首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this work was to develop homozygous common bean lines carrying angular leaf spot resistance genes derived from the cultivars ‘Mexico 54’, ‘MAR 2’ and ‘BAT 332’ through marker‐assisted selection. Molecular markers SCAR OPN02890, RAPD OPE04500 and OPAO12950 linked to the resistance genes of ‘Mexico 54’, ‘MAR 2’ and ‘BAT 332’, respectively, were used in segregating backcross‐derived populations to selection. DNA fingerprinting was used to select homozygous BC2F3 and BC1F3 resistant plants genetically closer to the recurrent parent. Two homozygous BC2F2:3 and two and five BC1F2:3 families derived from ‘Ruda’ vs. ‘Mexico 54’ (RM), ‘MAR 2’ (RMA) and ‘BAT 332’ (RB) crosses were selected, respectively. After only one (RMA, RB) or two backcrosses (RM), five and eight BC1F3 lines derived from RMA and RB, respectively, and seven BC2F3 lines derived from RM, with 14.9–16.6, 16.9–18.6 and 9.3–11.1% of relative genetic distances to the recurrent parent were selected. This is the first report of lines resistant to angular leaf spot carrying genes of the cultivars ‘Mexico 54’, ‘MAR 2’ and ‘BAT 332’ developed with the aid of molecular markers.  相似文献   

2.
Anthracnose, rust and angular leaf spot caused by Colletotrichum lindemuthianum, Uromyces appendiculatus and Pseudocercospora griseola, respectively, are economically important diseases affecting the common bean production in Brazil. The BIOAGRO/UFV bean breeding program developed Rudá-R, a dry bean line with ‘carioca’ seed type, containing the following disease resistance genes: Co-4, Co-6 and Co-10 (anthracnose); Ur-ON (rust) and Phg-1 (angular leaf spot). To transfer this combination of disease resistance genes present in Rudá-R to a black-seeded bean, a backcrossing program aided by molecular markers was conducted, involving Rudá-R (donor genitor) and Diamante Negro (recurrent genitor). Forty black-seeded BC3F3:6 lines were obtained with combinations of at least three markers linked to the indicated disease resistance genes. The lines were evaluated for resistance to the three mentioned pathogens. Eight of the lines were homozygous and resistant to all four evaluated races of C. lindemuthianum, but susceptible to race 2047. Four of the lines were homozygous and resistant to two races of U. appendiculatus. Twenty of the lines were homozygous and resistant to the two races of P. griseola tested. Grain yield of the BC3F3:6 lines was evaluated during the ‘winter’ season of 2006 and the ‘dry’ season of 2007. All lines had statistically equal or higher yields than Rudá-R and Diamante Negro. Lines were identified that not only were high yielding but also resistant to the three pathogens tested. These lines are potential genotypes for further testing and for release as new black common bean varieties.  相似文献   

3.
If we are to breed common bean (Phaseolus vulgaris L.) for durable resistance to diseases, we must understand pathogenic variation and find sources of resistance. Our first objective was to determine the patterns of pathogenic variation found among isolates of Phaeoisariopsis griseola (PG), the fungus that causes angular leaf spot (ALS) in common bean. We characterized 433 PG isolates from 11 Latin American and 10 African countries, using differential cultivars, isozymes, and/or random amplified polymorphic DNA (RAPD) markers. We also systematically screened, for ALS resistance, common bean accessions from the world collection held at CIAT, and assessed the progress so far made in breeding for resistance to ALS. Despite their great diversity within and between countries on both continents, the PG isolates were classified into two major groups: Andean, and Middle American. Although each group had internal differences for virulence, and biochemical and molecular characteristics, the ‘Andean’ PG isolates were more virulent on common beans of Andean origin, than on those of Middle American origin, thus, suggesting a host-pathogen co-evolution. The ‘Middle American’ PG isolates, although more virulent on common beans from Middle America, also attacked Andean beans, thus, exhibiting a much broader virulence spectrum. To find sources of resistance, we tested 22,832 common bean accessions against naturally occurring PG isolates in the field at CIAT's Experiment Station, Quilichao, Colombia, between 1985 and 1992. The resulting 123 intermediate (scores of 4 to 6) and resistant (scores of 1 to 3) accessions were then tested in the greenhouse against selected 14 PG isolates of diverse origins. Nineteen accessions were intermediate or resistant to at least 13 of 14 PG isolates. Similarly, of 13,219 bred lines tested in the field between 1978 and 1996, 89 were intermediate or resistant. Of these, 33 bred lines proved intermediate or resistant to at least eight of nine PG isolates to which they were challenged in the greenhouse. We suggest that, to breed for durable resistance to ALS, common bean populations should be developed from crosses between Andean and Middle American gene pools. The populations should then be systematically evaluated and selected against the broadest range of the most virulent PG isolates of diverse evolutionary origins. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
The main goal of this work was to introduce resistance genes for rust, caused by Uromyces appendiculatus, and anthracnose, caused by Colletotrichum lindemuthianum, in an adapted common bean cultivar through marker-assisted backcrossing. DNA fingerprinting was used to select plants genetically closer to the recurrent parent which were also resistant to rust and to race 89 of C. lindemuthianum. DNA samples extracted from the resistant parent (cv. Ouro Negro), the recurrent parent (cv. Rudá), and from BC1, BC2 and BC3 resistant plants were amplified by the RAPD technique. The relative genetic distances in relation to the recurrent parent varied between 9 and 59% for BC1, 7 and 33% for BC2, and 0 and 7% for BC3 resistant plants. After only three backcrosses, five lines resistant to rust and anthracnose with, approximately, 0% genetic distance in relation to the recurrent parent were obtained. These lines underwent field yield tests in two consecutive growing seasons and three of them presented a good yield performance, surpassing in that sense their parents and most of the reference cultivars tested.  相似文献   

5.
Phaeoisariopsis griseola (Sacc.) Ferr., the agent of angular leaf spot disease of common bean, is a highly variable pathogen for which resistance gene diversification is required. This study analysed genetic resistance to this disease within genotypes of three Phaseolus species. Twenty-nine genotypes of Phaseolus vulgaris, Phaseolus coccineus and Phaseolus polyanthus were inoculated with 54 isolates of Phaeoisariopsis griseola. The genetic resistance was estimated according to the symptom intensity observed for each plant genotype-pathogen isolate combination. Globally, genotypes of the common bean secondary gene pool were resistant to a higher number of isolates than common bean varieties. Interactions between plant genotypes and pathogen isolates suggested vertical resistance genes within P. vulgaris, as well as within P. coccineus and P. polyanthus. The ‘NI666’accession (P. coccineus) showed resistance to all the fungal isolates inoculated while the variety ‘Aroana’(P. vulgaris) was susceptible to most of the isolates. Interspecific hybridization between these two genotypes gave F1 hybrid plants which showed resistance to angular leaf spot disease.  相似文献   

6.
S. Liu    K. Yu    S. J. Park 《Plant Breeding》2008,127(1):62-68
Common bacterial blight (CBB) of common bean ( Phaseolus vulgaris L.), is one of the major diseases that decrease yield and quality. A major quantitative trait locus (QTL) for CBB resistance from line XAN 159 was transferred into two bean lines, HR45 and HR67. Previous studies identified that two markers are linked to this QTL but the chromosome location was not consistent. To identify more tightly linked markers and to verify the chromosome location, 65 additional markers were mapped using 81 recombinant inbred lines (RILs) derived from a cross HR67 × OAC95-4. The QTL was mapped to a 13 cM region on chromosome 1 and defined by eight molecular markers that explained 25–52% of the phenotypic variation. Six tightly linked amplified fragment length polymorphism markers (0.6–9.7 cM from the QTL peak) were converted into seven sequence tagged site markers, three of which were mapped to this QTL. Five tightly linked markers were used to screen 907 F2 plants derived from a cross HR45 × 'OAC Rex' and four of them were linked to each other within 4.2 cM. These markers may be useful in marker-assisted selection and map-based cloning of this major QTL.  相似文献   

7.
The common bean (Phaseolus vulgaris L.) makes an important contribution to the human diet, particularly in Africa and Latin America. Because angular leaf spot (ALS), caused by the fungal pathogen Pseudocercospora griseola, is one of the most severe foliar diseases of the bean plant, an important priority is to identify genes encoding resistance. The present study focused on the resistance shown by the Mesoamerican common bean breeding line SPS50HB. From the pattern of segregation for resistance displayed in an F2 population bred from a cross between SPS50HB and the ALS-susceptible Ethiopian variety Red Wolaita, it was concluded that the resistance of SPS50HB is controlled by two unlinked dominant genes. An allelism test indicated that one of these genes was either identical with, allelic to, or closely linked to the major gene Phg-2 carried by variety Mexico 54. The sequence-characterized amplified region assays OPEO4 and PF13, which are diagnostic for an ALS resistance gene carried by the germplasm accession G10909, both tracked a possible second gene present in SPS50HB.  相似文献   

8.
K Yu    S. J. Park  V. Poysa 《Plant Breeding》2000,119(5):411-415
The possibility of using random amplified polymorphic DNA (RAPD) markers previously mapped in the common bean PC50/XANI59 population to select for resistance to common bacterial blight (CBB) in different populations was examined. Two out of 02 selected RAPD markers were polymorphic in HR56 and W0633d, the parental lines used in this experiment. Cosegregation analysis of the two polymorphic markers and disease reaction in a recombinant inbred (RI) population derived from HR67/W1744d confirmed that one of the two RAPD markers, BC420900, was significantly associated with a major quantitative trait locus‐conditioning resistance to CBB in HR67. This locus accounted for approximately 51) of the phenotypic variation. The RAPD marker was transformed into a sequence characterized amplified region (SCAR) marker and used for selection in a different population derived from ‘Envoy’/HR67. Prediction for resistance to CBB with the BC420.990 SCAR marker was 94.2% accurate in this population. A comparison between marker‐assisted selection (MAS) and conventional greenhouse screening showed that the cost of MAS is about one‐third less than that of the greenhouse test.  相似文献   

9.
Summary The larva of the bean pod weevil (BPW), Apion godmani Wagner (Coleoptera: Curculionidae), causes serious yield losses in common bean (Phaseolus vulgaris L.) in Mexico and Central America, by consuming the seed as it develops in the immature pod. Resistance to the BPW was identified in bean germplasm of highland Mexican origin, and these sources of resistance were incorporated into a pedigree breeding program to recover locally adapted lines resistant to Bean Common Mosaic Virus and BPW, with commercial grain for Guatemala, Honduras and El Salvador. These lines yielded as well as or better than local cultivars in the absence of the insect, and better than local cultivars when the BPW was present. Resistance appeared to be governed by several genes, and was stable across geographic areas, seasons and planting systems.  相似文献   

10.
Leaf rust, caused by Puccinia hordei , is a serious threat to barley ( Hordeum vulgare L.) production. Genes Rph5 and Rph7 confer resistance to many of the most prevalent races of P. hordei in the United States and Europe, respectively. The reliability and diagnostic capabilities of several molecular markers for these two genes were evaluated and validated for use in gene postulation, marker-assisted selection (MAS) and eventual pyramiding of genes Rph5 and Rph7 with other effective resistance genes. Fifty-eight winter barley experimental lines developed at Virginia Polytechnic Institute and State University, as well as seven barley cultivars were phenotyped for reaction to three diverse isolates of P. hordei and genotyped with molecular makers closely linked to genes Rph5 and Rph7 . Sequence tagged site markers TC2863-12.4 and ABG70 as well as simple sequence repeat marker AY642926-CA11 were reliable and diagnostic in gene postulation and have potential for use in MAS and pyramiding of genes Rph5 and Rph7 . Comparison of phenotypic and genotypic data revealed that one barley line VA04H-95 has genes Rph5 and Rph7 and at least one unknown gene.  相似文献   

11.
Common bacterial blight (CBB) caused hy Xanthomonas campestrts pv. phaseoli is an important disease of common bean (Phaseolus vulgaris L.) throughout the world. Two random amplified polymorphic DNA (RAPD) markers (R7313 and R4865) linked to genes for CBB resistance, that were transferred to P- vulgaris by an interspecific cross with Phaseohus acutifoluis. Were identified in a previous study. The current study was conducted to examine the use of these markers for selecting CBB resistant material from 85 F5,6, lines derived from crosses between two of the resistant lines used previously in the linkage study and susceptible breeding lines. The results showed that these two markers were located on the same linkage group and explained 22% (P = 0.0002) of the variation in response to CBB in the current population. Seventy per cent of the lines that had both markers were classified as resistant in a disease test of the F5,6, lines, whereas 73% of the lines that had neither of the RAPD markers were susceptible. The results indicated that the marker-disease resistance associations remained stable in a plant breeding programme and that they can be used lor marker-assisted selection of CBB-resistant beans.  相似文献   

12.
Summary over 13000 CIAT bean accessions were evaluated for their reactions to the anthracnose (Colletotrichum lindemuthianum) and angular leaf spot (Isariopsis griseola) pathogens over a 3 yr period. Among these accessions, 156 were resistant to all races of the anthracnose pathogen collected from Popayán, Colombia. Thirty were resistant to numerous races obtained from other parts of the world, including Europe. Although many of these new resistant sources originated in Mexico and Central America, they are quite diverse for geographic origin, plant type, seed color and seed size. In addition, more than 50 of the 156 lines were also resistant to isolates of I. griseola with diverse sources of origin throughout Colombia.  相似文献   

13.
J. Zhang    X. Li    G. Jiang    Y. Xu    Y. He 《Plant Breeding》2006,125(6):600-605
‘Minghui 63’ is a restorer line widely used in hybrid rice production in China for the last two decades. This line and its derived hybrids, including ‘Shanyou 63’, are susceptible to bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo). To improve the bacterial blight resistance of hybrid rice, two resistance genes Xa21 and Xa7, have been introgressed into ‘Minghui 63’ by marker‐assisted selection and conventional backcrossing, respectively. The single resistance gene‐introgressed lines, Minghui 63 (Xa21) and Minghui 63 (Xa7) had higher levels of resistance to bacterial blight than their derived hybrids, Shanyou 63 (Xa21) or Shanyou 63 (Xa7). Both Xa21 and Xa7 showed incomplete dominance in the heterozygous background of rice hybrids by infection with GX325 and KS‐1‐21. The improved restorer lines, with the homozygous genotypes, Xa21Xa21 or Xa7Xa7, were more resistant than their hybrids with the heterozygous genotypes Xa21xa21 or Xa7xa7. To further enhance the bacterial blight resistance of ‘Minghui 63’ and its hybrids, Xa21 and Xa7 were pyramided into the same background using molecular marker‐aided selection. The restorer lines developed with the resistance genes Xa21 and Xa7, and their derived hybrids were evaluated for resistance after inoculation with 10 isolates of pathogens from China, Japan and the Philippines, and showed a higher level of resistance to BB than the restorer lines and derived hybrids having only one of the resistance genes. The pyramided double resistance lines and their derived hybrids have the same high level of resistance to BB. These results clearly indicate that pyramiding of dominant genes is a useful approach for improving BB resistance in hybrid rice.  相似文献   

14.
Bulked segregant analysis was utilized to identify random amplified polymorphic DNA (RAPD) markers linked to genes for specific resistance to a rust pathotype and indeterminate growth habit in an F2 population from the common bean cross PC-50 (resistant to rust and determinate growth habit) × Chichara 83-109 (susceptible to rust and indeterminate growth habit). Six RAPD markers were mapped in a coupling phase linkage with the gene ( Ur-9) for specific rust resistance. The linkage group spanned a distance of 41 cM. A RAPD marker OA4.1050 was the most closely linked to the Ur-9 gene at a distance of 8.6 cM. Twenty-eight RAPD markers were mapped in a coupling phase linkage with the gene ( Fin) for indeterminate growth habit. The linkage group spanned a distance of 77 cM. RAPD markers OQ3.450 and OA17.600 were linked to the Fin allele as flanking markers at a distance of 1.2 cM and 3.8 cM, respectively. The RAPD markers linked to the gene for specific rust resistance of Andean origin detected here, along with other independent rust resistance genes from other germplasm, could be utilized to pyramid the different genes into a bean cultivar for durable rust resistance.  相似文献   

15.
N. Mutlu    P. Miklas    J. Reiser  D. Coyne 《Plant Breeding》2005,124(3):282-287
Common bacterial blight (CBB) caused by Xanthomonas campestris pv. phaseoli reduces common bean (Phaseolus vulgaris L.) yield and quality worldwide. Genetic resistance provides effective disease control; however. a high level of resistance is difficult to attain and does not exist in pinto bean, the most important dry bean market class in North America. Our objective was to determine if a backcross breeding approach with the aid of molecular markers linked to quantitative trait loci (QTL) for resistance to CBB in a donor parent could be used to attain higher levels of resistance to CBB in pinto bean. QTL conditioning CBB resistance from the donor parent XAN 159 were introgressed into the recurrent parent‘Chase’using classical backcross breeding and intermittent marker‐assisted selection.‘Chase’pinto bean is moderately resistant and the breeding line XAN 159 is highly resistant to Xanthomonas campestris. Marker assays confirmed the presence of independent QTL from GN no. 1 Sel 27 and XAN 159 in advanced backcross‐derived pinto bean lines with improved CBB resistance. Agronomic characteristics of‘Chase’were fully recovered in the backcross‐derived lines. An important QTL for CBB resistance from XAN 159 on linkage group B6 was not introgressed because tight linkage between this QTL and the dominant V allele that causes an unacceptable black‐mottled seed coat colour pattern in pinto bean could not be broken.  相似文献   

16.
17.
The genetic base of cultivars within market classes of common bean (Phaseolus vulgaris L.) is narrow. Moreover, small- and medium-seeded Middle American cultivars often possess higher yield and resistance to abiotic and biotic stresses than their large-seeded Andean counterparts. Thus, for broadening the genetic base and breeding for higher yielding multiple stress resistant Andean cultivars use of inter-gene pool populations is essential. Our objective was to determine the feasibility of introgressing resistance to Been common mosaic virus (BCMV, a potyvirus), and the common [caused by Xanthomonas campestris pv. phaseoli (Xcp) and X. campestris pv. phaseoli var. fuscans (Xcpf)] and halo [caused by Pseudomonas syringae pv. phaseolicola (Psp)] bacterial blights from the Middle American to Andean bean, using gamete selection. Also, we investigated the relative importance of the use of a landrace cultivar versus elite breeding line as the last parent making maximum genetic contribution in multiple-parent inter-gene pool crosses for breeding for resistance to diseases. Two multiple-parent crosses, namely ZARA I = Wilkinson 2 /// ‘ICA Tundama’ / ‘Edmund’ // VAX 3 / PVA 773 and ZARA II = ‘Moradillo’ /// ICA Tundama / Edmund // VAX 3 / PVA 773 were made. From the F1 to F5 single plant selection was practiced for resistance to the common and halo bacterial blights in both populations at Valladolid, Spain. The parents and F5-derived F6 breeding lines were evaluated separately for BCMV, and common and halo bacterial blights in the greenhouse at Filer and Kimberly, Idaho in 2001. They were also evaluated for the two bacterial blights, growth habit, seed color and 100-seed weight at Valladolid in 2002. All 20 F1 plants of ZARA I were resistant or intermediate to common and halo bacterial blights in the greenhouse, but their F2 and subsequent families segregated for both bacterial blights. Segregation for resistant, intermediate, and susceptible plants for common bacterial blight occurred in the F1 of ZARA II. Simple correlation coefficient for common bacterial blight between the F1 and F1-derived F2 families was positive (r = 0.54 P < 0.05) for ZARA II. From the F2 to F5 the number of families resistant to both bacterial blights decreased in both populations. Only four of 20 F1 plants in ZARA I resulted in seven F6 breeding lines, and only one of 32 F1 plants in ZARA II resulted in one F6 breeding line resistant to the three diseases. None of the selected breeding lines had seed size as large as the largest Andean parent. The use of elite breeding line or cultivar as the last parent making maximum genetic contribution to the multiple-parent inter-gene pool crosses, relatively large population size in the F1, and simultaneous selection for plant type, seed traits as well as resistance to diseases would be crucial for introgression and pyramiding of favorable alleles and quantitative trait loci (QTL) of interest between the Andean and Middle American beans.  相似文献   

18.
19.
A. K. Singh  S. S. Saini 《Euphytica》1980,29(1):175-176
Summary Angular leaf spot (Isariopsis griseola Sacc.) is a serious disease of French bean in the hills of India and 40 to 70 per cent of the green pods are damaged and rendered unmarketable. Crosses were made between PLB 257, (Phaseolus coccineus L.), a red flowering pole tope, resistant to angular leaf spot, and Contender (Phaseolus vulgaris L.), a highly susceptible commercial cultivar. Studies of the F1, F2, and F3 progenies indicated that PLB 257, carries a recessive gene imparting resistance to angular leaf spot.  相似文献   

20.
In this study, we characterized the genetic resistance of the Andean bean cultivars Kaboon and Perry Marrow and their relation to other sources of anthracnose resistance in common bean. Based on the segregation ratio (3R:1S) observed in two F2 populations we demonstrated that Kaboon carries one major dominant gene conferring resistance to races 7 and 73 of Colletotrichum lindemuthianum. This gene in Kaboon is independent from the Co-2 gene and is an allele of the Co-1 gene present in Michigan Dark Red Kidney (MDRK) cultivar. Therefore, we propose the symbol CO-1 2 for the major dominant gene in Kaboon. The Co-1 is the only gene of Andean origin among the Co anthracnose resistance genes characterized in common bean. When inoculated with the less virulent Andean race 5, the segregation ratio in the F2 progeny of Cardinal and Kaboon was 57R:7S (p = 0.38). These data indicate that Kaboon must possess other weaker dominant resistance genes with a complementary mode of action, since Cardinal is not known to possess genes for anthracnose resistance. Perry Marrow, a second Andean cultivar with resistance to a different group of races, was shown to possess another resistant allele at the Co-1 locus and the gene symbol Co-1 3 was assigned. In R × R crosses between Perry Marrow and MDRK or Kaboon, no susceptible F2 plants were found when inoculated with race 73. These findings support the presence of a multiple allelic series at the Andean Co-1 locus, and have major implications in breeding for durable anthracnose resistance in common bean. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号