首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
黄化病是一种严重危害槟榔生长的病害,迫切需要及时、准确地监测其侵染的严重度差异和空间分布。低空无人机遥感可有效解决槟榔种植区由于多云雨天气而造成光学卫星影像获取不足,提高槟榔黄化病监测的实时性。该文利用大疆精灵Phantom 4 Pro V2.0四旋翼无人机搭载MicaSense RedEdge-M多光谱相机获取5波段多光谱影像,基于最小冗余最大相关算法(Minimum Redundancy Maximum Relevance,mRMR)从15个潜在的植被指数中优选比值植被指数(Ratio Vegetation Index,RVI)、改进的简单比值指数(Modified Simple Ratio Index,MSR)和花青素反射指数(Anthocyanin Reflectance Index,ARI)作为敏感特征,分别利用后向传播神经网络(Back Propagation Neural Network, BPNN)、随机森林(Random Forest, RF)和支持向量机(Support Vector Machine, SVM)分类算法,构建了槟榔黄化病严重度监测模型。结果表明,BPNN模型总体精度达到91.7%,分别比RF模型和SVM模型提高6.7%和10.0%,且Kappa系数为0.875,为所有模型中最高,漏分、错分误差也最小,健康,轻度和重度分别为11.1%、15.8%,13.6%、9.5%和0、0。研究结果证明了无人机多光谱遥感影像监测槟榔黄化病的可行性,同时也可为其他热带作物病害监测提供案例研究。  相似文献   

2.
基于无人机遥感多光谱影像的棉花倒伏信息提取   总被引:2,自引:1,他引:2  
为在棉花发生倒伏灾害后快速获取田块尺度下的受灾信息,该文以2017年8月21日强风暴雨导致大面积棉花倒伏的新疆生产建设兵团第八师135团的部分田块作为研究区,由无人机遥感试验获取倒伏后的多光谱影像,通过分析倒伏和正常棉花的光谱反射率差异提取了多种植被指数和主成分纹理特征,结合地面调查样本建立了3种花铃期倒伏棉花的Logistic二分类模型并进行了精度评价和验证。结果表明:棉花倒伏前后在可见光波段的反射率差异微小,而在红边和近红外波段的反射率明显降低0.12~0.20;以第一主成分均值(PCA1_mean)建立的Logistic二分类纹理模型效果最优,在测试集上分类结果的准确率为91.30%,ROC(receiver operating characteristic)曲线距左上角点最近,AUC(area under the roc curve)值为0.80。通过将该模型应用于试验区影像,分类制图效果良好且符合棉田倒伏症状特点。该研究可为无人机多光谱遥感棉花灾损评估提供参考。  相似文献   

3.
作物产量准确估算在农业生产中具有重要意义。该文利用无人机获取冬小麦挑旗期、开花期和灌浆期数码影像和高光谱数据,并实测产量。首先利用无人机数码影像和高光谱数据分别提取数码影像指数和光谱参数,然后将数码影像指数和光谱参数与冬小麦产量作相关性分析,挑选出相关性较好的9个指数和参数,最后以选取的数码影像指数和光谱参数为建模因子,通过MLR(multiple linear regression,MLR)和RF(random forest,RF)对产量进行估算。结果表明:数码影像指数和光谱参数与实测产量均有很强的相关性。利用数码影像指数和光谱参数通过MLR和RF构建的产量估算模型均在灌浆期表现精度最高,在灌浆期,数码影像指数和光谱参数构建的MLR模型R~2和NRMSE分别为0.71、12.79%,0.77、10.32%。对模型对比分析可知,以光谱参数为因子的MLR模型精度较高,更适合用于估算冬小麦产量。利用无人机遥感数据,通过光谱参数建立的MLR模型能够快速、方便地对作物进行产量预测,并可以根据不同生育期的产量估算模型有效地对作物进行监测。  相似文献   

4.
无人机多光谱影像辐射一致性自动校正   总被引:1,自引:1,他引:1  
针对一个架次内无人机影像由于光照度变化、拍摄角度等原因引起的相同地物点在不同影像上的辐射信息不一致的问题,验证了利用SIFT(scale invariant feature transform)算法匹配同名点,然后利用同名点灰度值的相关关系建立校正模型,再用该校正模型校正整幅影像的辐射一致性校正方法。对比评价了基于直方图匹配的色彩一致性校正方法、原始色彩空间辐射一致性校正、针对三波段影像的HSV(hue,saturation,value)色彩空间亮度一致性校正以及双边滤波去噪的效果。试验结果表明:基于直方图匹配的色彩一致性校正能在视觉上达到很好的效果,但是会造成校正后影像的灰度级严重缺失;基于同名点灰度值相关关系的校正模型能够很好地恢复待校正影像与基准影像的辐射一致性;HSV色彩空间亮度一致性校正能够在色彩上和辐射信息上与基准影像均达到很好的一致性,但只适用于三波段影像;双边滤波在去除噪声的同时,能够保持甚至提高校正后影像与基准影像的辐射一致性。  相似文献   

5.
基于遥感监测多品种玉米成熟度进而掌握最佳收获时机,对提高其产量和品质至关重要。该研究在玉米成熟阶段获取无人机多光谱影像,同步采集叶片叶绿素含量(chlorophyll content,C)、籽粒含水率(moisture content,M)、乳线占比(proportion of milk line,P)等地面实测数据,以此构建玉米成熟度指数(maize maturity index,MMI),从而定量表征玉米成熟度。通过MMI与植被指数构建回归模型和随机森林模型,验证MMI适用性,并分析无人机遥感对不同品种玉米成熟度的监测精度。结果表明:1)不同品种玉米的叶片叶绿素含量、籽粒含水率、乳线占比的变化速率均存在差异。2)MMI与所选植被指数的相关性均可达到0.01显著水平,其中与归一化植被指数(normalized difference vegetation index,NDVI)、转换叶绿素吸收率(transformed chlorophyll absorbtion ratio index,TCARI)相关性最高,相关系数均为0.87。3)该研究基于不同组合的数据集进行了模型验证,其中随机森林模型对MMI的估测精度最高,测试集决定系数(coefficient of determination,R2)为0.84,均方根误差(root mean squared error,RMSE)为8.77%,标准均方根误差(normalized root mean squared error,nRMSE)为12.05%。此外,随机森林模型对不同品种MMI的估测精度较好,京九青贮16精度最优,其中R2RMSE、nRMSE为0.76、10.67%、15.88%,模型精度证明了可以利用无人机平台对不同品种玉米成熟度进行监测。研究结果可为多光谱无人机实时监测农田多品种玉米成熟度的动态变化提供参考。  相似文献   

6.
基于无人机多光谱的大豆旗叶光合作用量子产量反演方法   总被引:1,自引:2,他引:1  
大豆旗叶的量子产量(Quantum Yield,QY)对于评估光合效率非常重要,利用无人机多光谱数据对QY值进行高通量反演,能够无损、高效的监测光合作用过程中的生理化学变化。该研究的目的是探究植被指数与QY值相关性,并基于高相关性的植被指数反演QY值,同时分析了多植被指数与单植被指数构建反演模型的准确性。结果表明,与传统反演算法支持向量回归(Support Vector Regression,SVR)相比,基于集成学习的自适应提升(Adaptive Boost,AdaBoost)算法提高了模型的准确性,测试集决定系数(coefficient of determination,R2)为0.982,均方根误差(Root Mean Square Error, RMSE)为0.089,相对分析误差(Residual Predictive Deviation,RPD)为7.29。研究表明基于多植被指数、利用AdaBoost算法可以构建更为有效的无人机多光谱大豆光合有效量子产量反演模型,为评估高通量光合效率提供了一种先进的方法。  相似文献   

7.
为探究不同作物覆盖下不同深度的土壤盐分快速反演模型,该研究采集苜蓿、玉米覆盖下0~15、>15~30、>30~50 cm层深度的土壤盐分含量,基于无人机多光谱影像数据,提取各地块采样点的光谱反射率,在此基础上引入红边波段计算光谱指数作为特征变量,采用支持向量机递归特征消除算法(Support Vector Machine-Recursive Feature Elimination,SVM-RFE)以筛选光谱指数及未经过筛选的全指数组作为模型输入组,共构建出36个基于随机森林(Random Forest,RF)、极限学习机(Extreme Learning Machine,ELM)、BP神经网络(Back Propagation Neural Network)等机器学习模型,确定不同作物覆盖下的最佳土壤盐分反演模型。结果表明:SVM-RFE算法筛选光谱指数构建模型精度优于未进行筛选构建的模型。对于苜蓿和玉米覆盖土壤,整体上,RF反演效果优于ELM模型和BPNN模型,反演结果能体现真实土壤盐分含量,在0~15和>30~50 cm土层上,RF模型反演效果优于其他模型,苜蓿样地验证集决定系数Rp2分别为0.71、0.58,验证集均方根误差RMSEp分别为0.026、0.033,玉米样地Rp2分别为0.67、0.64,RMSEp分别为0.111、0.094,在>15~30 cm土层上ELM反演效果较好,苜蓿样地Rp2为0.58,RMSEp为0.039,玉米样地Rp2为0.68,RMSEp为0.059。0~15 cm是作物覆盖下的土壤含盐量最佳反演深度,验证集平均决定系数R2为0.65,均方根误差RMSE为0.084。研究结果可为土壤盐分的快速反演提供理论依据。  相似文献   

8.
[目的]叶绿素含量高低反映植被的健康状况与光合能力.研究准确、有效地将冠层影像反演为叶绿素含量的技术参数,以便经济快速、实时地监测作物生长状况.[方法]田间试验于2018-2020年在内蒙古阴山北麓马铃薯主产区进行,设置氮肥梯度处理,在马铃薯块茎膨大期和淀粉积累期,测定试验地马铃薯植株SPAD值,通过线性关系将其转化成...  相似文献   

9.
利用多光谱快速准确获取棉花花铃期旱胁迫性状对棉花后期产量和纤维品质具有重要帮助。为实现棉花关键抗旱指标的快速检测,该研究以253份棉花品种为材料,设置干旱胁迫和正常灌溉2个处理,在花铃期通过大疆精灵4多光谱无人机获得图像,分析花铃期干旱胁迫和正常处理棉花的光谱反射率,结合地面调查叶绿素相对值(SPAD)和叶片含水量(LWC)数据,结合神经网络算法中的径向基函数进行模型的预测。结果显示:棉花干旱胁迫前后除红光反射值略上升,其余4个光谱均小于正常处理;通过径向基函数模型估测SPAD和LWC的最佳估测模型都为二次函数,决定系数R2分别为0.848 8和0.936 6,均方根误差RMSE分别为2.005和0.930,相对误差RE分别为0.004和0.011;将2个模型应用于试验区影像,对SPAD及LWC预测值进行聚类分析,根据SPAD聚类结果,试验棉花旱情等级划分为特旱、重旱、...  相似文献   

10.
探究消费级无人机多光谱影像对不同生态点、不同品种水稻氮营养监测建模精确度和普适度的影响,对于实现区域水稻氮营养精确管理与应用有重要意义。该研究分别在云南省西双版纳勐遮镇(供试品种:云粳37)与重庆市北碚区(供试品种:极优6 135)2个试验点设置不同氮水平田间试验,利用大疆精灵4多光谱无人机于水稻分蘖期、拔节期和抽穗期采集水稻冠层多光谱图像,采用凯氏定氮法测定水稻植株冠层氮含量(canopy nitrogen content,CNC)并计算地上部氮累积量(plant nitrogen accumulation,PNA);分别利用植被指数、偏最小二乘回归(partial least squares regression,PLSR)、随机森林(random forest,RF)、反向传播神经网络(back-propagation neural network,BPNN)对单一试验点、单品种和不同试验点、多品种水稻建立氮营养监测模型并探究模型的迁移能力。拔节期和抽穗期的模型精度较高(归一化植被指数NDVI或近红外归一化植被指数NNVI,R2为0.68~0.88),而分蘖...  相似文献   

11.
及时、准确的产量估算对农业经营管理和宏观决策具有重要意义。该研究利用无人机高分辨率遥感影像,提出了一种基于苗铃生长趋势的SEGT(Seedling Emergence and Growth Trend)模型用于棉花产量估算。首先借助无人机可见光影像数据,通过植被指数与大津法、形态学滤波相结合的方法,获取研究区内棉花出苗信息;然后利用无人机多光谱时间序列影像数据,分析各时期归一化差异植被指数NDVI(Normalized Difference Vegetation Index)与实际产量的相关特征,对棉花生长状态进行等级划分,反演每株棉花的预测成铃数;最后结合棉花单铃质量构建SEGT模型进行产量估算,并根据实测产量数据进行精度验证。试验结果表明:ExG-ExR(Excess Green-Excess Red)植被指数对棉花苗识别和提取效果较好,精确率、召回率、F1值分别达到93%、92.33%和92.66%,VDVI(Visible-band Difference Vegetation Index)植被指数精度次之;将预测产量与实测产量进行对比验证,估产模型的决定系数达到0.92,表明利用SEGT模型进行棉花产量估算是一种切实可行的方法。研究结果可为无人机遥感在作物估产中的应用提供参考。  相似文献   

12.
快速准确的产量估算对油茶经营管理和可持续发展具有重要意义。该研究针对油茶快速估产的应用现状,提出一种基于无人机影像自动检测冠层果的方法用于油茶快速估产。首先借助无人机航拍影像,通过随机抽样选取120株油茶树进行无人机近景摄影和人工采摘称量;然后利用Mask RCNN(Mask Region Convolutional Neural Networks) 网络开展基于近景影像的油茶冠层果自动检测与计数;采用线性回归和K最邻近建立冠层果数与单株果数之间的关系,同时结合研究区典型样木株数和平均单果质量,构建基于冠层果自动检测的估产模型。结果表明:1)无人机超低空近景影像结合Mask RCNN网络能够有效检测不同光照条件油茶果,平均F1值达89.91%;2)同传统卫星遥感相比,基于无人机近景摄影的冠层果自动检测在作物产量估测方面显示出明显优势,Mask RCNN网络预测的冠层果数与油茶样木单株果数之间具有良好的一致性,拟合决定系数R2达0.871;3)结合线性回归和K最邻近构建的模型估产精度均较高,拟合决定系数R2和标准均方根误差NRMSE(Normalized Root Mean Square Error)分别在0.892~0.913和28.01%~31.00%之间,表明基于无人机影像自动检测冠层果的油茶快速估产是一种切实可行的方法。研究结果可为油茶快速估产和智能监测提供参考。  相似文献   

13.
基于无人机采集的视觉与光谱图像预测棉花产量   总被引:2,自引:1,他引:2  
为了高效管理农田,该文提出了一种应用低空遥感视觉与光谱图像预测棉花产量的方法。盛花期前的棉花图像由无人机遥感平台在距地面50m的飞行高度下采集,采集的局部图像通过拼接处理得到棉花地的全景RGB图像与CIR(color-infrared,彩色红外)图像。基于全景图像提取并计算了色度、植株覆盖率与归一化植被指数(normalized difference vegetationindex,NDVI)3个特征参数,用于构建棉花产量的预测模型。包括产量与特征参数的原始数据集随机分为训练集(90%)与测试集(10%)。训练集数据首先基于产量概率分布特征去除了10%的离群值,然后通过均值滤波器滤波,处理后的数据用于构建预测模型。通过SAS软件对比分析了单变量、双变量以及三变量构建的线性回归模型,预测模型由P值、决定系数R2、每0.4 hm2面积下估计值与真实值之间的平均绝对误差百分比(mean absolute percentage error,MAPE)这3个参数进行评估。试验结果表明,单变量、双变量以及三变量构建的共7个线性回归模型,其P值均小于0.05,则7个线性回归模型均具有统计学意义(5%显著性水平)。其中,由三变量构建的多元线性回归模型具有最大的决定系数R2=0.9 773,因此适应性最优。基于测试集验证模型精度,试验结果表明,采用多元线性回归模型进行产量估计,估计值与实际值之间的平均绝对误差百分比为4.0%。因此,无人机搭载图像传感器采集提取视觉与光谱特征能够有效用于作物产量的预测。  相似文献   

14.
基于时间序列Landsat影像的棉花估产模型   总被引:3,自引:5,他引:3  
为提高棉花遥感估产精度,该文选取加州San Joaquin Valley地区2个棉花地块作为研究区,利用时间序列Landsat_5_TM、Landsat_7_ETM遥感影像数据,结合野外实测产量数据,进行棉花产量遥感预测模型研究。结果表明:基于Landsat影像纯像元的植被指数时间序列准确地揭示了棉花整个生长期的长势情况,不同长势的棉花植被指数随时间变化在花铃期差异比较显著;整个花铃期植被指数与产量之间的相关系数均大于0.80,最大相关系数达0.90,花铃期NDVI平均值建模决定系数为0.82,均方根误差为463.69,证明花铃期比其他生长期更适用于棉花产量预测;单一时期最优模型为第206天(7月25日),多时期最优模型以NDVI最大值前三期NDVI平均值为自变量;整个花铃期NDVI最大值建模决定系数为0.81,均方根误差为477.82,该模型具有普适性。该文的研究成果为基于MODIS_NDVI最大值合成法的相关研究提供了理论依据,并且为其他农作物的估产模型建立提供借鉴。  相似文献   

15.
基于多光谱图像和数据挖掘的多特征杂草识别方法   总被引:1,自引:10,他引:1  
为满足变量喷洒对杂草识别正确率的要求,提出一种基于多光谱图像和数据挖掘的杂草多特征识别方法。首先对多光谱成像仪获取的玉米与杂草图像从CIR转换到Lab颜色空间,用K-means聚类算法将图像分为土壤和绿色植物,随后用形态学处理提取出植物叶片图像,在此基础上提取叶片形状、纹理及分形维数3类特征,并基于C4.5算法对杂草分别进行单特征和多特征组合的分类识别。试验结果表明,多特征识别率比单特征识别率高,3类特征组合后的识别率最高达到96.3%。为验证该文提出方法的有效性,将C4.5算法与BP算法以及SVM算法进行比较,试验结果表明C4.5算法的平均识别率高于另2种算法,该文提出的田间杂草快速识别方法是有效可行的。该文为玉米苗期精确喷洒除草剂提供技术依据。  相似文献   

16.
针对复杂棉田环境下传统图像分割技术存在分割精度低、实时性弱和鲁棒性差等问题,该研究以脱叶期新疆密植棉花为对象,结合低空无人机遥感平台,提出一种RCH-UNet(resnet coordinate hardswish UNet)棉花产量快速预测模型。将UNet中传统的CBR(convolution batch normalization ReLU)下采样模块替换为ResNet50,同时将CA(coordinateattention)注意力机制和hardswish激活函数引入UNet,以提高图像特征的提取能力,增强图像分割效果。基于无人机采集的棉花图像数据集评估RCH-UNet模型性能。试验结果表明,在本文构建的棉花图像数据集上,RCH-UNet模型的棉花分割交并比达到92.79%,像素准确率达到96.22%,精确率为96.30%,与原始U-Net、PSPNet和DeepLabv3相比,像素准确率分别提高了9.85、17.67、6.31个百分点。通过RCH-UNet提取棉花像素比和灰度共生矩阵提取纹理特征,结合岭回归分析构建多因素棉花产量预测模型,模型的R2为0.92,预测产量与实际产量平均绝对百分比误差为9.254%。研究结果可为新疆密植棉花产量预测提供技术支持。  相似文献   

17.
为提高棉花苗情信息获取的时效性和精确性,该文提出了基于可见光遥感影像的棉花苗情提取方法。首先,利用自主搭建的低空无人机平台获取棉花3~4叶期高分辨率遥感影像,结合颜色特征分析和Otsu自适应阈值法实现棉花目标的识别和分割。同时,采用网格法去除杂草干扰后,提取棉花的形态特征构建基于SVM的棉株计数模型。最后,基于该模型提取棉花出苗率、冠层覆盖度及棉花长势均匀性信息,并绘制棉花出苗率、冠层覆盖度的空间分布图。结果显示,模型的测试准确率为97.17%。将模型应用于整幅影像,计算的棉花出苗率为64.89%,与真实值误差仅为0.89%。同时基于冠层覆盖度、变异系数分析了棉花长势均匀情况。该文提出的方法实现了大面积棉田苗情的快速监测,研究成果可为因苗管理的精细农业提供技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号