统,根据分层施肥要求确定肥料分配器结构及分层施肥量调节比例;利用Solid Works软件对肥料混合器变截面处不同截面高度的进肥口风速和出口处的负压进行仿真分析和试验验证,确定气流肥料混合器变截面通道高度为20 mm;对气流式分层施肥系统进行性能试验,以风速、肥量分配比例调节板开度和施肥管道长度为主要因素进行正交试验。试验结果表明,当风速为18 m/s、肥量分配比例调节板开度为30°、施肥管道长度为1 000 mm时,浅层施肥量变异系数为1.61%、深层施肥量变异系数为1.58%、2个浅层施肥量和深层的施肥量分配比例误差为1.91%。将气流式分层施肥系统安装在2BDH-10型水稻直播机上进行田间作业性能试验,田间试验结果表明,2个浅层施肥量与深层施肥量分配比例最大误差为7.76%,浅层施肥量最大变异系数为3.98%,深层施肥量最大变异系数为4.41%,满足水稻种植分层施肥的要求。研究结果可为水稻气流式分层施肥技术研究提供重要参考。  相似文献   

2.
基于旋耕覆土的冬小麦基肥分层定深施用装置设计   总被引:4,自引:4,他引:0  
针对中国黄淮海地区冬小麦主产区基肥的无序、过量施用和利用率低等问题,该文在基肥分层施用农艺研究基础上,基于旋耕机覆土原理,提出了土壤后覆盖方式下的冬小麦基肥精准分层定深投送方法,并设计了冬小麦基肥分层定深施用装置,该装置可一次完成旋耕、分层施肥和镇压作业。其中旋耕机构配备变速齿轮传动箱,可以进行高、中、低3种转速之间的转换,选用国标IT245型号旋耕刀,在刀辊上按对称螺旋线布置;肥料分层投送机构配深层和浅层排肥管,用于深层和浅层肥料的投送作业。在北京小汤山精准农业示范基地进行了装置的田间作业性能试验,结果显示:装置在120、150和180 mm的3种耕深作业工况下,耕深最大误差为5 mm,耕深稳定性系数最小为93.84%,满足旋耕机构的作业性能技术要求;设置浅层和深层肥料的目标施用深度分别为80和150 mm,实际肥料施用深度稳定性系数分别为92.38%和95.11%、合格率分别为83.33%和90%,满足旋耕施肥装置的作业性能指标要求。该研究可以为冬小麦基肥的机械化精准分层定深施用技术提供装备支撑。  相似文献   

3.
1.倡导科学施肥。根据不同种类蔬菜的生育特性、需肥规律、土壤供肥状况以及肥料的种类与养分含量,科学地计算施肥量。应大力推广大棚蔬菜配方施肥技术和测土施肥技术。采用科学的施肥方法,坚持基肥与追肥相结合。基肥要以腐熟有机肥为主,配合施用磷、钾肥;追肥要根据蔬菜不同生育阶段及对肥料的需要量大小分次追肥,注重在产品器官形成的盛期如根茎、块茎膨大期、结球期、开花结果期重施追肥。基肥要深施、分层施或沟施。追肥要结合浇水进行,推广叶面施肥技术。  相似文献   

4.
针对现有马铃薯播种机大多采用整体仿形,无单体仿形机构而引起的仿形效果不佳、播深合格率较低、出苗整齐度较差等关键问题,研究设计了一种马铃薯播种机播深调控装置。阐述了该播深调控装置的主要结构和工作原理,通过对播深调控装置的动力学分析,建立了播深稳定性的数学模型,结合马铃薯播种机播深一致性的农艺具体要求,确定了该装置的理论结构参数,并得出了影响开沟深度稳定性的关键因素。采用旋转正交的试验方法,以初始牵引角、弹簧刚度和机具作业速度为试验因素,开沟深度合格指数和开沟深度变异系数为试验指标。试验结果表明:在作业速度为1 m/s、初始牵引角为0、弹簧刚度为10 N/mm时,开沟深度合格指数为96.6%,开沟深度变异系数为8.9%,满足马铃薯播种作业的要求。该研究为提高马铃薯播种机播种深度一致性和马铃薯苗齐苗壮的播种关键问题提供了设计参考。  相似文献   

5.
播种机开沟深度控制系统的设计与室内试验   总被引:3,自引:4,他引:3  
针对播种机开沟深度稳定性影响播种质量、开沟深度难以精确控制、仿形滞后等问题,该文设计了开沟深度控制系统,系统包括地表高度检测机构、四连杆仿形机构、PLC控制系统和液压系统。通过建立开沟深度数学模型,确定了开沟深度闭环控制方案,实现了开沟深度的精确和实时控制;采用补偿延迟时间的方法,实现了开沟深度的同步仿形;对系统进行了试验。试验结果表明,系统的响应时间为0.12 s;开沟器上升和下降的平均速度为78.7、102.8 mm/s;前进速度5 km/h条件下,开沟深度在30、50、70 mm时,系统理论开沟深度稳定性系数分别为90.98%、91.45%、92.32%,测量开沟深度稳定性系数分别为90.66%、91.33%、91.82%,系统测量误差≤0.54%,满足开沟深度稳定性要求。该控制系统的研究为播种机播种单体和开沟深度控制机构设计提供了参考。  相似文献   

6.
通过模拟深松机具下的深施肥技术,研究了深施磷肥对旱地冬小麦产量、根系生长、水肥效应的影响。研究结果表明,深松条件下深施磷肥平均效果比传统施肥增产38.5%,20 cm和40 cm各施一半的效果最好,但深施到20 cm和深施到40 cm之间差异不显著。深施磷肥促进了小麦根系在土层内的生长发育,提高了小麦根系总量,尤其是深层根系总量明显增加,这对旱地冬小麦吸收深层土壤中的水分和养分是十分有利的。深松条件下,深施磷肥的水分利用系数比传统施磷提高了8.4%。此外,深施磷肥有助于冬小麦在整个生育期内磷素的均衡供应,  相似文献   

7.
施肥深度对潮砂土氮磷损失及土壤氮磷含量的影响   总被引:1,自引:0,他引:1  
以机插精量一次性侧深施肥为背景,探究施肥深度对氮、磷损失及土壤氮磷养分的影响,为农业机械化提供科学依据。本研究采用土柱模拟试验,于2019年在湖南农业大学试验基地大棚内进行,供试土壤为潮砂田水稻土,肥料为三元复混肥。试验共设置6个处理:CK(不施肥)和0(表施)、5、7.5、10、12.5 cm五个不同深度施肥处理,监测氨挥发、田面水和渗漏水氮磷含量的动态变化以及土壤氮磷含量。结果表明:与表施处理相比,5、7.5、10、12.5 cm深施处理的氨挥发累积量分别下降68.07%、82.40%、99.98%、99.98%。10、12.5 cm深施处理的田面水总氮平均浓度,比表施处理分别下降84.82%、89.07%;各深度施肥处理的田面水总磷平均浓度较表施处理均大幅下降,降幅达92.43%~99.56%。不同深度施肥处理的渗漏水中氮、磷平均浓度与表施处理之间差异不显著。在0~20 cm土层中,5、7.5、10、12.5 cm深施处理的土壤全氮、全磷含量分别比表施处理提高了4.63%、12.25%、11.85%、5.69%和6.40%、5.90%、6.09%、5.43%;20~30 cm和3...  相似文献   

8.
水稻精量穴直播机电驱式侧深穴施肥系统设计与试验   总被引:4,自引:3,他引:1  
针对水稻直播施肥过程中存在肥料用量大、化肥利用率低等问题,根据水稻精量穴直播与侧深穴施肥的农艺要求,开发了一套水稻精量穴直播机电驱式侧深穴施肥系统。采用液压自平衡方式设计全方位仿形系统,对机具在作业环境中实时自动调节,保证播种、施肥作业质量;采用圆弧函数曲线优化设计施肥沟开沟器,在距垄台上芽种行水平距离30 mm处开出宽50 mm、沟型平整的施肥沟;采用电力驱动方式设计电动式外槽轮排肥器,根据需要对每个排肥器独立调节,与配套的电动部件相连,将肥料成穴施入施肥沟底。田间试验表明,在机具前进速度为2.48 km/h,排种器、排肥器工作转速均为29 r/min,施肥深度为50 mm的最优工作条件下,穴播种量、穴施肥量合格率分别为86.73%、87.49%,施肥与播种穴距匹配,各行播种、施肥穴距合格率均为100%,播种、施肥穴距变异系数分别为17.2%、16.5%,芽种破损率为0.31%;并对排种器、排肥器在14~36 r/min工作转速范围内进行可行性验证试验,施肥系统可与水稻精量穴直播机配套,同步完成开沟、侧深穴施肥、覆泥、起垄和精量穴直播多项作业工序,各项性能指标均满足水稻直播、施肥的农艺要求。该研究可为水稻精量穴直播机及其施肥关键部件的设计和评价提供参考。  相似文献   

9.
基于离散元法的免耕深施肥分段式玉米播种开沟器研制   总被引:5,自引:5,他引:0  
针对东北垄作深施肥免耕播种机上开沟器播种深度均匀性差、工作阻力大、土壤扰动大的问题,该研究利用离散元软件(EDEM 2.7)仿真分析不同类型破茬刀-施肥铲装置对土壤的作用机理,设计了一种分段式玉米播种开沟器。首先建立土壤-玉米根系-玉米秸秆离散元仿真模型,然后进行不同类型破茬刀-施肥铲装置离散元仿真试验,以回落土壤最大合外力的位置和方向为依据设计开沟器入土部分曲线,同时结合滑切原理设计开沟器未入土部分斜刃,最后根据土壤回落距离确定施肥铲和开沟器间距为374 mm。田间对比试验结果表明,分段式开沟器比尖角式开沟器、滑刀式开沟器、双圆盘式开沟器的播深变异系数分别降低了14.24%、27.31%、33.63%;工作阻力分别降低了27.56%、16.93%、1.23%;土壤扰动面积分别降低了11.67%、28.34%、49.34%。分段式开沟器播种深度均匀性高、工作阻力小、土壤扰动小,具有较优的作业效果。  相似文献   

10.
仿生波纹形开沟器减黏降阻性能测试与分析   总被引:12,自引:11,他引:1  
针对现有普通开沟器在工作过程中易粘土、阻力大等问题,提出一种仿生波纹形开沟器。该仿生开沟器依据土壤动物与生俱来的减黏脱土特性和超高分子量聚乙烯优异的减黏性能,在原有普通开沟器基础上进行设计制造。该文通过田间试验,将牵引阻力设为试验指标,使用正交设计检验仿生开沟器相对于普通开沟器减黏降阻的效果和探究仿生开沟器非光滑表面形态的减黏降阻机理。试验表明,仿生开沟器减黏降阻的效果高于普通开沟器9%左右;入土深度是影响开沟器牵引阻力的主要因素,其次是土壤湿度,工作速度影响最小;通过3因素4水平正交组合试验得出使用仿生开沟器的最优条件:土壤湿度达到16.3%,入土深度有6 cm,工作速度为1.8 km/h。仿生波纹形开沟器具有良好的减黏降阻效果,为后续的仿生开沟器或其他触土部件研究提供参考。  相似文献   

11.
1KS60-35X型果园双螺旋开沟施肥机刀轴设计与试验   总被引:5,自引:4,他引:1  
针对目前果园开沟施肥存在耕作阻力大、功耗过高、搅肥不均匀,该文研制了1KS60-35X果园型双螺旋施肥机,采用前轴破土、后轴搅土施肥设计方案,并建立作业过程破土与搅土刀轴阻力矩方程,分析了螺旋叶片参数对耕作阻力影响,进一步研究了螺旋刃线成型参数方程,通过经验设计与理论设计计算确定破土与搅土施肥轴螺旋叶片参数,并运用PROE软件建立刀轴与整机三维参数化数字模型,并完成样机试制工作。样机的开沟、施肥田间试验结果表明,该机开沟沟深472~510 mm,平均沟深496 mm,平均推土高度120 mm,开沟深度稳定系数98.2%,开沟宽度一致性99.2%;土壤团粒直径多在3~6 mm之间,全土层与地表100 mm土层团粒直径范围5~40 mm,取样结果全土层与地表100 mm土层土壤团粒平均直径分别为6.75与6.86 mm,碎土合格率分别为98.7%与97.9%;颗粒肥料堆积现象较少,重心距离5~20 mm之间,重心水平与垂直平均距离分别15.53与16.24 mm,且各土层段施肥性能较稳定,满足果园施肥农艺要求,可为果园、桑园、茶园等开沟施肥作业提供参考。  相似文献   

12.
针对发酵厩肥长期堆放过程中易结块,肥料破碎条施困难等问题,该研究提出了螺旋桨叶与差速对辊组合的固体有机肥破碎条施机,以解决传统链排式运肥装置作业过程中肥料结块架空、条施排肥困难、施肥不均匀等问题。将Hertz-Mindlin with bonding和Hertz-Mindlin with JKR模型结合建立结块和散体肥料共同组成的固体有机肥离散元模型,并以肥料颗粒质量变化、螺旋桨叶扭矩,有机肥颗粒受力和平均运动速度为评价指标对桨叶的运肥和碎肥过程进行分析,明确参数变化对肥料运动的影响;进行桨叶和肥箱受力分析,探明运肥和碎肥过程中的应力分布情况;对开沟施肥铲和镇压轮的工作过程进行分析,明晰开沟深度、铲尖倾角、镇压倾角对开沟和镇压过程的影响。离散元仿真分析结果表明,碎肥过程肥箱内的桨叶平均扭矩为52.05 N·m 和58.75 N·m,有机肥颗粒平均受力为343.25和374.38 N,远高于运肥过程的平均扭矩20.42 N·m 和有机肥颗粒平均受力224.22 N;其中,运肥和碎肥过程中有机肥颗粒运动速度稳定在0.6 m/s左右,肥箱内有机肥颗粒质量变化稳定,无明显波动;螺旋桨叶和肥箱受力较大的区域主要集中在桨叶齿爪和肥箱的底部与侧壁。基于上述分析结果,对固体有机肥破碎条施机开展样机试制并进行田间试验,结果表明,9 组作业参数组合下施肥量变异系数平均值为21.5%,条施机最优工作参数组合为:镇压倾角120°,前进速度5 km/h,开沟施肥深度150 mm,此时施肥量变异系数为15.2%,施肥过程稳定可靠。研究结果可为东北黑土区耕地保护和固体有机肥破碎条施提供装备支撑。  相似文献   

13.
玉米宽窄行深旋免耕精量播种机田间试验及效果   总被引:8,自引:7,他引:1  
为了解决目前玉米播种机械播种质量不高,良好农艺措施与农机不配套等问题,研发了一种基于宽窄行条带深旋免耕技术的玉米精量播种机。该文对该机作业后的土壤质量、土壤含水率、玉米出苗、群体光照、根系生长和产量等性状进行了分析。结果表明:采用该机播种后,土壤耕层容重显著降低(P0.05),土壤蓄水保水能力提高,玉米的播种质量明显提高,群体整齐度增加,群体透光性明显改善,具有显著的增产作用。与普通播种机械相比,该机播种后的玉米出苗率平均提高6.2个百分点,玉米株高变异系数降低8.33%,玉米根系生长量增加15.79%,玉米生育后期的群体光能截获量明显增加,产量增加11.15%。实现了优良农艺措施与农机的有效结合。  相似文献   

14.
采用侧深施肥技术,施肥铲作业后播种带两侧土壤高度不一致,易加剧播种机横向偏摆,进而导致播种深度均匀性和播种横向一致性较差。为解决上述问题,该研究设计了一种直斜偏置式免耕播种开沟器。该开沟器主要由切土斜刃、挡土定位板、偏置推土板等组成,作业时滑切土壤并将其推移至肥沟一侧拓宽种沟,避免种子落至肥沟后位置过深,提高播种质量。通过离散元仿真试验,以前进阻力、肥沟回土深度、种沟回土深度为试验指标进行二因素五水平正交旋转组合试验,得到斜刃滑切角为37°、偏置角为15°时开沟器作业性能最好。在最优参数下与双圆盘式、尖角式开沟器进行田间作业性能对比试验,相对于双圆盘式和尖角式开沟器,直斜偏置式开沟器播种深度变异系数分别降低41.12%、19.41%;播种横向变异系数分别降低39.00%、28.41%;前进阻力分别降低7.26%、28.20%;作业后肥沟与种沟回土深度分别提高9.47%、13.68%和33.33%、7.14%。试验结果表明,该开沟器可以减小前进阻力,增加肥沟与种沟回土,提高播种深度均匀性和播种横向一致性,可为播种开沟器的设计提供参考。  相似文献   

15.
基于自然降雨条件下夏季作物生长期的野外田间试验,探讨施肥和追肥对作物产量和不同形态氮素径流流失的影响。结果表明,当季不施肥对玉米产量的影响较小,分别明显减少了19.7%和30.4%的玉米总氮径流浓度和流失量;不施肥减少了棉花的产量及径流硝态氮、可溶性氮与总氮的浓度和硝态氮流失量。增加追肥对玉米和棉花的作物产量影响都不明显,却增加了两者的径流硝态氮、可溶性氮和总氮的浓度。与施底肥相比,增加追肥分别提高了69.9%,88.9%和46.2%的玉米硝态氮、可溶性氮和总氮浓度,棉花的相应氮素浓度则分别提高了25.5%,31.8%和37.1%。故在淮北地区土壤和气候条件下,玉米和棉花不追肥及适当减少玉米施肥量既不会使作物减产,又能减少农业土壤氮素随地表径流的流失。  相似文献   

16.
Abstract

Excessive soil erosion and use of nitrogen fertilizer are costly to the Atlantic Coastal Plain corn (zea mays L., ’Funks G 4507') producer and both may serve to create environmental hazards. An in‐row chisel (36 cm deep) tillage method was compared with the standard 5 cm fluted coulter method for planting corn in premature wheat (Triticim aestivum L.) residues grown on an Orangeburg sandy loam (Typic Paleudult). Five orthogonal N levels ranging up to 440 kg of N/ha were used to determine an economic N optimum for each tillage method.

The in‐row chisel tillage method provides a possible yield advantage in the Atlantic Coastal Plain because of observed restricting soil layers within the normal corn rooting zone. The estimated profit‐maximizing quantities of N fertilizer were 262 and 295 kg of N/ha (234 and 263 1b of N/acre) for the fluted coulter and in‐row tillage procedures, respectively. Corn grain yields associated with these inputs were 9.6 × 103 and 12.6 × 103 kg/ha (153 and 200 bu/acre), respectively. The yield increase associated with in‐row chiseling through a 2.5 metric ton mulched surface is attributed to potentially improved rooting and more efficient water storage and use.  相似文献   

17.
气力集排式排肥系统结构优化与试验   总被引:5,自引:5,他引:0  
针对气力集排式排肥系统与分层深施肥铲配合作业时,进肥口处肥料落入不顺畅以及排肥口处气流速度过大导致肥料弹跳和地表扬尘等问题,该研究通过分析排肥系统各部件结构参数与工作参数之间的关系,对排肥系统进行结构优化,并设计了一种气-肥分离装置,将部分输送气流提前从排肥系统排出,从而降低排肥口处的气流速度,提高进肥口的进料稳定性。通过理论分析和参数计算,确定了排肥系统各组成部件的结构和基本工作参数,分析确定了影响排肥口和进肥口处气流速度的主要因素,并以排肥口和进肥口处的气流速度为试验指标,以气-肥分离装置的排气口面积、排肥系统入口气流速度和施肥速率为试验因素,进行二次正交旋转组合台架试验,建立了试验指标与各影响因素的数学回归模型。通过对试验结果的拟合和优化分析,得到气-肥分离装置排气口面积为798.0mm~2。排肥系统入口气流速度为28.10 m/s,施肥速率为0.28 kg/s时,排肥系统排肥口气流速度为5.91 m/s,进肥口气流速度为3.94 m/s,以得到的优化参数进行试验验证,测得排肥系统排肥口气流速度为6.02 m/s,进肥口气流速度为4.11 m/s,排肥系统进肥口肥料落入顺畅,工作稳定。  相似文献   

18.
There is a continuing need for information illustrating the seriousness of the soil compaction problem over a range of soils, climatic, and agronomic conditions and encouraging the adoption of controlled traffic. Compaction from wheel traffic adjacent to crop rows had significant effects on the soil physical conditions in Kokomo silty clay loam (Typic Argiaquoll) and on the corn (Zea mays L.) and soybean (Glycine max L.) yields. Traffic patterns were established to compare rows that had traffic on one side of the row with those that had traffic on neither side. These traffic patterns were followed for planting and spraying operations for a total of five passes. Corn had either no nitrogen fertilizer or adequate fertilizer and soybeans had no fertility variable. Bulk density and cone penetration resistance were significantly higher in the wheel tracks than in the untracked areas at the 0–15- and 15–30-cm depths. With adequate fertilizer, yields of corn and soybeans from rows along wheel tracks were equal to those from untracked areas. With no nitrogen fertilizer, corn yields were significantly lower from rows along wheel tracks.  相似文献   

19.
普通肥、控释掺混肥分层施肥对小麦生长的影响   总被引:4,自引:2,他引:4  
为了研究不同层次施肥对土壤养分及作物生长的影响,通过小麦盆栽试验,以农民习惯施肥(普通肥撒施后翻耕)为对照,设置不施肥、控释掺混肥混施、普通肥1层施肥加追肥、普通肥和控释掺混肥各1层(深度5cm)、2层(5,10cm)、3层(5,10,15cm)施肥处理,筛选出普通肥、控释掺混肥各自最优的施肥层次,为田间分层施肥特别是目前农业推广的种肥同播技术提供支持。结果表明:与对照相比,普通肥1层、2层施肥处理显著增产14.02%和15.83%;普通肥两层施肥处理小麦生物量显著增加13.44%;控释掺混肥2层、3层施肥相比控释掺混肥混施处理显著增产7.47%和5.55%,小麦生物量差异不显著。小麦各个生长期的氮素供应普通肥以1层施肥或2层施肥为好,而控释掺混肥以2层施肥或3层施肥为好;不同处理的土壤有效磷、速效钾含量差异不显著。普通肥分层施肥处理氮肥利用率比对照分别提高44.4%,40.7%和62.9%,磷肥利用率分别提高35.7%,64.3%和42.8%,钾肥利用率分别提高16.7%,33.3%和53.3%,差异均达显著水平;而控释掺混肥各处理氮、钾肥利用率差异不显著,磷肥利用率则分别显著提高35.0%,30.0%和35.0%。在农业生产中,建议普通肥以2层(深度5,10cm)施肥,控释掺混肥以2层(5,10cm)或3层(5,10,15cm)施肥的方式进行施肥。  相似文献   

20.
Improvements in the yield potential of corn (Zea mays L.) grown using conservation-tillage may depend, in part, on K fertility management. Field research was conducted in 1997 and 1998 on a field which had been in continuous no-tillage (NT) for the previous 12 years near Paris, Ont., Canada to evaluate potassium (KCl) placement effects on corn growth and yields in NT, spring zone-tillage (ZT) and spring mulch-tillage (MT) systems. Soils were classified as moderately well drained and had low soil-test K levels. Potassium was spring-applied (1 day prior to corn planting) at either 0 or 100 kg K ha−1. Potassium was either broadcast applied, deep in-row banded (15 cm deep), or half broadcast applied and half shallow-banded (5 cm beside the row, 5 cm below seeding depth). Early season and mid-season corn ear-leaf K concentrations indicated that spring-applied K fertilizer was available for uptake by corn in conservation-tillage systems. Potassium application sometimes significantly increased corn yields compared to the zero K control in the NT and ZT systems. However, MT corn yields did not show any response to K fertilization in either season despite the low soil-test K levels. There were no significant corn yield increases with deep banding of K fertilizer relative to shallow placement in any tillage system. This study suggests that, for similar low-testing K soils, alternate K placements will have greater impacts on corn plant nutritional status than on final yields. Surface broadcasting of K fertilizer is appropriate for continuous NT corn despite evident K stratification present after long-term NT. MT may improve corn K nutrition after long-term NT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号